JPH0413811A - Production of grain-oriented electrical steel sheet having high magnetic flux density - Google Patents

Production of grain-oriented electrical steel sheet having high magnetic flux density

Info

Publication number
JPH0413811A
JPH0413811A JP2112852A JP11285290A JPH0413811A JP H0413811 A JPH0413811 A JP H0413811A JP 2112852 A JP2112852 A JP 2112852A JP 11285290 A JP11285290 A JP 11285290A JP H0413811 A JPH0413811 A JP H0413811A
Authority
JP
Japan
Prior art keywords
steel sheet
final
annealing
magnetic flux
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2112852A
Other languages
Japanese (ja)
Other versions
JPH07122094B2 (en
Inventor
Yoshio Nakamura
吉男 中村
Yasuo Okazaki
靖雄 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2112852A priority Critical patent/JPH07122094B2/en
Publication of JPH0413811A publication Critical patent/JPH0413811A/en
Publication of JPH07122094B2 publication Critical patent/JPH07122094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To stably produce the above steel sheet by limiting the nitrogen partial pressure in an atmosphere at the time of secondary recrystallization annealing in the primary recrystallization process of a steel which is regulated in the contents of AlN and MnS as inhibitors, is limited in a cold draft and does not contain Si. CONSTITUTION:The hot rolled sheet contg., by weight %, <=0.06 C, 0.005 to 2.0 Mn, 0.001 to 0.02 S, 0.01 to 0.036 sol.Al, and 0.002 to 0.014N, and consists of the balance iron is subjected to >=1 passes of cold rolling including the final cold rolling of 50 to 80% draft to the final sheet thickness. This steel sheet is subjected to the final annealing in the temp. region where the transformation does not arise, after decarburization annealing, by which the grain-oriented electrical steel sheet is obtd. The atmosphere at the time of the final annealing is formed of a gaseous mixture composed of nitrogen and hydrogen contg. <=50% nitrogen in this method. The secondary recrystallization is generated in this way and the grain-oriented electrical steel sheet having the high magnetic flux density is stably obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁束密度の極めて高い一方向性電磁鋼板の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a grain-oriented electrical steel sheet having an extremely high magnetic flux density.

一般に静止機器の鉄心材料としては、純鉄、低炭素鋼、
あるいは約3%Stを添加した珪素鋼が広く利用されて
いる。純鉄、低炭素鋼は珪素鋼よりも飽和磁束密度が高
いけれども磁性は劣る。しかし、珪素鋼に比べて、低価
格なため用途に応じてそれらが使い分けられているのが
現状である。
In general, core materials for stationary equipment include pure iron, low carbon steel,
Alternatively, silicon steel to which about 3% St is added is widely used. Although pure iron and low carbon steel have higher saturation magnetic flux density than silicon steel, their magnetism is inferior. However, since they are cheaper than silicon steel, they are currently used depending on the purpose.

その中で本発明は、珪素鋼よりも飽和磁束密度が高い珪
素を含まない鋼に方向性を持たせ、純鉄や低炭素鋼より
も磁化特性が優れ、鉄損が低い一方向性電磁鋼板の製造
方法を提供するものである。
Among these, the present invention provides directionality to silicon-free steel, which has a higher saturation magnetic flux density than silicon steel, and is a unidirectional electrical steel sheet with superior magnetization properties and lower iron loss than pure iron or low carbon steel. The present invention provides a method for manufacturing.

(従来の技術) これまで一方向性電磁鋼板は志として、トランス用鉄心
材料として用いられてきたため、固有抵抗を高め、鉄損
を低くする3%程度Stを含む珪素鋼が深く研究されて
きた。しかし、近年ヨーク材料や、磁気シールド材料な
どでは鉄損よりも磁束密度Bが高いことが要求されてき
ている。一般に鉄網材料は、その純度が上がるほど飽和
磁束密度Bsが高くなる。また、単結晶では、<100
 >方向が最も容易に磁化されることはよく知られてお
り、したがって錬鉄に方向性を持たせた材料は高い磁束
密度を持つことが期待される。このような材料を工業的
に大量に得ることは重要である。
(Prior technology) Until now, unidirectional electrical steel sheets have been used as core materials for transformers, so silicon steel containing about 3% St, which increases specific resistance and lowers iron loss, has been deeply researched. . However, in recent years, yoke materials, magnetic shield materials, etc. are required to have a magnetic flux density B higher than iron loss. Generally, the higher the purity of the iron mesh material, the higher the saturation magnetic flux density Bs. In addition, in single crystals, <100
It is well known that the > direction is most easily magnetized, and therefore oriented materials such as wrought iron are expected to have high magnetic flux densities. It is important to obtain such materials industrially in large quantities.

