JPH09143559A - Production of high magnetic flux density grain-oriented silicon steel sheet - Google Patents

Production of high magnetic flux density grain-oriented silicon steel sheet

Info

Publication number
JPH09143559A
JPH09143559A JP7295117A JP29511795A JPH09143559A JP H09143559 A JPH09143559 A JP H09143559A JP 7295117 A JP7295117 A JP 7295117A JP 29511795 A JP29511795 A JP 29511795A JP H09143559 A JPH09143559 A JP H09143559A
Authority
JP
Japan
Prior art keywords
annealing
surface layer
cold rolling
steel sheet
secondary recrystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7295117A
Other languages
Japanese (ja)
Inventor
Isao Iwanaga
功 岩永
Katsuro Kuroki
克郎 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP7295117A priority Critical patent/JPH09143559A/en
Publication of JPH09143559A publication Critical patent/JPH09143559A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a high magnetic flux density grain-oriented silicon steel sheet using a stock having low C regions in the surface layer parts. SOLUTION: In the method for producing a grain-oriented silicon steel shseet in which a slab contg., by weight, 0.03 to 0.10% C, 2.5 to 4.5% Si, 0.02 to 0.15% Mn, 0.01 to 0.05% S, 0.01 to 0.04% acid soluble Al and 0.003 to 0.015% N, and the balance Fe with inevitable impurities is used as the stock, which is subjected to hot rolling and precipitation annealing, is thereafter subjected to cold rolling at >=50% final cold rolling draft for one time or ∞ two times including process annealing and is moreover subjected to decarburizing annealing and finish annealing, the slab surface layer contg. 0.005% <= the internal layer C to the surface layer C <= 0.03% and contg. the other elements similarly to the above is provided on both sides by 5 to 25% per side. By providing sufficiently low C regions on both sides of the stab surface parts by 5 to 30% per side, the Goss nuclei before secondary recrystallization increase to stabilize secondary recrystallization and to improve its magnetic properties.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、表層部に低C領域
を有する素材を用いた一方向性電磁鋼板の製造方法に関
する。
TECHNICAL FIELD The present invention relates to a method for producing a grain-oriented electrical steel sheet using a material having a low C region in the surface layer portion.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、トランス等の電気
機器の鉄心材料として使用されており、磁気特性として
励磁特性と鉄損特性が良好でなくてはならない。しかも
近年特にエネルギーロスの少ない低鉄損素材への市場要
求が強まっている。
2. Description of the Related Art Unidirectional electrical steel sheets are used as iron core materials for electrical equipment such as transformers, and must have good magnetic excitation characteristics and iron loss characteristics. Moreover, in recent years, the market demand for low iron loss materials with particularly low energy loss has been increasing.

【0003】磁束密度の高い鋼板は、鉄損が低くまた鉄
心を小さく出来るので、極めて重要な開発目標である。
この高い磁束密度を有する一方向性電磁鋼板は、適切な
冷延と焼鈍とにより熱延板から最終板厚にした鋼板を仕
上げ焼鈍して{110}〈001〉方位(ゴス方位)を
有する1次再結晶粒を選択成長させる、いわゆる2次再
結晶によって得られる。
A steel sheet having a high magnetic flux density has a low iron loss and a small iron core, and is a very important development target.
This unidirectional electrical steel sheet having a high magnetic flux density has a {110} <001> orientation (goss orientation) by finish annealing a steel sheet that has been made a final sheet thickness from a hot rolled sheet by appropriate cold rolling and annealing. It is obtained by so-called secondary recrystallization in which secondary recrystallized grains are selectively grown.

【0004】2次再結晶は、2次再結晶前の鋼板中に微
細な析出物、例えばMnS,AlN,MnSe,Cu2
S,BN,(Al,Si)N等が存在すること、あるい
はSn,Sb等の粒界偏析型の元素が存在することによ
って達成される。これら析出物、粒界偏析型の元素は、
J.B.May and Tnrnbull(Trans.Met.Soc.AIME 212(1958)
P.769/781)によって説明されているように、仕上げ焼
鈍工程で{110}〈001〉方位以外の1次再結晶粒
の成長を抑え、{110}〈001〉方位粒を選択的に
成長させる機能を持つ。
In the secondary recrystallization, fine precipitates such as MnS, AlN, MnSe and Cu 2 are contained in the steel sheet before the secondary recrystallization.
This is achieved by the presence of S, BN, (Al, Si) N, etc., or the presence of grain boundary segregation type elements such as Sn, Sb. These precipitates and grain boundary segregation type elements are
JBMay and Tnrnbull (Trans.Met.Soc.AIME 212 (1958)
As described in P.769 / 781), the growth of primary recrystallized grains other than the {110} <001> orientation is suppressed in the finish annealing step, and the {110} <001> oriented grains are selectively grown. It has a function to let.

