JPH0347920A - Production of unidirectionally oriented electrical steel sheet having high magnetic flux density - Google Patents

Production of unidirectionally oriented electrical steel sheet having high magnetic flux density

Info

Publication number
JPH0347920A
JPH0347920A JP2084325A JP8432590A JPH0347920A JP H0347920 A JPH0347920 A JP H0347920A JP 2084325 A JP2084325 A JP 2084325A JP 8432590 A JP8432590 A JP 8432590A JP H0347920 A JPH0347920 A JP H0347920A
Authority
JP
Japan
Prior art keywords
magnetic flux
steel sheet
flux density
annealing
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2084325A
Other languages
Japanese (ja)
Other versions
JPH07122093B2 (en
Inventor
Yoshio Nakamura
吉男 中村
Yasuo Okazaki
靖雄 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2084325A priority Critical patent/JPH07122093B2/en
Publication of JPH0347920A publication Critical patent/JPH0347920A/en
Publication of JPH07122093B2 publication Critical patent/JPH07122093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce the unidirectionally oriented electrical steel sheet having a high magnetic flux density and does not require the annealing of a hot rolled sheet by using AlN and MnS as an inhibitor and limiting the contents thereof in the secondary recrystallization process of a steel which does not contain Si. CONSTITUTION:The steel slab contg., by weight %, <=0.06% C, 0.005 to 2.0% Mn, 0.001 to 0.02% S, 0.01 to 0.036% solAl, and 0.002 to 0.014% N is heated and hot rolled and is then subjected to >=1 passes of cold rolling including the final cold rolling at 50 to 75 draft to the final sheet thickness. The heat treatment of this cold rolling is executed in at least the temp. range where gammatransformation arises in a part of the steel sheet. The steel sheet is in succession subjected to decarburization annealing in the temp. region where the alpha-gamma transformation does not arise to limit the contents of the AlN and MnS as the inhibitor for secondary recrystallization in not-excessive amt., by which the unidirectionally oriented electrical steel sheet having the high magnetic flux density is produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁束密度の極めて高い一方向性電磁鋼板の製造
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing a unidirectional electrical steel sheet having an extremely high magnetic flux density.

一般に静止機器の鉄心材料としては、純鉄、低炭素鋼、
あるいは約3%Siを添加した珪素鋼が広く使用されて
いる。純鉄、低炭素鋼は珪素鋼よりも飽和磁束密度が高
いけれども磁性は劣る。しかし、珪素m板に比べて、低
価格なため用途に応してそれらが使い分けられているの
が現状である。
In general, core materials for stationary equipment include pure iron, low carbon steel,
Alternatively, silicon steel to which approximately 3% Si is added is widely used. Although pure iron and low carbon steel have higher saturation magnetic flux density than silicon steel, their magnetism is inferior. However, since they are cheaper than silicon m-plates, they are currently used depending on the purpose.

その中で本発明は、珪素網よりも飽和磁束密度が高い珪
素を含まない鋼に方向性を持たせ、純鉄や低炭素鋼より
も磁化特性が優れ、鉄損が低い一方向性電磁鋼板の製造
法を提供するものである。
Among these, the present invention provides directionality to silicon-free steel, which has a higher saturation magnetic flux density than silicon mesh, and is a unidirectional electrical steel sheet with superior magnetization properties and lower iron loss than pure iron or low carbon steel. The present invention provides a method for manufacturing.