ところで、従来の一方向性珪素鋼において、武勇結晶焼
鈍時の窒素分圧をコントロールすることによって(1i
0)<ool>ゴス方位集積度を高めるための試みはい
くつかなされている。例えば、特開昭55−47324
号公報では、二次再結晶粒成長の前に雰囲気中の窒素分
圧を下げ、表面層の粗大結晶粒を利用することにより、
二次再結晶後のゴス集積度が上がることが述べられてい
る。また、鉄と鋼、 Vol、73. No、14.1
746(1987)には、二次再結晶焼鈍中の窒素分圧
を低くするとインヒビターが弱くなり、二次再結晶温度
が高くなるため、対応方位粒界密度が低いゴスからずれ
た方位の粒は二次再結晶しにくくなるという、二次再結
晶のメカニズムが述べられている。
By the way, in conventional unidirectional silicon steel, by controlling the nitrogen partial pressure during annealing of valiant crystals (1i
0) <ool> Several attempts have been made to increase the degree of Goss orientation integration. For example, JP-A-55-47324
In the publication, by lowering the nitrogen partial pressure in the atmosphere before secondary recrystallized grain growth and utilizing coarse crystal grains in the surface layer,
It is stated that the degree of Goss accumulation increases after secondary recrystallization. Also, Tetsu to Hagane, Vol. 73. No, 14.1
746 (1987) states that lowering the nitrogen partial pressure during secondary recrystallization annealing weakens the inhibitor and increases the secondary recrystallization temperature. The mechanism of secondary recrystallization is described in which secondary recrystallization becomes difficult.

一方、珪素を含まない、いわゆる普通鋼の二次再結晶に
ついてもこれまでいくつか研究がなされており、本発明
の成分とは異なるが、たとえばり、M、Kohler(
J、Appl、Phys、、3B(1967)1776
)  は、最終焼鈍時にSを添加したMnSをインヒビ
ターとする二次再結晶で、水素100%雰囲気を用いて
いる。
On the other hand, several studies have been conducted on the secondary recrystallization of so-called ordinary steel that does not contain silicon, and although the composition is different from the composition of the present invention, for example, M. Kohler (
J. Appl, Phys., 3B (1967) 1776
) is secondary recrystallization using MnS added with S at the time of final annealing as an inhibitor, using a 100% hydrogen atmosphere.

(発明が解決しようとする課題) 本発明は、インヒビターとしてのAINおよびMnSの
含有量を規定し、さら冷延率を限定した珪素を含まない
鋼の二次再結晶プロセスにおいて、二次再結晶焼鈍時の
雰囲気中の窒素分圧を限定することによって、磁束密度
が高い一方向性電磁鋼板を安定して製造する方法を提供
することを目的とする。
(Problems to be Solved by the Invention) The present invention provides a secondary recrystallization process for silicon-free steel in which the contents of AIN and MnS as inhibitors are specified and the further cold rolling rate is limited. It is an object of the present invention to provide a method for stably manufacturing grain-oriented electrical steel sheets with high magnetic flux density by limiting the nitrogen partial pressure in the atmosphere during annealing.