【0005】この様な粒成長の抑制効果は、一般にはイ
ンヒビター効果と呼ばれている。従って当該分野の研究
開発の重点課題は、いかなる種類の析出物、あるいは粒
界偏析型の元素を用いて2次再結晶を安定させるか、そ
して正確な{110}〈001〉方位粒の存在割合を高
めるために、それらの適切な存在状態をいかに達成する
かにある。
Such a grain growth suppressing effect is generally called an inhibitor effect. Therefore, the important issue of research and development in this field is what kind of precipitates or grain boundary segregation type elements are used to stabilize the secondary recrystallization, and the exact proportion of {110} <001> oriented grains. How to achieve those proper existence states in order to enhance

【0006】特に最近では、一種類の析出物による方法
では{110}〈001〉方位の高度の制御に限界があ
るため、各析出物について長所、短所を深く解明するこ
とにより、いくつかの析出物を有機的に組み合わせて、
より磁束密度の高い製品を安定に、且つコストを安く製
造できる技術の開発が進められている。
In particular, recently, since there is a limit to the control of the altitude of {110} <001> orientation in the method using one kind of precipitate, some advantages can be obtained by deeply clarifying the advantages and disadvantages of each precipitate. Combining things organically,
Development of technology that enables stable manufacture of products with higher magnetic flux density and lower cost is underway.

【0007】現在、工業生産されている代表的な一方向
性電磁鋼板の製造方法として3種類あるが、各々につい
ては長所、短所がある。第一の技術は、M.F.Littmnann
による特公昭30−3651号公報に示されたMnSを
用いた二回冷延工程であり、得られる2次再結晶粒は安
定して発達するが、高い磁束密度が得られない。
At present, there are three types of typical industrially produced grain-oriented electrical steel sheets, each of which has advantages and disadvantages. The first technology is MFLittmnann
It is a double cold rolling process using MnS disclosed in Japanese Patent Publication No. 30-3651, and the obtained secondary recrystallized grains are stably developed, but high magnetic flux density cannot be obtained.

【0008】第二の技術は、田口等による特公昭40−
15644号公報に示された、AlN+MnSを用いた
最終冷延を80%以上の高圧下率とするプロセスであ
り、高い磁束密度は得られるが、工業生産に際しては製
造条件の厳密なコントロールが要求される。
The second technique is Taguchi et al.
This is a process shown in Japanese Patent No. 15644, in which the final cold rolling using AlN + MnS is performed at a high pressure reduction rate of 80% or more, and a high magnetic flux density can be obtained, but strict control of manufacturing conditions is required in industrial production. It

【0009】第三の技術は、今中等による特公昭51−
13469号公報に示された、MnS(及び/又はMn
Se)+Sbを含有する珪素鋼を二回冷延工程によって
製造するプロセスであり、比較的高い磁束密度は得られ
るが、Sb,Seのような有害でかつ高価な元素を使用
し、しかも二回冷延法であることから製造コストが高く
なる。
The third technique is the Japanese Patent Publication No. 51-
MnS (and / or Mn
This is a process for producing a silicon steel containing Se) + Sb by a double cold rolling process. A relatively high magnetic flux density can be obtained, but harmful and expensive elements such as Sb and Se are used. Since it is a cold rolling method, the manufacturing cost is high.

【0010】また上記3種類の技術においては、共通し
て次のような問題がある。すなわち上記技術はいずれも
析出物を微細・均一に制御する技術として、熱延に先立
つスラブ加熱温度を、第一の技術では1260℃以上、
第二の技術では特開昭48−51852号公報に示すよ
うに、素材Si量によるが3%Siの場合で1350
℃、第三の技術では特開昭51−20716号公報に示
すように1230℃以上、高い磁束密度の得られた実施
例では1320℃といった、極めて高い温度にすること
によって粗大に存在する析出物を一旦固溶させ、その後
の熱延中あるいは熱処理中に析出させている。
Further, the above three types of techniques have the following problems in common. In other words, all of the above techniques are techniques for controlling the precipitates finely and uniformly, and the slab heating temperature prior to hot rolling is 1260 ° C. or higher in the first technique.
In the second technique, as shown in Japanese Patent Laid-Open No. 48-51852, depending on the amount of raw material Si, 1350 in the case of 3% Si.
In the third technique, as shown in Japanese Patent Application Laid-Open No. 51-20716, the precipitates that are coarsely present by extremely high temperatures such as 1230 ° C. or higher, and 1320 ° C. in the example in which a high magnetic flux density was obtained. Is once made into a solid solution and then precipitated during the subsequent hot rolling or heat treatment.