(従来の技術) これまで一方向性電磁鋼板は主として、トランス用鉄心
材料として用いられてきたため、固有抵抗を高め鉄損を
低くする3%程度Siを含む珪素鋼が深く研究されてき
た。しかし、近年ヨーク材料や、磁気シールド材料など
では鉄損よりも磁束密度Bが高いことが要求されてきて
いる。一般に鉄鋼材料は、その純度が上がるほど飽和磁
束密度Bsが高くなる。また、単結晶では<ioo>方
向が最も容易に磁化されることはよく知られており、し
たがって純鉄に方向性を持たせた材料は高い磁束密度を
持つことが期待される。このような材料を工業的に大量
に得ることは重要である。
(Prior Art) Until now, unidirectional electrical steel sheets have been mainly used as core materials for transformers, and therefore silicon steel containing about 3% Si, which increases specific resistance and lowers iron loss, has been deeply studied. However, in recent years, yoke materials, magnetic shield materials, etc. are required to have a magnetic flux density B higher than iron loss. Generally, the higher the purity of a steel material, the higher the saturation magnetic flux density Bs. Furthermore, it is well known that a single crystal is most easily magnetized in the <ioo> direction, and therefore a material made of pure iron with directionality is expected to have a high magnetic flux density. It is important to obtain such materials industrially in large quantities.

ところで、従来の一方向性珪素鋼において、二次再結晶
によって(110,) < 100 >Goss方位を
得るためには、インヒビターと呼ばれる、第−相微細析
出物による一次再結晶粒成長の抑制が不可欠であると考
えられている。このインヒビターとしては、MnSi 
 AZN+ MnSe 、Sb等が用いられており、こ
れら、インヒビターの効果はSiの有無にかかわらず存
在すると思われる。このような観点から、珪素鋼の二次
再結晶によってGoss方位を得る方法を普通鋼に適用
し、高磁束密度を得ようとする試みは、すでにいくつか
なされてきた。古くは、 D、M、Kohler(J、
八pp1.  Phys、   3  B  (196
70176)がMnSをインヒビターとして用い、仕上
焼鈍中の初期にSを追加しないと通常の珪素鋼の製造プ
ロセスでは二次再結晶が生じないことを述べている。
By the way, in conventional unidirectional silicon steel, in order to obtain the (110,) < 100 > Goss orientation by secondary recrystallization, it is necessary to suppress the primary recrystallized grain growth by phase-phase fine precipitates called inhibitors. considered essential. As this inhibitor, MnSi
AZN+MnSe, Sb, etc. are used, and the effects of these inhibitors are thought to exist regardless of the presence or absence of Si. From this viewpoint, several attempts have already been made to obtain a high magnetic flux density by applying the method of obtaining Goss orientation by secondary recrystallization of silicon steel to ordinary steel. In the old days, D. M. Kohler (J.
8pp1. Phys, 3 B (196
70176) states that secondary recrystallization does not occur in a normal silicon steel manufacturing process unless MnS is used as an inhibitor and S is added early during final annealing.

また、特公昭46−23819号公報では、AINを用
いた一段冷延法でSe、 Teを添加した熱延板に75
0〜1200°Cの焼鈍を施せば、60〜95%の冷延
率で冷延・脱炭焼鈍・最終焼鈍後二次再結晶が生じるこ
とが述べられている。更に、蒸釜ら(Trans。
In addition, in Japanese Patent Publication No. 46-23819, a hot-rolled sheet with Se and Te added by a one-stage cold rolling method using AIN is coated with 75
It is stated that if annealing is performed at 0 to 1200°C, secondary recrystallization occurs after cold rolling, decarburization annealing, and final annealing at a cold rolling rate of 60 to 95%. Furthermore, Shugama et al. (Trans.

Jpn、 In5t、Met、 vol、  22. 
No、2. 75 (1981))は、Alキルド鋼を
用いて二次再結晶させる際に、冷延前の予備焼鈍が不可
欠であるとしている。これらの知見をまとめると、 1)インヒビターとして八l N 、 MnSi Mn
Se、 Sbなどが調べられ、二次再結晶する成分範囲
は部分的に分かっている、 2)二次再結晶のためには、冷延前の焼鈍が不可欠であ
る、 ということが挙げられる。しかし、これまでの技術では
最終焼鈍後のB8が最高で1.995(T)であり、S
i量を低減した分に見合うだけの特性とは言いがたい。
Jpn, In5t, Met, vol, 22.
No, 2. 75 (1981)) states that preliminary annealing before cold rolling is essential when performing secondary recrystallization using Al-killed steel. To summarize these findings, 1) 8lN, MnSi Mn as inhibitors
Se, Sb, etc. have been investigated, and the range of components that undergo secondary recrystallization is partially known. 2) Annealing before cold rolling is essential for secondary recrystallization. However, with the conventional technology, the maximum B8 after final annealing is 1.995 (T), and S
It is hard to say that the characteristics are worth the reduction in i amount.

また、2)の冷延前焼鈍も工程が煩雑になり、好ましく
ない。
In addition, 2) annealing before cold rolling also makes the process complicated, which is not preferable.

(発明が解決しようとする課題) 本発明は、珪素を含まない鋼の二次再結晶プロセスにお
いて、AINおよびMnSをインヒビターとし、そのA
IN、MnS含有量を限定することによって、磁束密度
が高く、熱延板焼鈍を必要としない、高磁束密度一方向
性電磁鋼板を製造する方法を提供するものである。
(Problems to be Solved by the Invention) The present invention uses AIN and MnS as inhibitors in the secondary recrystallization process of silicon-free steel, and the A
The present invention provides a method for producing a high magnetic flux density unidirectional electrical steel sheet that has a high magnetic flux density and does not require hot-rolled sheet annealing by limiting the IN and MnS contents.

(課題を解決するための手段) 本発明の要旨とするところは、重量%で、C50,06
%、 Mn ; 0.005〜2.0%、S、0.00
1〜0.02%、 sol、AI B 0.01〜0.
036%、 N i O,002〜0.014%を含み
、残部が鉄よりなる熱延スラブを、加熱し、熱延した後
、圧下率が50〜75%の最終冷延を含む1回以上の冷
延を行って最終板厚とし、脱炭焼鈍後、変態しない温度
域で最終焼鈍することを特徴とする高磁束密度一方向性
電磁鋼板の製造方法にある。
(Means for Solving the Problems) The gist of the present invention is that C50,06
%, Mn; 0.005-2.0%, S, 0.00
1-0.02%, sol, AI B 0.01-0.
After heating and hot rolling a hot-rolled slab containing 0.036% and 0.036% of N i O, 0.002 to 0.014% and the remainder being iron, it is subjected to one or more rounds including final cold rolling at a rolling reduction of 50 to 75%. A method for producing a high magnetic flux density unidirectional electrical steel sheet, which comprises cold rolling to a final thickness, decarburizing annealing, and then final annealing in a temperature range where no transformation occurs.

本発明によれば熱延板焼鈍を必要としない高磁束密度一
方向性電磁鋼板が得られる。ここで用いる熱延スラブは
公知の手段によって得られるものでよく、例えば連続鋳
造によるものなどでよい。
According to the present invention, a high magnetic flux density unidirectional electrical steel sheet that does not require hot-rolled sheet annealing can be obtained. The hot-rolled slab used here may be obtained by known means, such as continuous casting.

また、スラブ加熱時間は、スラブ厚に応じて均質化が充
分できる時間とすればよく、長すぎるとスラブの1粒が
粗大化し、二次再結晶不良が生じる。脱炭焼鈍も公知の
手段による。例えば、湿水素中で熱処理を行えばよい。
Further, the slab heating time may be set to a time that allows sufficient homogenization depending on the slab thickness; if it is too long, one grain of the slab will become coarse and secondary recrystallization failure will occur. Decarburization annealing is also performed by known means. For example, heat treatment may be performed in wet hydrogen.

最終焼鈍はα−γ変態の起こらない温度域でなるべく高
温がよく、焼鈍時間も二次再結晶粒が充分成長する時間
にする。
The final annealing is preferably performed at a high temperature in a temperature range where α-γ transformation does not occur, and the annealing time is set to a time that allows sufficient growth of secondary recrystallized grains.

(作 用) まず、出発材の成分について述べる。(for production) First, the components of the starting materials will be described.

Cは集合組織適正化のために、ある程度含まれているこ
とが望ましいが、その含有量が多いと脱炭工程で抜けき
らず、磁気特性に有害となるのでC50,06%とする
It is desirable that a certain amount of C be included in order to optimize the texture, but if the content is too large, it will not be removed in the decarburization process and will be harmful to the magnetic properties, so the C content is set at 50.06%.

Mnは磁束密度を劣化させずに、鉄損を低くする作用が
あるけれども、その含有量が多くなると、スラブ加熱時
にMnSの固溶量が減るので、MnS2.0%とする。
Although Mn has the effect of lowering iron loss without deteriorating the magnetic flux density, when its content increases, the amount of solid solution of MnS decreases when heating the slab, so MnS is set at 2.0%.

また、少なすぎると、二次再結晶しなくなるので、Mn
≧0.005%とする。
Also, if it is too small, secondary recrystallization will not occur, so Mn
≧0.005%.

SはMnSの形で二次再結晶のためのインヒビターとし
て働くので、0.001%以上含まれなければならない
が、本発明の熱延スラブ加熱温度範囲でMnSをある程
度固溶させるため、S≦0.02%、好ましくは0.0
0/1%以下がよい。
Since S acts as an inhibitor for secondary recrystallization in the form of MnS, it must be contained in an amount of 0.001% or more. However, in order to dissolve MnS to some extent in the hot-rolled slab heating temperature range of the present invention, S≦ 0.02%, preferably 0.0
It is preferably 0/1% or less.

このSの制限に加え、さらにsol、AIを0.036
%以下にすることが必要である。へl量がこれより多い
場合、二次再結晶が生しない。同様に、二次再結晶を生
しさせるために少なくとも0.01%のsoZ、AIが
必要である。
In addition to this S limit, sol and AI are also set to 0.036
% or less. If the amount of helium is larger than this, secondary recrystallization will not occur. Similarly, at least 0.01% soZ, AI is required to cause secondary recrystallization.

NはAIと共にAINの形で鋼中に析出し、インヒビタ
ーとして働くので、少なくとも0.002%必要であり
、多ずぎるとやはり二次再結晶しないので、0.014
%を上限とする。
Since N precipitates in the form of AIN together with AI and acts as an inhibitor, it is necessary to have at least 0.002%, and if it is too much, secondary recrystallization will not occur, so
The upper limit is %.

その他の元素として、磁束密度は落ちるけれども鉄損を
改善するなどの目的で、本発明の趣旨とする熱延板焼鈍
省略を妨げない範囲でSiなどを添加することは許され
る。
As other elements, it is permissible to add Si or the like for the purpose of improving core loss, etc., although the magnetic flux density decreases, as long as it does not interfere with the omission of hot-rolled sheet annealing, which is the gist of the present invention.

ここで、高磁束密度化に欠かせない要件として、冷延圧
下率がある。冷延圧下率を上げて85%にすると、Be
がかなり下がってくる。これは二次再結晶が生成してお
り粒も大きいのであるが、Goss方位からのずれが大
きい粒が成長してしまうためである。したがって、高磁
束密度を得るという観点から本発明の圧下率は75%を
上限とする。
Here, a cold rolling reduction ratio is an essential requirement for increasing magnetic flux density. When the cold rolling reduction is increased to 85%, Be
will drop considerably. This is because secondary recrystallization occurs and the grains are large, but grains with a large deviation from the Goss orientation grow. Therefore, from the viewpoint of obtaining a high magnetic flux density, the upper limit of the rolling reduction ratio in the present invention is 75%.

次に1回以上の冷延を含む場合の、中間焼鈍温度につい
てであるが、−次再結晶集合組織適正化およびAINの
再固溶・微細析出の面から、鋼板の少なくとも一部がT
変態を生じる温度域で行えば、格段に磁気特性が優れる
ことがわかった。
Next, regarding the intermediate annealing temperature when cold rolling is performed one or more times, from the viewpoints of -order recrystallization texture optimization and re-solid solution/fine precipitation of AIN, at least a part of the steel sheet is T
It has been found that magnetic properties are significantly superior if the process is carried out in the temperature range where transformation occurs.

(実施例1) 下記表1中No、 1〜6の組成の熱延板を素材とし6
0%冷延→830°CX2分焼鈍→65%冷延→脱炭焼
鈍830°CX5分(湿水素中)→890 ”C×10
時間(軟水素中)の処理を行ない、表1に示すB。を持
つ材料を得た。本発明成分によれば熱延板焼鈍なしでも
高い磁束密度を持つ材料が得られる。
(Example 1) Hot-rolled sheets having compositions No. 1 to 6 in Table 1 below were used as raw materials.
0% cold rolling → 830°C x 2 minutes annealing → 65% cold rolling → decarburization annealing 830°C x 5 minutes (in wet hydrogen) → 890"C x 10
B as shown in Table 1. Obtained material with. According to the components of the present invention, a material having a high magnetic flux density can be obtained even without hot-rolled plate annealing.

表1 表2 (実施例2) 実施例1の表1中のNo、 4の組成の熱延板を出発材
とし、表2中のNo、 1〜No、 7の冷延条件で冷
延後、脱炭焼鈍830 ’CX 5分(湿水素#旬→8
90°C×20時間(軟水素中)の処理を行ない、表2
中に示ずB6を持つ材料を得た。
Table 1 Table 2 (Example 2) A hot rolled sheet having the composition No. 4 in Table 1 of Example 1 was used as a starting material, and after cold rolling under the cold rolling conditions No. 1 to No. 7 in Table 2. , Decarburization annealing 830'CX 5 minutes (wet hydrogen #season → 8
Table 2
A material having B6, which is not shown in the figure, was obtained.

本発明の冷延率範囲であれば、熱延板焼鈍を必要とせず
に高磁束密度材が得られる。
If the cold rolling rate is within the range of the present invention, a high magnetic flux density material can be obtained without the need for hot rolled sheet annealing.

(実施例3) 実施例2中、表2 No、 3の条件において、中間焼
鈍のみ温度を表3中No、 1〜No、 3に変更し、
その他の条件は同一で行った。その結果、表3中の磁束
密度になった。したがって、中間焼鈍温度としては、鋼
板の一部にγ相が生じる温度範囲が望ましい。
(Example 3) In Example 2, under the conditions of No. 3 in Table 2, the temperature only for intermediate annealing was changed to No. 1 to No. 3 in Table 3,
The other conditions were the same. As a result, the magnetic flux densities shown in Table 3 were obtained. Therefore, the intermediate annealing temperature is preferably within a temperature range in which the γ phase occurs in a portion of the steel sheet.

0 表3 (発明の効果) 本発明によれば、熱延板焼鈍を必要とすることなく、高
磁束密度一方向性電磁鋼板を製造することができるので
、産業上に稗益するところが極めて大きい。
0 Table 3 (Effects of the Invention) According to the present invention, high magnetic flux density unidirectional electrical steel sheets can be manufactured without the need for hot-rolled sheet annealing, so there are extremely large industrial benefits. .

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、C≦0.06%、Mn;0.005〜
2.0%、S;0.001〜0.02%、sol、Al
;0.01〜0.036%、N:0.002〜0.01
4%を含み、残部が鉄よりなる熱延スラブを、加熱、熱
延した後、圧下率が50〜75%の最終冷延を含む1回
以上の冷延を行って最終板厚とし、脱炭焼鈍後、変態し
ない温度域で最終焼鈍することを特徴とする高磁束密度
一方向性電磁鋼板の製造方法。
(1) In weight%, C≦0.06%, Mn; 0.005~
2.0%, S; 0.001-0.02%, sol, Al
;0.01~0.036%, N:0.002~0.01
After heating and hot-rolling a hot-rolled slab containing 4% iron with the remainder being iron, it is cold-rolled one or more times including final cold-rolling at a rolling reduction of 50 to 75% to achieve the final thickness. A method for producing a high magnetic flux density unidirectional electrical steel sheet, characterized in that after charcoal annealing, final annealing is performed in a temperature range where no transformation occurs.
(2)2回以上の冷延を行って最終板厚とする際の冷延
間の熱処理を少なくとも鋼板の一部にγ変態が起こる温
度範囲で行うことを特徴とする請求項1記載の高磁束密
度一方向性電磁鋼板の製造方法。
(2) The steel sheet according to claim 1, wherein the heat treatment during cold rolling when cold rolling is performed two or more times to obtain the final thickness is performed in a temperature range at which γ transformation occurs in at least a part of the steel sheet. A method for manufacturing magnetic flux density unidirectional electrical steel sheets.
JP2084325A 1989-03-31 1990-03-30 High magnetic flux density grain-oriented electrical steel sheet manufacturing method Expired - Fee Related JPH07122093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2084325A JPH07122093B2 (en) 1989-03-31 1990-03-30 High magnetic flux density grain-oriented electrical steel sheet manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-82236 1989-03-31
JP8223689 1989-03-31
JP2084325A JPH07122093B2 (en) 1989-03-31 1990-03-30 High magnetic flux density grain-oriented electrical steel sheet manufacturing method

Publications (2)

Publication Number Publication Date
JPH0347920A true JPH0347920A (en) 1991-02-28
JPH07122093B2 JPH07122093B2 (en) 1995-12-25

Family

ID=26423249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2084325A Expired - Fee Related JPH07122093B2 (en) 1989-03-31 1990-03-30 High magnetic flux density grain-oriented electrical steel sheet manufacturing method

Country Status (1)

Country Link
JP (1) JPH07122093B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105950979A (en) * 2016-07-11 2016-09-21 钢铁研究总院 Grain-oriented pure iron manufactured through secondary cold rolling method and method for manufacturing pure iron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105950979A (en) * 2016-07-11 2016-09-21 钢铁研究总院 Grain-oriented pure iron manufactured through secondary cold rolling method and method for manufacturing pure iron

Also Published As

Publication number Publication date
JPH07122093B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
JPH0774388B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
JPS6296616A (en) Manufacture of grain oriented electrical sheet superior in iron loss
US5261972A (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
JPH0277524A (en) Production of thin high-flux-density grain-oriented electrical steel sheet having excellent iron loss
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JPH0347920A (en) Production of unidirectionally oriented electrical steel sheet having high magnetic flux density
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH0413811A (en) Production of grain-oriented electrical steel sheet having high magnetic flux density
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JP3169427B2 (en) Method for producing bidirectional silicon steel sheet with excellent magnetic properties
KR100544418B1 (en) A METHOD FOR MANUFACTURING GRAIN-ORIENTED Si-STEEL SHEET WITH HIGH MAGNETIC PROPERTY
JP3479984B2 (en) Unidirectional silicon steel sheet having stable magnetic properties and method of manufacturing the same
JPH04301053A (en) Grain-oriented pure iron excellent in coercive force as well as in magnetic permeability and its production
JP3621712B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2619571B2 (en) Unidirectional electrical steel sheet excellent in both magnetic permeability and coercive force and method of manufacturing the same
JPS60135524A (en) Production of grain oriented silicon steel sheet
JPH07258737A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density
JPH04362132A (en) Production of double oriented silicon steel sheet
JPH04301034A (en) Production of grain-oriented pure iron sheet excellent in magnetic permeability in coil-width direction
JPH02310316A (en) Production of nonoriented silicon steel sheet having developed (100)&lt;uvw&gt; aggregate structure
JPH10102150A (en) Production of grain oriented silicon steel sheet
JPH06330174A (en) Production of low iron loss grain oriented silicon steel sheet
JPS6311408B2 (en)
JPS6250528B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees