JPH0413819B2 - - Google Patents

Info

Publication number
JPH0413819B2
JPH0413819B2 JP58064698A JP6469883A JPH0413819B2 JP H0413819 B2 JPH0413819 B2 JP H0413819B2 JP 58064698 A JP58064698 A JP 58064698A JP 6469883 A JP6469883 A JP 6469883A JP H0413819 B2 JPH0413819 B2 JP H0413819B2
Authority
JP
Japan
Prior art keywords
electrode plate
powder
battery
drying
kneaded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58064698A
Other languages
Japanese (ja)
Other versions
JPS59189559A (en
Inventor
Mitsunori Hara
Hiroji Maeda
Yukiteru Yoshihira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58064698A priority Critical patent/JPS59189559A/en
Publication of JPS59189559A publication Critical patent/JPS59189559A/en
Publication of JPH0413819B2 publication Critical patent/JPH0413819B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0433Molding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は電池用電極板の製造法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method of manufacturing an electrode plate for a battery.

(ロ) 従来技術 電池用電極板の製造法としては、ニツケル−カ
ドミニウム電池の電極板に適用されている燒結式
法を除いて一般にはペースト式法と加圧成形式法
とがよく知らている。
(b) Prior art As methods for manufacturing electrode plates for batteries, the paste method and pressure molding method are generally well known, except for the sintering method applied to electrode plates for nickel-cadmium batteries. .

ペースト式法の一例として特公昭57−6227号公
報に開示された方法がある。これは活物質合剤に
結着剤及び粘性剤溶液を加え混練しペースト状と
し、このペーストを極板芯体に塗着したのち熱処
理して電極板とするものである。
An example of the paste method is the method disclosed in Japanese Patent Publication No. 57-6227. In this method, a binder and a viscosity agent solution are added to an active material mixture and kneaded to form a paste, and this paste is applied to an electrode plate core and then heat-treated to form an electrode plate.

このペースト式法によれば、極板芯体の存在に
より極板強度が大であると共に薄層極板を得るこ
とができるという利点を有するものの、ペースト
を支持させるために極板芯体は不可欠でありコス
トアツプは否めないと共に例えば円板状に打抜い
て円板状極板とする場合には材料ロス部分が多く
材料歩留りが悪い。
Although this paste method has the advantage of increasing the strength of the plate due to the presence of the plate core and being able to obtain a thin plate, the plate core is essential to support the paste. Therefore, an increase in cost is undeniable, and when, for example, a disk-shaped electrode plate is punched out, there is a large amount of material loss, resulting in a poor material yield.

一方、加圧成形式法は活物質合剤に結着剤粉末
を加えた混合粉末を成形型内で加圧成形して電極
板とするものである。
On the other hand, in the pressure molding method, a mixed powder obtained by adding a binder powder to an active material mixture is pressure molded in a mold to form an electrode plate.

この加圧成形式法によれば、材料歩留りが良好
であるという利点を有するものの、極板厚を薄く
した場合機械的強度に問題があり結着剤を活物質
合剤に対し約4.0重量%程度添加する必要があり、
結着剤の添加量が大なるため活物質充填量がその
分だけ低減し電池容量の低下は否めないと共に内
部抵抗の増大を来たし電池性能に悪影響を与える
ことになる。
Although this pressure forming method has the advantage of good material yield, there is a problem with mechanical strength when the electrode plate thickness is reduced, and the binder is used in an amount of about 4.0% by weight based on the active material mixture. It is necessary to add a certain amount,
Since the amount of binder added is large, the amount of active material filled is reduced by that amount, resulting in an undeniable decrease in battery capacity and an increase in internal resistance, which adversely affects battery performance.

更に結着剤としては活物質合剤と混合した際に
繊維化され、その繊維群で活物質合剤を捕捉する
という性質を有したフルオロカーボン重合体が近
年使用されているが、このフルオロカーボン重合
体を上記加圧成形式法に適用した場合、フルオロ
カーボン重合体と活物質合剤との混練物は流動性
に乏しくその結果次段の加圧成形工程のために上
記混練物の所定量を秤量するに際して秤量精度が
悪く極板製造における作業性に難点があつた。
Furthermore, as a binder, a fluorocarbon polymer has been used in recent years, which has the property of forming fibers when mixed with the active material mixture and trapping the active material mixture in the fiber group. When applied to the above pressure forming method, the kneaded product of the fluorocarbon polymer and the active material mixture has poor fluidity, and as a result, a predetermined amount of the above kneaded product is weighed for the next pressure forming process. However, the weighing accuracy was poor and workability during electrode plate production was difficult.

(ハ) 発明の目的 本発明は結着剤としてフルオロカーボン重合体
を用いる加圧成形式法において、結着剤の添加量
を低減して電池容量の増大及び電池性能の向上を
計り、且作業性に優れた電池用電極板の製造法を
提案することを目的とする。
(c) Purpose of the invention The present invention aims to increase battery capacity and battery performance by reducing the amount of binder added in a pressure molding method using a fluorocarbon polymer as a binder, and to improve workability. The purpose of this study is to propose a manufacturing method for battery electrode plates that is excellent in terms of quality.

(ニ) 発明の構成 上記目的を達成すべくなされた本発明による電
池用電極板の製造法は、活動質合剤に結着剤とし
てのフルオロカーボン重合体及び液状体を加え混
練して第1の混練物を得る工程と、 上記第1の混練物を乾燥し乾燥後粉砕造粒して
第1の粉末体を得る工程と、 上記第1の粉末体に粘性溶剤液を加え混練して
第2の混練物を得る工程と、 上記第2の混練物を乾燥し乾燥後粉砕して第2
の粉末体を得る工程と、 上記第2の粉末体を所定寸法に加圧成形したの
ち前記粘性剤の分解温度以上の温度で熱処理する
工程とよりなる。
(d) Structure of the Invention The method for manufacturing a battery electrode plate according to the present invention, which has been made to achieve the above object, involves adding a fluorocarbon polymer as a binder and a liquid to an active material mixture and kneading the first. a step of obtaining a kneaded material; a step of drying the first kneaded material and pulverizing it after drying to obtain a first powder; a step of adding a viscous solvent solution to the first powder and kneading it to obtain a second powder; A step of drying the second kneaded material and pulverizing it after drying to obtain a second kneaded material.
and a step of press-molding the second powder into a predetermined size and then heat-treating the second powder at a temperature equal to or higher than the decomposition temperature of the viscous agent.

ここで活動質合剤とは、二酸化マンガン、フツ
化炭素、鉛、亜鉛、ニツケル、カドミウムなどの
活物質粉末或いはこれらの活物質粉末にアセチレ
ンブラツクや黒鉛などの導電剤を添加した混合粉
末を意味する。
The active material mixture here refers to active material powders such as manganese dioxide, carbon fluoride, lead, zinc, nickel, and cadmium, or mixed powders in which conductive agents such as acetylene black and graphite are added to these active material powders. do.

結着剤としてのフルオロカーボン重合体はポリ
テトラフルオルエチレン(以下PTFEと称す)、
ポリ弗化ビニルデン、ポリクロルトリフルオルエ
チレン、ポリヘキサフルオルプロピレン及びその
変形共重合体を含む。このフルオロカーボン重合
体については特公昭54−1894号公報に詳しい。
The fluorocarbon polymer used as a binder is polytetrafluoroethylene (hereinafter referred to as PTFE),
Contains polyvinylidene fluoride, polychlorotrifluoroethylene, polyhexafluoropropylene, and modified copolymers thereof. This fluorocarbon polymer is detailed in Japanese Patent Publication No. 1894/1983.

又、粘性剤としてはポリビニルアルコール、メ
チルセルロース、アクリル酸エステル、ヒドロキ
シプロピルセルロース、ゼラチンなどが適用しう
る。
Further, as the viscosity agent, polyvinyl alcohol, methyl cellulose, acrylic ester, hydroxypropyl cellulose, gelatin, etc. can be used.

(ホ) 実施例 以下本発明法の一実施例を非水電池用の二酸化
マンガン正極板を例にとり詳述する。
(E) Example An example of the method of the present invention will be described in detail below, taking a manganese dioxide positive electrode plate for a non-aqueous battery as an example.

二酸化マンガン活物質にアセチレンブラツク及
び黒鉛を90:1:9の重量比で混合した活物質合
剤に対しPTFEデイスパージヨンを0.5重量%、
純水25重量%を加え混練して第1の混練物を得
る。
0.5% by weight of PTFE dispersion in an active material mixture of manganese dioxide active material, acetylene black and graphite in a weight ratio of 90:1:9;
25% by weight of pure water is added and kneaded to obtain a first kneaded product.

この混練物はPTFEの繊維化により、その繊維
群に活物質合剤が捕捉されたゴム状体となつてお
り流動性に乏しい。
This kneaded product becomes a rubber-like body in which the active material mixture is trapped in the fibers due to the fiberization of PTFE, and has poor fluidity.

次にこの第1の混練物を150℃で乾燥し、混練
物中の水分を除去したのち、ローランコンパクタ
装置で加圧しついで粉砕機で粉砕した後32メツシ
ユパスして造粒し第1の粉末体を得る。
Next, this first kneaded material is dried at 150°C to remove moisture in the kneaded material, then pressurized with a Rollan compactor device, crushed with a crusher, and granulated with 32 mesh passes to form a first powder. get.

この工程によつて粒子間に跨がるPTFE繊維状
体の絡みつきを分断すると共に粒度を調整して充
填密度の向上を計る。
Through this step, the entanglement of the PTFE fibrous bodies extending between the particles is separated, and the particle size is adjusted to improve the packing density.

その後第1粉末体に対してポリビニルアルコー
ル溶液(ポリビニルアルコール分1重量%)を3
重量%加え再度混練して第2の混練物を得る。
After that, 3% of polyvinyl alcohol solution (polyvinyl alcohol content 1% by weight) was added to the first powder.
% by weight is added and kneaded again to obtain a second kneaded product.

ついで、この第2の混練物を100℃で再度乾燥
し、乾燥後粉砕し32メツシユパスして第2の粉末
体を得る。得られた粉末の表面にはポリビニルア
ルコールの薄膜が付着された状態となつている
が、粉末体としてはサラサラした状態であり極め
て秤量精度に富み作業性に優れている。
Next, this second kneaded product is dried again at 100°C, and after drying, it is ground and passed through 32 meshes to obtain a second powder. Although a thin film of polyvinyl alcohol is attached to the surface of the obtained powder, the powder remains smooth and has extremely high weighing accuracy and excellent workability.

そして、この第2の粉末体を0.3g秤量し10ト
ン/cm2の圧で加圧し直径16.0mm、厚み0.4mmの成
形体を得る。
Then, 0.3 g of this second powder was weighed and pressed at a pressure of 10 tons/cm 2 to obtain a molded body having a diameter of 16.0 mm and a thickness of 0.4 mm.

この加圧成形作業は粉末の表面に付着せるポリ
ビニルアルコール薄膜の存在により成形性は極め
て良好である。
This pressure molding operation has extremely good moldability due to the presence of a polyvinyl alcohol thin film attached to the surface of the powder.

次にポリビニルアルコール薄膜を除去するため
に熱処理するが、その熱処理温度はポリビニルア
ルコールの分解温度(約200℃)以上であれば良
い。但し本実施例のように非水電池の正極板に用
いる場合には水分除去の目的のためより高い温度
で熱処理するのが好ましく具体的には適用する活
物質の分解温度及び結着剤の分解温度などを考慮
して決定され、本実施例の場合には約300℃で熱
処理した。
Next, heat treatment is performed to remove the polyvinyl alcohol thin film, and the heat treatment temperature may be at least the decomposition temperature of polyvinyl alcohol (approximately 200° C.). However, when used as a positive electrode plate for a non-aqueous battery as in this example, it is preferable to perform heat treatment at a higher temperature for the purpose of removing moisture. The temperature was determined in consideration of temperature, etc., and in the case of this example, the heat treatment was performed at about 300°C.

このポリビニルアルコールの除去によつて極板
の多孔度が増大し極板の含液量が増加して電池性
能の向上に寄与する。
Removal of this polyvinyl alcohol increases the porosity of the electrode plate and increases the liquid content of the electrode plate, contributing to improvement of battery performance.

図面は本発明法により得た正極板を使用せる非
水電解液電池Aと、従来法(加圧成形法)により
得た正極板を使用せる非水電解液電池Bとの
12KΩ定抵抗での連続放電特性比較図である。
The drawing shows a non-aqueous electrolyte battery A that uses a positive electrode plate obtained by the method of the present invention, and a non-aqueous electrolyte battery B that uses a positive electrode plate obtained by a conventional method (pressure molding method).
It is a comparison diagram of continuous discharge characteristics at a constant resistance of 12KΩ.

尚、いづれの電池も負極にリチウムを用い、電
解液としてプロピレンカーボネートとジメトキシ
エタンとの等体積混合溶媒に過塩素酸リチウムを
1モル/溶解したものを用い電池容量は80m
AHであつた。
All batteries use lithium as the negative electrode, and the electrolyte is 1 mole of lithium perchlorate dissolved in an equal volume mixed solvent of propylene carbonate and dimethoxyethane.The battery capacity is 80m.
It was AH.

又、従来法による正極板はDTFE結着剤を活物
質合剤に対して4重量%添加したものであり、且
厚みは0.8mmであつた。
Further, the positive electrode plate prepared by the conventional method had a DTFE binder added in an amount of 4% by weight based on the active material mixture, and had a thickness of 0.8 mm.

(ヘ) 発明の効果 図面より明白なるように、本発明法による正極
板を用いた電池Aは従来電池Bに比して電池電
圧、電池容量のいづれも高く、且放電に伴う内部
抵抗の増大も抑制されている。
(F) Effects of the invention As is clear from the drawings, battery A using the positive electrode plate produced by the method of the present invention has both higher battery voltage and battery capacity than conventional battery B, and an increase in internal resistance due to discharge. is also suppressed.

本発明法に依れば従来の加圧成形式法が有する
利点に加えて、次述の如き新たな利点を備えるも
のである。
According to the method of the present invention, in addition to the advantages of the conventional pressure forming method, the following new advantages are provided.

即ち、 (a) 薄層極板を作成する際して結着剤としてのフ
ルオロカーボン重合体の添加量を大幅に低減す
ることができ、電池容量の増大、電池内部抵抗
の減少が計れ電池性能を向上しうる。
That is, (a) it is possible to significantly reduce the amount of fluorocarbon polymer added as a binder when creating thin-layer electrode plates, increasing battery capacity and decreasing battery internal resistance, improving battery performance. It can be improved.

(b) 活物質合剤とフルオロカーボン重合体との混
練物を乾燥粉砕後造粒し、その後粘性剤溶液を
加え再度乾燥して得た成形直前の粉末体はサラ
サラした状態であり、秤量精度に富み作業性に
優れる。
(b) The kneaded product of the active material mixture and the fluorocarbon polymer is dried and pulverized, then granulated, and then a viscosity agent solution is added and dried again. Excellent workability.

(c) 加圧成形時、粉末の表面に粘性剤薄膜が付着
しておりこの薄膜の有する粘性によつて成形性
が優れる。
(c) During pressure molding, a thin film of viscosity agent is attached to the surface of the powder, and the viscosity of this thin film provides excellent moldability.

(d) 成形後、粘性剤の分解温度以上の温度で熱処
理して粘性剤を除去するため極板の多孔度が増
大し、極板の含液量が増加して電池性能が向上
する。
(d) After molding, the viscous agent is removed by heat treatment at a temperature higher than the decomposition temperature of the viscous agent, which increases the porosity of the electrode plate, increases the liquid content of the electrode plate, and improves battery performance.

以上のように本発明法は種々の効果を有しその
工業的価値は極めて大なるものである。
As described above, the method of the present invention has various effects and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明法と従来法とによつて得た正極板
を夫々用いた非水電池の放電特性比較図を示す。 A……本発明電池、B……従来電池。
The drawing shows a comparison diagram of the discharge characteristics of non-aqueous batteries using positive electrode plates obtained by the method of the present invention and the conventional method. A...Battery of the present invention, B...Conventional battery.

Claims (1)

【特許請求の範囲】 1 活物質合剤に結着剤としてのフルオロカーボ
ン重合体及び液状体を加え混練して第1の混練物
を得る工程と、 上記第1の混練物を乾燥し乾燥後粉砕造粒して
第1の粉末体を得る工程と、 上記第1の粉末体に粘性剤溶液を加え混練して
第2の混練物を得る工程と、 上記第2の混練物を乾燥し乾燥後粉砕して第2
の粉末体を得る工程と、 上記第2の粉末体を所定寸法に加圧成形したの
ち前記粘性剤の分解温度以上の温度で熱処理する
工程とよりなる電池用電極板の製造法。 2 前記フルオロカーボン重合体がポリテトラフ
ルオルエチレンである特許請求の範囲第1項記載
の電池用電極板の製造法。 3 前記粘性剤がポリビニルアルコールである特
許請求の範囲第1項記載の電池用電極板の製造
法。
[Scope of Claims] 1. A step of adding and kneading a fluorocarbon polymer as a binder and a liquid to an active material mixture to obtain a first kneaded product, and drying the first kneaded product and pulverizing after drying. a step of granulating to obtain a first powder; a step of adding and kneading a viscosity agent solution to the first powder to obtain a second kneaded product; and drying the second kneaded product and after drying. Shredded and second
A method for manufacturing an electrode plate for a battery, comprising: obtaining a powder body; and press-molding the second powder body to a predetermined size, and then heat-treating the second powder body at a temperature equal to or higher than the decomposition temperature of the viscous agent. 2. The method for producing a battery electrode plate according to claim 1, wherein the fluorocarbon polymer is polytetrafluoroethylene. 3. The method for manufacturing a battery electrode plate according to claim 1, wherein the viscous agent is polyvinyl alcohol.
JP58064698A 1983-04-12 1983-04-12 Manufacture of electrode plate for battery Granted JPS59189559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58064698A JPS59189559A (en) 1983-04-12 1983-04-12 Manufacture of electrode plate for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58064698A JPS59189559A (en) 1983-04-12 1983-04-12 Manufacture of electrode plate for battery

Publications (2)

Publication Number Publication Date
JPS59189559A JPS59189559A (en) 1984-10-27
JPH0413819B2 true JPH0413819B2 (en) 1992-03-10

Family

ID=13265625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58064698A Granted JPS59189559A (en) 1983-04-12 1983-04-12 Manufacture of electrode plate for battery

Country Status (1)

Country Link
JP (1) JPS59189559A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126550A (en) * 1985-11-28 1987-06-08 Toshiba Battery Co Ltd Manufacture of positive electrode for nonaqueous electrolyte battery
JPS62168347A (en) * 1986-01-18 1987-07-24 Yuasa Battery Co Ltd Positive active material for alkaline storage battery

Also Published As

Publication number Publication date
JPS59189559A (en) 1984-10-27

Similar Documents

Publication Publication Date Title
CN112038574B (en) Pole piece film and preparation method and application thereof
EP2037515B1 (en) Negative electrode active material for lithium ion rechargeable battery, and negative electrode
CN106654235A (en) Composite graphite material and preparation method thereof and lithium-ion battery comprising composite graphite material
JPS60133656A (en) Battery electrode and method of producing same
JPWO2018193994A1 (en) All-solid-state lithium-ion secondary battery
JPS6041829B2 (en) Manufacturing method of positive electrode for non-aqueous electrolyte battery
JP3341693B2 (en) Active material powder for electrode of silver oxide battery, electrode material and production method thereof
US5698147A (en) Fabrication methods for low impedance lithium polymer electrodes
JPH0413819B2 (en)
JP2849561B2 (en) Lithium ion secondary battery and negative electrode material for the secondary battery
JP4830180B2 (en) Method for producing electrode plate for non-aqueous electrolyte secondary battery
JPH10312806A (en) Negative electrode material for lithium ton secondary battery and manufacture therefor
JPH1116567A (en) Nonaqueous electrolyte battery, and manufacture thereof
JPS5990364A (en) Manufacture of positive electrode for battery
JP2975516B2 (en) Positive electrode active material for dry batteries and alkaline dry batteries
US3655446A (en) Method of preparation of cupric sulfide electrodes
JPH02239572A (en) Polyaniline battery
JP2818602B2 (en) Method for producing positive electrode mixture in manganese dry battery
JP2878294B2 (en) Lithium battery
JP2983066B2 (en) Method for producing paste-type nickel electrode
JP2968813B2 (en) Method for producing cadmium negative electrode for alkaline storage battery
JPS6298563A (en) Manufacture of anode plate for nickel-cadmium alkaline storage battery
JPH077669B2 (en) Method for manufacturing non-aqueous electrolyte battery
JPH05151964A (en) Manufacture of electrode
JPH02132760A (en) Nonaqueous solvent secondary battery