【0011】スラブ加熱温度を上げることは、加熱時の
使用エネルギーの増大やノロの発生による歩留り低下及
び加熱炉の補修頻度の増大に起因する設備稼働率の低
下、さらには特公昭57−41526号公報に示される
ように、線状2次再結晶不良が発生するため、連続鋳造
スラブを使用できないという問題がある。
Increasing the slab heating temperature increases the energy used during heating, lowers the yield due to the generation of slag, and lowers the facility operating rate due to the increased frequency of repairs to the heating furnace. Further, JP-B-57-41526. As disclosed in the publication, there is a problem that a continuous cast slab cannot be used because a linear secondary recrystallization defect occurs.

【0012】しかし、このようなコスト上の問題以上に
重要なことは、鉄損向上のためにSiを多く、製品板厚
を薄くといった手段をとると、この線状2次再結晶不良
の発生が増大し、高温スラブ加熱法を前提にした技術で
は将来の鉄損向上に希望を持てない。
However, more important than such a cost problem is that linear secondary recrystallization failure occurs when measures such as increasing Si content and reducing product thickness are taken to improve iron loss. However, the technology based on the high temperature slab heating method has no hope for improving iron loss in the future.

【0013】これに対し、特公昭61−60896号公
報に示されている技術では、鋼中のSを少なくすること
によって2次再結晶が極めて安定し、高Si薄手製品を
可能にした。しかしこの技術は、量産規模で工場生産す
る上で磁束密度の安定性に問題があり、例えば特開昭6
2−40315号公報に開示されているような改良技術
が提案されているが、今まで完全に解決するには至って
いない。
On the other hand, in the technique disclosed in Japanese Examined Patent Publication No. 61-60896, by reducing S in the steel, the secondary recrystallization is extremely stable, and a high Si thin product is made possible. However, this technique has a problem in the stability of the magnetic flux density in factory production on a mass production scale.
Although an improved technique as disclosed in Japanese Patent Publication No. 2-40315 has been proposed, it has not been completely solved until now.

【0014】一方、熱延後冷延前までに脱炭焼鈍を施
し、板表層部再結晶領域を増やすことで1次再結晶板で
のゴス核量の多い層を増やし、2次再結晶の安定化、磁
性向上を図ることが、特開昭59−232227号公報
及び特開昭61−117215号公報に開示されてい
る。しかしこのような冷延前の厚い板で、しかも連続ラ
インで脱炭するのは効率が悪いため、脱炭が不十分か又
は生産性が著しく下がるという問題がある。
On the other hand, by performing decarburization annealing after hot rolling and before cold rolling to increase the recrystallization region of the plate surface layer portion, the layer with a large amount of goss nuclei in the primary recrystallized plate is increased and secondary recrystallization is performed. Stabilization and improvement of magnetism are disclosed in JP-A-59-232227 and JP-A-61-117215. However, it is inefficient to decarburize such a thick plate before cold rolling in a continuous line, and there is a problem that decarburization is insufficient or the productivity is remarkably reduced.

【0015】[0015]

【発明が解決しようとする課題】本発明の目的は、上述
のように製造が困難であった一方向性電磁鋼板(特に薄
手材)の、安定して磁気特性の優れた製造方法を提供す
ることである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a stable and excellent magnetic property producing method for a grain-oriented electrical steel sheet (particularly a thin material) which has been difficult to produce as described above. That is.

【0016】[0016]

【課題を解決するための手段】本発明者らは、上記問題
を解決すべく検討を重ねた結果、スラブに公知のインヒ
ビター元素を含む一方向性電磁鋼板の製造方法におい
て、鋳片表層部に片面5%以上、30%以下両面に十分
な低C領域を有することにより、2次再結晶前のゴス核
が増えることで、2次再結晶が安定し磁気特性が改善さ
れることを見いだした。
Means for Solving the Problems As a result of repeated studies to solve the above problems, the present inventors have found that in a method for producing a grain-oriented electrical steel sheet containing a known inhibitor element in a slab, a slab surface layer part is formed. It has been found that by having a sufficiently low C region on both sides of 5% or more and 30% or less on one side, the number of Goss nuclei before secondary recrystallization increases, and secondary recrystallization stabilizes and magnetic properties are improved. .

【0017】本発明の要旨は次の通りである。 (1) 重量比で、C:0.03〜0.10%、Si:
2.5〜4.5%、Mn:0.02〜0.15%、S:
0.01〜0.05%、酸可溶性Al:0.01〜0.
04%、N:0.003〜0.015%を含み、残部F
e及び不可避的不純物からなるスラブを素材とし、熱
延、析出焼鈍後、最終冷延圧下率50%以上の1回ない
し中間焼鈍を含む2回以上の冷間圧延を施し、さらに脱
炭焼鈍と仕上げ焼鈍を行う一方向性電磁鋼板の製造方法
において、0.005%≦内層C−表層C≦0.03
%、その他元素は上記同様に含有する鋳片表層部を片面
5%以上、25%以下両面に有することを特徴とする高
磁束密度一方向性電磁鋼板の製造方法。
The gist of the present invention is as follows. (1) C: 0.03 to 0.10% by weight ratio, Si:
2.5-4.5%, Mn: 0.02-0.15%, S:
0.01-0.05%, acid-soluble Al: 0.01-0.
04%, N: 0.003 to 0.015% inclusive, balance F
Using a slab consisting of e and unavoidable impurities as a raw material, after hot rolling and precipitation annealing, one final cold rolling reduction of 50% or more or two or more cold rollings including an intermediate annealing is performed, and further decarburization annealing is performed. In the method of manufacturing a grain-oriented electrical steel sheet for performing finish annealing, 0.005% ≦ inner layer C−surface layer C ≦ 0.03.
%, Other elements are contained in the same manner as described above on the surface of the cast slab on both sides of 5% or more and 25% or less on both sides.

【0018】(2) 前記素材の最終冷延圧下率が80
%以上である(1)記載の方法。 (3) 重量比で、C:0.03〜0.10%、Si:
2.5〜4.5%、Mn:0.02〜0.15%、酸可
溶性Al:0.01〜0.04%、N:0.003〜
0.015%で、さらにSb:0.01〜0.15%お
よびS,Se:0.01〜0.05%を少なくとも1種
含有する溶鋼を用いる(1)記載の方法。
(2) The final cold rolling reduction of the material is 80
The method according to (1), which is at least%. (3) C: 0.03 to 0.10% by weight ratio, Si:
2.5-4.5%, Mn: 0.02-0.15%, acid-soluble Al: 0.01-0.04%, N: 0.003-
The method according to (1), wherein a molten steel containing 0.015% and at least one of Sb: 0.01 to 0.15% and S, Se: 0.01 to 0.05% is used.

【0019】[0019]

【発明の実施の形態】以下に本発明を詳細に説明する。
一般に一方向性電磁鋼板を製造するに際して、仕上げ焼
鈍中に板厚表面付近から2次再結晶することが知られて
いる。これは2次再結晶に際して、ゴス方位粒が成長す
るまで他の方位粒の成長を抑制するインヒビター(Al
N,MnS等の析出物)が、仕上げ焼鈍中に析出物のオ
ストワルド成長、脱N・S等により板厚表面付近から劣
化するためと考えられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
It is generally known that, during the production of a grain-oriented electrical steel sheet, secondary recrystallization is performed from near the surface of the sheet thickness during finish annealing. This is an inhibitor (Al) that suppresses the growth of other oriented grains during the secondary recrystallization until the Goss oriented grains grow.
It is considered that the precipitates (N, MnS, etc.) deteriorate from near the surface of the sheet thickness due to Ostwald growth of the precipitates, denitrification, etc. during finish annealing.

【0020】この板表面からのインヒビター劣化は界面
律速であるため、2次再結晶焼鈍前のインヒビター強度
が同じ場合、より薄手材ほど板厚表面付近でのインヒビ
ターが劣化し易く、良好なゴス方位粒2次再結晶が困難
になる。一方、2次再結晶時の板表面付近のインヒビタ
ー強度を適正にしようとすると、板内部のインヒビター
強度が強すぎて2次再結晶が困難になる。
Since the inhibitor deterioration from the plate surface is interface-limited, if the inhibitor strength before the secondary recrystallization annealing is the same, the thinner the material is, the more easily the inhibitor is deteriorated near the surface of the plate, and the better Goss orientation is obtained. Secondary recrystallization of grains becomes difficult. On the other hand, if an attempt is made to make the inhibitor strength in the vicinity of the plate surface during secondary recrystallization appropriate, the inhibitor strength inside the plate becomes too strong, and secondary recrystallization becomes difficult.

【0021】そこで検討を重ねた結果、鋳片表層部に片
面5%以上、25%以下両面に十分な低C領域を有する
ことにより、2次再結晶前のゴス・リッチ層を増やすこ
とで、工業的に2次再結晶が安定し磁気特性が改善され
ることを見いだした。なおこの効果は製品薄手材ほど顕
著である。図1は、上記の表層部低C化による磁性改善
効果を示す。
As a result of repeated studies, by increasing the Goss-rich layer before secondary recrystallization by having a sufficiently low C region on both surfaces of the cast slab surface layer portion of 5% or more and 25% or less on one surface, It has been found industrially that secondary recrystallization is stable and magnetic properties are improved. Note that this effect is more remarkable for thin products. FIG. 1 shows the effect of improving the magnetism by lowering the carbon content in the surface layer.

【0022】次に、本発明において鋼組成及び製造条件
を上述のように限定した理由を説明する。2次再結晶前
の板厚表層付近のゴス・リッチ層を増やし、特に製品薄
手材の2次再結晶が安定化して優れた磁気特性が得られ
るように、0.005%≦内層C−表層C≦0.03
%、その他元素は内層同様に含有する鋳片表層部を両面
に有することを規定した。
Next, the reason why the steel composition and manufacturing conditions are limited as described above in the present invention will be explained. 0.005% ≦ inner layer C-surface layer so as to increase the Goss-rich layer near the surface layer before secondary recrystallization and stabilize the secondary recrystallization of the product thin material to obtain excellent magnetic properties. C ≦ 0.03
%, Other elements are specified to have a cast slab surface layer portion on both sides, which is the same as the inner layer.

【0023】内層部のCはγ相を適当に生じ析出物の微
細分散が良いように下限を0.03%とし、また脱炭が
困難とならない限り高めとし、その上限を0.10%と
する。また脱炭スラブ表層部分の厚み比は、2次再結晶
が発現する領域付近である片面5%以上、25%以下両
面に限定する。
The lower limit of C of the inner layer portion is 0.03% so that the γ phase is appropriately generated and the fine dispersion of the precipitate is good, and the upper limit is set to 0.10% unless decarburization becomes difficult. To do. The thickness ratio of the surface layer of the decarburized slab is limited to 5% or more and 25% or less on one side, which is near the region where secondary recrystallization occurs.

【0024】一方、以下に述べる元素については、スラ
ブ内・表層とも同一成分量とした。Siは、鉄損を良く
するため下限を2.5%とするが、多すぎると冷間圧延
の際に割れ易く加工が困難となるので、上限を4.5%
とする。
On the other hand, regarding the elements described below, the same component amounts were used both in the slab and in the surface layer. Si has a lower limit of 2.5% in order to improve iron loss, but if it is too much, it easily cracks during cold rolling, making it difficult to process, so the upper limit is 4.5%.
And

【0025】更に以下の成分は、2次再結晶のための析
出分散相として使用する不純物であり、効果的作用のた
めには適当量含有させる必要がある。すなわちMn:
0.02〜0.15%、S:0.01〜0.05%、酸
可溶性Al:0.01〜0.04%、N:0.003〜
0.015%、Sb:0.01〜0.15%、Se:
0.01〜0.05%を2種以上適宜組み合わせること
で、Goss方位粒集積度の高い2次再結晶を得ること
が出来る。その他Cu,Snはインヒビターを強くする
目的で1.0%以下となるように少なくとも1種添加し
ても良い。
Further, the following components are impurities used as a precipitation dispersed phase for secondary recrystallization, and they must be contained in appropriate amounts for effective action. That is, Mn:
0.02-0.15%, S: 0.01-0.05%, acid-soluble Al: 0.01-0.04%, N: 0.003-
0.015%, Sb: 0.01 to 0.15%, Se:
By properly combining two or more kinds of 0.01 to 0.05%, it is possible to obtain secondary recrystallization having a high degree of Goss orientation grain integration. In addition, at least one kind of Cu and Sn may be added so as to be 1.0% or less for the purpose of strengthening the inhibitor.

【0026】次にこの鋳造スラブを熱延し、更に950
〜1200℃で30秒〜30分の焼鈍を行った後、最終
冷延圧下率が80%以上になる1回ないし中間焼鈍を含
む2回以上の冷間圧延を施し、厚み200μm以下の最
終板厚とする。
Next, this cast slab is hot-rolled and further 950
After annealing at ˜1200 ° C. for 30 seconds to 30 minutes, a final cold rolling reduction of 80% or more is performed once or two or more times of cold rolling including intermediate annealing is performed, and a final plate having a thickness of 200 μm or less is obtained. Be thick.

【0027】この後湿水素雰囲気中で脱炭焼鈍を行い、
更にMgO等の焼鈍分離剤を塗布して、2次再結晶と純
化のため1100℃以上の仕上焼鈍を行うことで、高い
磁束密度を有する薄手一方向性電磁鋼板が製造される。
Thereafter, decarburization annealing is performed in a wet hydrogen atmosphere,
Furthermore, by applying an annealing separator such as MgO and performing secondary annealing and finishing annealing at 1100 ° C. or more for purification, a thin unidirectional electrical steel sheet having a high magnetic flux density is manufactured.

【0028】[0028]

【実施例】【Example】

(実施例1)鋳造方向に垂直に鋳片全幅に静磁場を形成
させ、これを境界として表1に示す鋼成分を含有する溶
鋼を供給することで、表層厚み比10%なる連続鋼塊
A,B,Cを得た。また鋼塊Dは、単一成分の溶鋼を供
給する通常の方法で作成した。次にこれらの鋼塊を13
50℃で1時間加熱した後熱延し、2.3mm、1.7m
m、1.2mm厚の熱延板とした。
(Example 1) A continuous magnetic ingot A having a surface layer thickness ratio of 10% is formed by forming a static magnetic field in the full width of the slab perpendicular to the casting direction and supplying molten steel containing the steel components shown in Table 1 with this as a boundary. , B, C were obtained. The steel ingot D was prepared by a usual method of supplying molten steel having a single component. Next, these steel ingots
After heating at 50 ° C for 1 hour, hot rolling, 2.3mm, 1.7m
A hot-rolled sheet with a thickness of 1.2 mm was prepared.

【0029】次いでこれらの熱延板を1050℃で5分
間焼鈍を行い、更に酸洗した後冷間圧延を行い、0.3
0〜0.15mm厚(冷延圧下率87.0%)にした。次
にこの冷延板を湿潤水素中で脱炭焼鈍し、MgO粉を塗
布した後、1200℃に10時間水素ガス雰囲気中で高
温焼鈍を行った。この製品板の磁気測定を行った結果
は、表2に示すように、特に0.22mm以下の薄手材で
は本発明材A,Bの方が、比較材C,Dよりも良好な磁
気特性が得られた。
Next, these hot-rolled sheets were annealed at 1050 ° C. for 5 minutes, further pickled and cold-rolled to 0.3
The thickness was 0 to 0.15 mm (cold rolling reduction rate 87.0%). Next, this cold rolled sheet was decarburized and annealed in wet hydrogen, MgO powder was applied, and then high temperature annealing was performed at 1200 ° C. for 10 hours in a hydrogen gas atmosphere. As shown in Table 2, the results of magnetic measurement of this product plate show that the inventive materials A and B have better magnetic properties than the comparative materials C and D, especially in the case of thin materials of 0.22 mm or less. Was obtained.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】(実施例2)鋳造方向に垂直に鋳片全幅に
静磁場を形成させ、これを境界として表3に示す鋼成分
を含有する溶鋼を供給することで、連続鋼塊E,F,G
を得た。また鋼塊Hは、単一成分の溶鋼を供給する通常
の方法で作成した。次にこれらの鋼塊を加熱し熱間圧延
で2.3mm、1.7mm、1.2mm厚の熱延板とした。
(Example 2) By forming a static magnetic field in the entire width of the slab perpendicular to the casting direction and supplying molten steel containing the steel components shown in Table 3 as a boundary, continuous steel ingots E, F, G
I got Further, the steel ingot H was prepared by a usual method of supplying molten steel having a single component. Next, these steel ingots were heated and hot rolled into hot-rolled sheets of 2.3 mm, 1.7 mm, and 1.2 mm thickness.

【0033】次いでこれらの熱延板を1050℃で5分
間焼鈍を行い、更に酸洗した後冷間圧延を行い、0.3
0〜0.15mm厚(冷延圧下率87.0%)にした。次
にこの冷延板を湿潤水素中で脱炭焼鈍し、MgO粉を塗
布した後、1200℃に10時間水素ガス雰囲気中で高
温焼鈍を行った。この製品板の磁気測定を行った結果
は、表4に示すように、特に0.22mm以下の薄手材で
は本発明材E,Fの方が、比較材G,Hよりも良好な磁
気特性が得られた。
Next, these hot-rolled sheets were annealed at 1050 ° C. for 5 minutes, further pickled and cold-rolled to 0.3
The thickness was 0 to 0.15 mm (cold rolling reduction rate 87.0%). Next, this cold rolled sheet was decarburized and annealed in wet hydrogen, MgO powder was applied, and then high temperature annealing was performed at 1200 ° C. for 10 hours in a hydrogen gas atmosphere. As shown in Table 4, the results of magnetic measurement of this product plate show that the inventive materials E and F show better magnetic properties than the comparative materials G and H, especially in the case of thin materials of 0.22 mm or less. Was obtained.

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】(実施例3)鋳造方向に垂直に鋳片全幅に
静磁場を形成させ、これを境界として表5に示す鋼成分
を含有する溶鋼を供給することで、連続鋼塊I,J,K
を得た。また鋼塊Lは、単一成分の溶鋼を供給する通常
の方法で作成した。次にこれらの鋼塊を加熱し熱間圧延
で1.7mm厚の熱延板とした。
(Example 3) By forming a static magnetic field in the entire width of the slab perpendicular to the casting direction and supplying molten steel containing the steel components shown in Table 5 as a boundary, continuous steel ingots I, J, K
I got Further, the steel ingot L was prepared by a usual method of supplying molten steel having a single component. Next, these steel ingots were heated and hot-rolled into hot-rolled sheets having a thickness of 1.7 mm.

【0037】次いでこれらの熱延板を1050℃で5分
間焼鈍を行い、更に酸洗した後冷間圧延を行い、0.3
0〜0.15mm厚(冷延圧下率90.0%)にした。次
にこの冷延板を湿潤水素中で脱炭焼鈍し、MgO粉を塗
布した後、1200℃に10時間水素ガス雰囲気中で高
温焼鈍を行った。この製品板の磁気測定を行った結果
は、表6に示すように、特に0.22mm以下の薄手材で
は本発明材I,Jの方が、比較材K,Lよりも良好な磁
気特性が得られた。
Next, these hot-rolled sheets were annealed at 1050 ° C. for 5 minutes, further pickled and then cold-rolled to 0.3
The thickness was 0 to 0.15 mm (cold rolling reduction rate 90.0%). Next, this cold rolled sheet was decarburized and annealed in wet hydrogen, MgO powder was applied, and then high temperature annealing was performed at 1200 ° C. for 10 hours in a hydrogen gas atmosphere. As shown in Table 6, the results of magnetic measurement of this product plate show that the inventive materials I and J have better magnetic properties than the comparative materials K and L, especially in the case of thin materials of 0.22 mm or less. Was obtained.

【0038】[0038]

【表5】 [Table 5]

【0039】[0039]

【表6】 [Table 6]

【0040】[0040]

【発明の効果】本発明によれば、スラブに公知のインヒ
ビター元素を含む一方向性電磁鋼板の製造方法におい
て、鋳片表層部に片面5%以上、30%以下両面に十分
な低C領域を有することにより、2次再結晶前のゴス核
が増えることで、2次再結晶が安定し磁気特性が改善さ
れる。
EFFECTS OF THE INVENTION According to the present invention, in a method for producing a grain-oriented electrical steel sheet containing a known inhibitor element in a slab, a sufficient low C region is provided on both surfaces of the cast slab surface layer portion at 5% or more and 30% or less. By having it, the Goss nuclei before the secondary recrystallization increase, and the secondary recrystallization becomes stable and the magnetic characteristics are improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】板厚0.15mm薄手材での表層部低C化と磁気
特性との関係を示す図表。
FIG. 1 is a graph showing the relationship between the reduction of carbon content in the surface layer and the magnetic characteristics of a thin material having a plate thickness of 0.15 mm.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/16 H01F 1/16 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01F 1/16 H01F 1/16 B

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量比で、 C :0.03〜0.10%、 Si:2.5〜4.5%、 Mn:0.02〜0.15%、 S :0.01〜0.05%、 酸可溶性Al:0.01〜0.04%、 N :0.003〜0.015%を含み、残部Fe及び
不可避的不純物からなるスラブを素材とし、熱延、析出
焼鈍後、最終冷延圧下率50%以上の1回ないし中間焼
鈍を含む2回以上の冷間圧延を施し、さらに脱炭焼鈍と
仕上げ焼鈍を行う一方向性電磁鋼板の製造方法におい
て、0.005%≦内層C−表層C≦0.03%、その
他元素は上記同様に含有する鋳片表層部を片面5%以
上、25%以下両面に有することを特徴とする高磁束密
度一方向性電磁鋼板の製造方法。
1. By weight ratio, C: 0.03-0.10%, Si: 2.5-4.5%, Mn: 0.02-0.15%, S: 0.01-0. 05%, acid-soluble Al: 0.01 to 0.04%, N: 0.003 to 0.015%, and a slab composed of the balance Fe and unavoidable impurities is used as a material, and after hot rolling and precipitation annealing, final In a method for producing a unidirectional electrical steel sheet, wherein cold rolling is performed once with a cold rolling reduction of 50% or more or twice or more including intermediate annealing, and further decarburization annealing and finish annealing are performed. C-surface layer C ≤ 0.03%, other elements are contained in the same manner as described above on the slab surface layer portion on one side 5% or more and 25% or less on both sides, a method for producing a high magnetic flux density unidirectional electrical steel sheet .
【請求項2】 前記素材の最終冷延圧下率が80%以上
である請求項1記載の方法。
2. The method according to claim 1, wherein the final cold rolling reduction of the material is 80% or more.
【請求項3】 重量比で、 C :0.03〜0.10%、 Si:2.5〜4.5%、 Mn:0.02〜0.15%、 酸可溶性Al:0.01〜0.04%、 N :0.003〜0.015% で、さらに Sb:0.01〜0.15%およびS,Se:0.01
〜0.05%を少なくとも1種含有する溶鋼を用いる請
求項1記載の方法。
3. By weight ratio, C: 0.03-0.10%, Si: 2.5-4.5%, Mn: 0.02-0.15%, acid-soluble Al: 0.01- 0.04%, N: 0.003 to 0.015%, Sb: 0.01 to 0.15% and S, Se: 0.01
The method according to claim 1, wherein molten steel containing at least one of 0.05 to 0.05% is used.
JP7295117A 1995-11-14 1995-11-14 Production of high magnetic flux density grain-oriented silicon steel sheet Withdrawn JPH09143559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7295117A JPH09143559A (en) 1995-11-14 1995-11-14 Production of high magnetic flux density grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7295117A JPH09143559A (en) 1995-11-14 1995-11-14 Production of high magnetic flux density grain-oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH09143559A true JPH09143559A (en) 1997-06-03

Family

ID=17816518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7295117A Withdrawn JPH09143559A (en) 1995-11-14 1995-11-14 Production of high magnetic flux density grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH09143559A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101341218B1 (en) * 2005-10-28 2013-12-12 노벨리스 인코퍼레이티드 Homogenization and heat-treatment of cast metals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101341218B1 (en) * 2005-10-28 2013-12-12 노벨리스 인코퍼레이티드 Homogenization and heat-treatment of cast metals

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0774388B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
JPH0686631B2 (en) Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH08269571A (en) Production of grain-oriented silicon steel strip
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JPH0443981B2 (en)
JPH0625747A (en) Manufacture of thin high magnetic flux density grain-oriented silicon steel sheet
JPH0949023A (en) Production of grain oriented silicon steel sheet excellent in iron loss
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH09143559A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JP3311021B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss
JPH05295440A (en) Production of grain-oriented silicon steel sheet using rapidly solidified thin cast slab
JPH08269561A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH086138B2 (en) Method for manufacturing thin unidirectional silicon steel sheet with low iron loss
JPH09157748A (en) Production of grain oriented silicon steel sheet having low iron loss and high magnetic flux density
JP3507232B2 (en) Manufacturing method of unidirectional electrical steel sheet with large product thickness
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JP2001040416A (en) Manufacture of grain oriented silicon steel sheet with high goss integration degree
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204