(課題を解決するための手段) 本発明の要旨は、重量%でC≦0.06%、 Mn;0
.005〜2.0%、 S;O,OO1〜0.02%+
 so 1.At +0.01〜0.036.%、N、
0.002〜0.014%を含み、残部が鉄および不可
避的不純物よりなる熱延板を出発材とし、圧下率が50
〜80%の最終冷延を含む一回以上の冷延を施した後、
脱炭焼鈍、最終焼鈍をする際に、最終焼鈍時の雰囲気を
窒素50%未満である窒素・水素混合ガスとすることに
よって、高磁束密度一方向性電磁鋼板を安定して得るこ
とにある。
(Means for Solving the Problems) The gist of the present invention is that C≦0.06% by weight, Mn; 0
.. 005~2.0%, S;O,OO1~0.02%+
so 1. At+0.01~0.036. %,N,
The starting material is a hot-rolled plate containing 0.002 to 0.014%, with the remainder consisting of iron and unavoidable impurities, and the rolling reduction is 50%.
After undergoing one or more cold rollings, including ~80% final cold rolling,
The objective is to stably obtain a high magnetic flux density unidirectional electrical steel sheet by using a nitrogen/hydrogen mixed gas containing less than 50% nitrogen as the atmosphere during the final annealing during decarburization annealing and final annealing.

ここで用いる熱延板は公知の手段によって得られるもの
でよく、スラブ加熱温度、仕上温度とも特に限定はしな
い。スラブ加熱時間は、スラブ厚に応じて均質化が充分
できる時間とすればよく、長すぎるとスラブの1粒が粗
大化し、二次再結晶不良が生しる。脱炭焼鈍も公知の手
段による。例えば、湿水素中で熱処理を行なえばよい。
The hot rolled sheet used here may be obtained by known means, and neither the slab heating temperature nor the finishing temperature is particularly limited. The slab heating time may be set to a time that allows sufficient homogenization depending on the slab thickness; if it is too long, one grain of the slab will become coarse and secondary recrystallization failure will occur. Decarburization annealing is also performed by known means. For example, heat treatment may be performed in wet hydrogen.

最終焼鈍はα−γ変態の起こらない温度域でなるべく高
温がよく、焼鈍時間もゴ次再結晶粒が充分成長する時間
にする。雰囲気中の窒素分圧の設定も公知の手段による
The final annealing is preferably performed at a high temperature in a temperature range where α-γ transformation does not occur, and the annealing time is set to a time that allows sufficient growth of the gothic recrystallized grains. The nitrogen partial pressure in the atmosphere is also set by known means.

(作 用) まず、成分元素について述べる。(for production) First, the component elements will be described.

Cは集合組織適性化のために、ある程度台まれているこ
とが望ましいが、その含有量が多いと脱炭工程で抜けき
らず、磁気特性に有害となるので0.06%以下とする
It is desirable that C be suppressed to some extent in order to optimize the texture, but if its content is too large, it will not be removed in the decarburization process and will be harmful to the magnetic properties, so it should be kept at 0.06% or less.

Mnは磁束密度を劣化させずに、鉄損を低くする作用が
あるけれども、その含有量が多くなると、熱延スラブ加
熱時にMnSの固溶量が減るので、2.0%以下とする
。また、少なくすぎると、二次再結晶しなくなるので、
下限を0.005%とする。
Although Mn has the effect of lowering iron loss without deteriorating the magnetic flux density, if its content increases, the amount of solid solution of MnS decreases during heating of the hot-rolled slab, so it is set to 2.0% or less. Also, if the amount is too low, secondary recrystallization will not occur, so
The lower limit is set to 0.005%.

SハMnSの形で二次再結晶のためのインヒビターとし
て働くので、0.001%以上含まれなければならない
が、本発明で好ましいとする熱延スラブ加熱温度範囲で
MnSをある程度固溶させるため、0.02%以下、好
ましくは0.004%以下がよい。
Since S acts as an inhibitor for secondary recrystallization in the form of MnS, it must be contained in an amount of 0.001% or more, but in order to dissolve MnS to some extent in the hot-rolled slab heating temperature range preferred in the present invention. , 0.02% or less, preferably 0.004% or less.

このSの制限に加え、さらにsol、 AIo、036
%以下にすることが必要である。へl量これより多い場
合、二次再結晶が生じない。同様に、二次再結晶を生じ
させるためにsol、AIは少なくとも0.01%が必
要である。
In addition to this S restriction, sol, AIo, 036
% or less. If the amount is larger than this, secondary recrystallization will not occur. Similarly, sol and AI need to be at least 0.01% to cause secondary recrystallization.

NはAIと共にAINの形で鋼中に析出し、インヒビタ
ーとして働くので、少なくとも0.002%必要であり
、多すぎるとやはり二次再結晶しないので0.014%
を上限とする。
Since N precipitates in the steel in the form of AIN together with AI and acts as an inhibitor, it is required to be at least 0.002%, and if it is too large, secondary recrystallization will not occur, so it is 0.014%.
is the upper limit.

その他の元素として、磁束密度は下がるけれども、鉄損
を改善するなどの目的で、鋼中でインヒビターとはなら
ない元素、たとえばSiなどを添加することは許される
As other elements, it is permissible to add elements that do not act as inhibitors in steel, such as Si, for the purpose of improving core loss, although the magnetic flux density decreases.

ここで、高磁束密度化に欠かせない要件として、冷延圧
下率がある。冷延圧下率を上げて85%にすると、B8
がかなり下がってくる。これは二次再結晶もしており粒
も大きいのであるが、ゴス方位からのずれが大きい粒が
成長してしまうためである。
Here, a cold rolling reduction ratio is an essential requirement for increasing magnetic flux density. If the cold rolling reduction is increased to 85%, B8
will drop considerably. This is because the grains are large due to secondary recrystallization, but grains with a large deviation from the Goss orientation grow.

したがって、高磁束密度を得るという観点から本発明の
圧下率は80%を上限とする。
Therefore, from the viewpoint of obtaining a high magnetic flux density, the upper limit of the rolling reduction ratio in the present invention is 80%.

更に、本発明の骨子となる最終焼鈍時の雰囲気中の窒素
分圧であるが、二次再結晶を生じさせるためには窒素分
圧を50%未満とすることが必要である。窒素分圧を上
げるとAINとして鋼中のインヒビター強度を高めるた
め、本発明の最終焼鈍温度領域では二次再結晶しなかっ
たものと思われる。窒素分圧を限定する理由は、本発明
の最終焼鈍温度域で二次再結晶が生じるようにインヒビ
ターレベルを制御することにあり、表面のシャープなゴ
ス粒を利用するために窒素分圧を低くするという従来の
珪素鋼の思想とは異なる。したがって、窒素分圧の下限
値でゴス集積度が高くなることも本発明成分においては
ない。
Furthermore, regarding the nitrogen partial pressure in the atmosphere during final annealing, which is the gist of the present invention, it is necessary to make the nitrogen partial pressure less than 50% in order to cause secondary recrystallization. It is thought that secondary recrystallization did not occur in the final annealing temperature range of the present invention because increasing the nitrogen partial pressure increases the inhibitor strength in the steel as AIN. The reason for limiting the nitrogen partial pressure is to control the inhibitor level so that secondary recrystallization occurs in the final annealing temperature range of the present invention, and the nitrogen partial pressure is set low to utilize the sharp Goss grains on the surface. This is different from the conventional idea of silicon steel. Therefore, the component of the present invention does not have a high Goss accumulation degree at the lower limit of the nitrogen partial pressure.

次に、二回以上の冷延を含む場合の中間焼鈍温度につい
てであるが、−次回結晶集合組織適性化およびAINの
析出の面から、鋼板の少なくとも一部がT変態を生じる
温度域で行えば、格段に磁気特性が優れることがわかっ
た。
Next, regarding the intermediate annealing temperature when cold rolling is performed two or more times, from the viewpoint of optimizing the next crystal texture and precipitation of AIN, the intermediate annealing is performed in a temperature range where at least a part of the steel sheet undergoes T transformation. For example, it was found that the magnetic properties were significantly superior.

(実施例1) C;0.05%、 MnHo、18%、 S;0.00
7%、 soZ、AZ;0、024%、 N、0.00
9%、残部Feおよび不可避的不純物からなる熱延板を
60%冷延後、830°CX2分の焼鈍を施した。さら
に65%冷延後、850°C(湿水素中)で脱炭焼鈍し
、さらに表1に示す雰囲気条件で二次再結晶焼鈍を行っ
た。本発明の成分で二次再結晶させるためには、窒素分
圧を50%未満とすることが重要である。
(Example 1) C; 0.05%, MnHo, 18%, S; 0.00
7%, soZ, AZ; 0, 024%, N, 0.00
A hot-rolled sheet consisting of 9% Fe and unavoidable impurities was cold-rolled to 60% and then annealed at 830° C. for 2 minutes. After further cold rolling by 65%, decarburization annealing was performed at 850°C (in wet hydrogen), and secondary recrystallization annealing was performed under the atmospheric conditions shown in Table 1. In order to perform secondary recrystallization using the components of the present invention, it is important to keep the nitrogen partial pressure below 50%.

(実施例2) C,0,04%、Mn;0.15%、 S 、0.00
4%。
(Example 2) C, 0.04%, Mn; 0.15%, S, 0.00
4%.

sol、八1 ; 0.020%、 N 、0.007
%、残部Feおよび不可避的不純物からなる熱延板を表
2に示す冷延率で冷延後、830℃(湿水素中)で脱炭
焼鈍し、さらに水素100%雰囲気中で、890°CX
20時間の二次再結晶焼鈍を行った。
sol, 81; 0.020%, N, 0.007
%, balance Fe and unavoidable impurities were cold rolled at the cold rolling rate shown in Table 2, decarburized annealed at 830°C (in wet hydrogen), and further annealed at 890°C in a 100% hydrogen atmosphere.
Secondary recrystallization annealing was performed for 20 hours.

表2 (実施例3) 表3中No、 1〜6の組成を持つ熱延板を、60%冷
延後830°Cの焼鈍を施し、更に70%冷延した。8
30°C(湿水素中)で脱炭焼鈍後、表3に示す窒素分
圧の雰囲気中で890°C×15時間の二次再結晶焼鈍
を行った。
Table 2 (Example 3) Hot rolled sheets having compositions No. 1 to 6 in Table 3 were cold rolled by 60%, annealed at 830°C, and further cold rolled by 70%. 8
After decarburization annealing at 30°C (in wet hydrogen), secondary recrystallization annealing was performed at 890°C for 15 hours in an atmosphere with a nitrogen partial pressure shown in Table 3.

■ (実施例4) 実施例2と同じ組成の熱延板を60%冷延後、表4中N
o、 1〜4の温度で中間焼鈍を行った。さらに65%
冷延後、830°C(湿水素中)で脱炭焼鈍を行い、表
4に示す窒素分圧の雰囲気中で、890°C×20時間
の二次再結晶焼鈍を施した。
(Example 4) After 60% cold rolling of a hot-rolled sheet with the same composition as in Example 2, N in Table 4
Intermediate annealing was performed at a temperature of 1 to 4 o. Another 65%
After cold rolling, decarburization annealing was performed at 830°C (in wet hydrogen), and secondary recrystallization annealing was performed at 890°C for 20 hours in an atmosphere with a nitrogen partial pressure shown in Table 4.

表4 一方向性電磁鋼板を安定して得ることができるので、そ
の工業的効果は極めて顕著である。
Table 4 Since a unidirectional electrical steel sheet can be stably obtained, its industrial effects are extremely significant.

(発明の効果) 本発明によれば、 珪素鋼よりも磁束密度が高い ■(Effect of the invention) According to the invention, Higher magnetic flux density than silicon steel ■

Claims (2)

【特許請求の範囲】[Claims] (1)重量%でC≦0.06%、Mn;0.005〜2
.0%S;0.001〜0.02%、sol.Al;0
.01〜0.036%、N;0.002〜0.014%
を含み、残部が鉄および不可避的不純物よりなる熱延板
を、圧下率が50〜80%の最終冷延を含む1回以上の
冷延を行って最終板厚とし、脱炭焼鈍後、変態しない温
度域で最終焼鈍する一方向性電磁鋼板の製造において、
最終焼鈍の雰囲気中の窒素分圧を50%未満とすること
を特徴とする高磁束密度一方向性電磁鋼板の製造方法。
(1) C≦0.06% by weight, Mn; 0.005-2
.. 0%S; 0.001-0.02%, sol. Al; 0
.. 01-0.036%, N; 0.002-0.014%
A hot-rolled sheet with the remainder consisting of iron and unavoidable impurities is cold-rolled one or more times including final cold-rolling at a rolling reduction of 50 to 80% to give the final sheet thickness, and after decarburization annealing, transformation In the production of unidirectional electrical steel sheets that are final annealed in a temperature range that does not
A method for producing a high magnetic flux density unidirectional electrical steel sheet, characterized in that the nitrogen partial pressure in the final annealing atmosphere is less than 50%.
(2)2回以上の冷延を行って最終板厚とする際の冷延
間の熱処理を少なくとも鋼板の一部にγ変態が起こる温
度範囲で行うことを特徴とする請求項1項記載の高磁束
密度一方向性電磁鋼板の製造方法。
(2) The steel sheet according to claim 1, characterized in that the heat treatment during cold rolling when cold rolling is performed two or more times to obtain the final sheet thickness is performed in a temperature range at which γ transformation occurs in at least a part of the steel sheet. A method for manufacturing high magnetic flux density unidirectional electrical steel sheets.
JP2112852A 1990-04-28 1990-04-28 High magnetic flux density grain-oriented electrical steel sheet manufacturing method Expired - Fee Related JPH07122094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2112852A JPH07122094B2 (en) 1990-04-28 1990-04-28 High magnetic flux density grain-oriented electrical steel sheet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2112852A JPH07122094B2 (en) 1990-04-28 1990-04-28 High magnetic flux density grain-oriented electrical steel sheet manufacturing method

Publications (2)

Publication Number Publication Date
JPH0413811A true JPH0413811A (en) 1992-01-17
JPH07122094B2 JPH07122094B2 (en) 1995-12-25

Family

ID=14597142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2112852A Expired - Fee Related JPH07122094B2 (en) 1990-04-28 1990-04-28 High magnetic flux density grain-oriented electrical steel sheet manufacturing method

Country Status (1)

Country Link
JP (1) JPH07122094B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101038892B1 (en) * 2003-08-28 2011-06-02 주식회사 포스코 Method for setting up condition of operation when cracks occur at outer wall of annealing furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101038892B1 (en) * 2003-08-28 2011-06-02 주식회사 포스코 Method for setting up condition of operation when cracks occur at outer wall of annealing furnace

Also Published As

Publication number Publication date
JPH07122094B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
JP2016509625A (en) Oriented electrical steel sheet with excellent iron loss and method for producing the same
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH0121851B2 (en)
JPH02258927A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
US5308411A (en) Ultrahigh silicon, grain-oriented electrical steel sheet and process for producing the same
JPH0413811A (en) Production of grain-oriented electrical steel sheet having high magnetic flux density
KR101131721B1 (en) Method for manufacturing grAlN-oriented electrical steel sheets having excellent magnetic properties
JPH0564701B2 (en)
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP7221480B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
KR20020044243A (en) A method for manufacturing grain oriented electrical steel sheet with superior magnetic property
KR100359242B1 (en) Low temperature heating method of high magnetic flux density oriented electrical steel sheet
KR100345696B1 (en) A method for manufacturing grain oriented electrical steel sheets by heating its slab at low tempreatures
JPH0347920A (en) Production of unidirectionally oriented electrical steel sheet having high magnetic flux density
KR100544418B1 (en) A METHOD FOR MANUFACTURING GRAIN-ORIENTED Si-STEEL SHEET WITH HIGH MAGNETIC PROPERTY
KR970007031B1 (en) Method for manufacturing orient electrical steel sheet having excellent magnetic properties
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density
JPH04362132A (en) Production of double oriented silicon steel sheet
JPH07258737A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density
KR20010060418A (en) A method for manufacturing grain oriented electrical steel sheet using thin hot coil
KR20120008189A (en) Method for manufacturing grain-oriented electrical steel sheets with extremely low core-loss and high flux-density
JPH02258926A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPS6250528B2 (en)
JPH04301053A (en) Grain-oriented pure iron excellent in coercive force as well as in magnetic permeability and its production
JPH09143559A (en) Production of high magnetic flux density grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees