JPH04136531A - Frp plate spring and manufacture thereof - Google Patents

Frp plate spring and manufacture thereof

Info

Publication number
JPH04136531A
JPH04136531A JP2258429A JP25842990A JPH04136531A JP H04136531 A JPH04136531 A JP H04136531A JP 2258429 A JP2258429 A JP 2258429A JP 25842990 A JP25842990 A JP 25842990A JP H04136531 A JPH04136531 A JP H04136531A
Authority
JP
Japan
Prior art keywords
resin
matrix resin
leaf spring
roving
alicyclic epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2258429A
Other languages
Japanese (ja)
Inventor
Hiroshi Hayashi
博 林
Iwao Matsumoto
岩男 松本
Akira Nakagawa
章 中川
Yoshiharu Doi
義治 土肥
Katsumi Yano
克巳 谷野
Kiyoshi Yanagihara
柳原 潔
Toshinobu Takayanagi
高柳 敏信
Hideo Ikeda
秀雄 池田
Koichi Fujita
晃一 藤田
Masaru Nagara
長柄 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURODA SEIKEI KK
NAGAE TEKKO KK
TOYAMA PREF GOV
Toyama Prefecture
Toyo Kako Co Ltd
Takagi Seiko Corp
Original Assignee
KURODA SEIKEI KK
NAGAE TEKKO KK
TOYAMA PREF GOV
Toyama Prefecture
Toyo Kako Co Ltd
Takagi Seiko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURODA SEIKEI KK, NAGAE TEKKO KK, TOYAMA PREF GOV, Toyama Prefecture, Toyo Kako Co Ltd, Takagi Seiko Corp filed Critical KURODA SEIKEI KK
Priority to JP2258429A priority Critical patent/JPH04136531A/en
Publication of JPH04136531A publication Critical patent/JPH04136531A/en
Pending legal-status Critical Current

Links

Landscapes

  • Springs (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To increase the strength, rigidity and at resistance and improve the workability by laminating cloths made of reinforced fiber between roving materials made of reinforced fiber, and using alicyclic epoxy resin as matrix resin. CONSTITUTION:For FW method, carbon fiber 1a of roving material 1 wound around a bobbin is passed through a matrix resin M impregnating device 5, then wound around a core 6, and a laminated structure of cloths 2 is inserted in a specified FW forming process by hand lay up method. After the weight of the resin-impregnated roving material 1, the cloths 2 reach a specified value, they are hot-pressed and formed by upper and lower dies incorporating a sheathed heater. For matrix resin, alicyclic epoxy resin is used, and the resin is mixed with acid anhydride system curing agent to make matrix resin M. Thus, the manufacturing and operating efficiency is enhanced, and a material of high strength and high rigidity exhibiting composite material characteristics can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、FRP板ばねおよびその製造方法に関する
。 〔従来の技術〕 最近の自動車等の車両や航空機では、主として燃料消費
効率の向上を目的として軽量化が図られており、その−
手段としてばね材の軽量化が求められている。また、各
種の産業機械においても、種々の目的から軽いばね材が
求められ、ここにおいて、強化繊維とマトリックス樹脂
との組合せによって優れた機械的特性を有するFRPに
注目され、新しい工業材料としてばね材への用途の展開
が行われている。 従来のFRP板ばねは、マトリックス樹脂にエポキシ樹
脂やポリエステル樹脂を使用したもので。 炭素繊維やガラス繊維のロービング材をばね素材として
、マトリックス樹脂をそれに含浸させたものであった。 〔発明が解決しようとする課題〕 FRPにおいて、マトリックス樹脂は、強化繊維を一体
化し、それとの結合を介して樹脂が持つ物性上の欠点を
補いながら、その特性を成形品の中に保持するという重
要な役割を果たすものである。 また、マトリックス樹脂に要求される物理的諸性質とし
ては、高い靭性や強度の他、成形作業性が良好なこと、
耐熱性を具備していること等が挙げられる。 しかし、従来、マトリックス樹脂の選定やぼね素材の構
成等から、そのような諸特性を十分に具備した板ばねは
なかった。 この発明は、上記のような実情に鑑みて、高強度・高剛
性で耐熱性に優れ、且つ作業性の良好なFRP板ばね及
びその製造方法を提供することを目的とした。 〔課題を解決するための手段〕 上記の目的を達成するために、この発明者等は、種々実
験と研究を重ねた結果、マトリックス樹脂には、バラン
スのとれた物性、成形の容易さ、強化材との良好な接着
性、さらに耐熱性が良好という研究結果から、脂環式エ
ポキシ樹脂を選定し、この発明を完成するに至った。 即ち、この発明の構成は次の通りである。 1)FRP板ばねについては、強化繊維からなるロービ
ング材1の間に、同じく強化繊維からなるクロス2を積
層し、マトリックス樹脂Mが脂環式エポキシ樹脂である
ものである。 2)FRP板ばねの製造方法については、FW法により
強化繊維からなるロービング材1を形成するとともに、
ロービング材1の間に強化繊維からなるクロス2を積層
し、マトリックス樹脂Mに脂環式エポキシ樹脂を使用す
るものである。 〔作  用〕 FRP板ばね及びその製造方法を上記のように構成した
から、FRP板ばねの製造の作業能率を高めることがで
き、また、複合材としての特性が発揮された高強度・高
剛性の板ばねを得ることができた。これは、前記したよ
うに脂環式エポキシ樹脂がバランスのとれた物性を有す
ること、成形が容易であること、強化材との良好な密着
性や耐熱性が良好なこと等が第一義的に考えられる。 そこで、板ばねSの構造においては、マトリックス樹脂
Mが強化繊維と親和性が良好なことから、板厚方向のク
ラックが改善され、ねじれに対する補強が強化される。 また、製造方法においては、FW法により特に能率的に
板ばねSの製造をなすことができる。 なお、脂環式エポキシ樹脂には、環状オキシラン型、芳
香族含有型、グリシジルエーテル型、グリシジルエステ
ル型 次に、この発明の実施例を図面に基づいて説明する。 実施例は、炭素繊維のロービング材1やクロス2を併用
したミニ板ばねSの圧縮成形をFW法によった場合であ
って、クロス2の挿入枚数を2層及び6層に分けて試作
し、その試作板ばねSについて各種評価試験等を行った
。 マトリックス樹脂については、脂環式エポキシ樹脂(■
アサヒ化学研究所製、EX−1,9)を使用し、それに
酸無水物系硬化剤(上記EX−19用硬化剤)を混合し
てマトリックス樹脂Mとする。 FRPの構成材料の物性値は次の表1の通りである。 表I  FRPの構成材料の主な物性値等の種類がある
。なかでも、グリシジルエーテル型は、低粘度、且つ、
接着性、耐熱性等に優れているため、最も使用に適して
いる。 〔実施例〕 ロービング材1の一方向強化炭素繊維の欠点を補完する
目的で用いた炭素繊維クロス2の仕様については、フィ
ラメント数1000本、重さ119g/rrrとした。 FW法は、第1図に示すように、ボビンに巻いたロービ
ング材1の炭素繊維1aを樹脂含浸装置5を通過させた
後、コア6に巻き上げる方法を採用した。 クロス積層構造(挿入枚数72層及び6M)については
、所定のFW成形段階でハンドレアツブ方式により挿入
した。樹脂を含浸させたロービング材1及びクロス2が
所定重量に達した後、シーズヒータを組み込んだ上型(
板ばね成形部:R900ma+)及び下型からなる金型
によりホットプレス成形を行った。 成形荷重は、金型温度が50℃に達した時点で徐々に加
え、ストッパーに隙間がなくなるところで荷重(約15
を前後)を保持し続けた。成形温度は、100℃で10
分間保持した後、160℃まで昇温させた。 成形試料は離型後、アフターキュアを160℃で3時間
施した。第2図は、このようにして成形した板ばねSの
外観を示し、ループ型となっている。 ループ型の成形試料より削り出した評価用試験体は、イ
ンストロン型室ひずみ試験機により曲げ試験等を行った
。また、板ばねSの繰り返し曲げ試験は、小型油圧加振
機を使用した。 失簾藍果及U工棗 次に、上記試作板ばねSについての実験結果及びそれに
ついて考察する。 第3図は、繊維と樹脂の分散性を検討するために、板ば
ねSの断面写真を示したも、のである。 ロービング材1の一方向強化繊維とマトリックス樹脂M
の状態は、繊維の分散性が全体的に良好であり、樹脂も
繊維を包む形で含浸している。また、クロス2部分にお
いても同様である。 (])曲げ強さ及′び曲げ弾性率 第4図は、炭素繊維の含有率と曲げ強さ及び曲げ弾性座
の関係を示す。図中には、比較のためクロス積層のみ(
マトリックス樹脂は同じく脂環式エポキシ樹脂)の結果
も合わせて示した。図より、FW法による炭素繊維FR
P(本実施例の仮ばねSの場合は、後記するようにOl
oおよびゑ、ムで示される)の曲げ強さは、はゾ110
〜130 kg f / tm ”の範囲にあり、クロ
ス積層のみのような大きな変化は認められなかった。ま
た、クロス積層の時に比べて、FW法による炭素繊維F
RPの曲げ強さは、Vf(強化繊維体積含有率)が60
%前後で約35〜40kgf/閣2向上させることがで
きた。 これは、FW法により、繊維の積層方向が力の作用方向
に対して同じになったためと考えられる。 また、曲げ強さはVfが60数%前後で最大値を示し、
70%以上では低下する傾向にある。これは。 繊維−本一本の周囲を包括するためのマトリックス樹脂
がはじき出され、界面において繊維と接着するための樹
脂量が不十分になるためと考えられる。また1曲げ弾性
率は、Vfの増加とともにはゾ直線的に上昇している。 これは、繊維の剛性が曲げ弾性率に直接的に関与してい
るためと考える。 また、クロス積層法に比べ曲げ弾性率は、約3×10″
〜4 X 103kgf/m+2向上させることができ
た。 ばねへの適用を検討した場合、Vfは曲げ強さが低下せ
ず、しかも弾性率が約8.5 X 103kgf/m”
前後を取ることが出来る含有率65%前後に設定するこ
とが望ましい0図中の0、C及びΔ、ムは、耐ねじり強
度を付加するためにFW法によるVfが65%のうち、
約10%弱をクロス(2層積層構造)。 及び30%弱をクロス(6層積層構造)に置き換えて挿
入した試料の試験結果である。図より、クロスの2層積
層構造では、曲げ強さ及び弾性率において、FW法に比
べほとんど差異は認められない。 また、6層積層構造では、曲げ強さで15kgf/■1
、弾性率で700 kg f / tn ”前後低下し
ている。 (2)耐熱特性 第5図は、30℃における引張り弾性率(DMA)試験
機を100%とし、それより5%低下した時の温度とV
fとの関係を示した一例である。図より耐熱温度は含浸
しているマトリックス樹脂の量に影響されるため、Vf
の増加とともに上昇する傾向にある。クロス積層法の場
合は、160〜170℃、FW法では170〜180℃
の範囲にあり、はソ10℃程度の差が認められる。Vf
が65%一定で、FW−クロス2枚1)及び6枚(0)
の積層構造では、FW法とほとんど同じ耐熱温度を示し
、は7180℃前後であった。 (3)繰り返し曲げ試験 別紙に示す表2は、板ばねSの繰り返し曲げ試験の結果
である。試験は、部分片振りによる3、也曲げ(スパン
L=191閣)とし、繰り返し曲げ試験中に発生する最
大応力は、その材料の曲げ応力の95%となるように初
期設定を行い、試験周波数は10Hz、変位が±4mの
加振条件で制御した。また、繰り返し寿命回数は、板ば
ねSの疲労破断又は外観に損傷が生じた回数とした。F
W法により製作した一方向強化材では、破断に至るまで
の繰り返し回数は、Vfの増加とともに増大する傾向に
あった。一方、FW法とクロス積層法を組み合わせたも
のでは、FW法と比較して一桁少ない回数でクロス層の
剥離が発生したが、これは、マトリックス樹脂が脂環式
エポキシ樹脂以外の樹脂である場合よりも少ない回数で
ある。 第6図は、板ばねの破壊の様相を示したものである。た
だし、クロス層を組み合わせた材料は、106回まで加
振後、曲げにより強制的に破断させたものである。図よ
り、一方向強化のみでVfが75%では、破断後、強化
方向の繊維がバラバラの状態になっており、炭素繊維を
十分に集束するためのマトリックス樹脂が足りない状態
にあるものと考えられる。Vfを64%とすることによ
り、Vfが75%の時のようにバラバラな破断状態は避
けることができる。しかし、繊維の強化方向と垂直な2
方向、即ち板厚方向、横方向のクラックが認められた。 FW法−クロス積層法を組み合わせた本発明の場合であ
ると、板厚方向のクラックは改善され、ねじれに対する
補強効果が期待されることが解かる。 〔発明の効果〕 以上説明したように、この発明によれば、強化繊維から
なるロービング材の間に、同じく強化繊維からなるクロ
スを積層したから、板厚方向に対するねじれに強力で高
強度・高剛性の耐熱性板ばねを得ることができ、また、
マトリックス樹脂に脂環式エポキシ樹脂を使用したので
、製造の作業性が良好であり、耐熱性にも優れた板ばね
を製造することができるという優れた効果がある。 FRP板ばねの製造方法においては、FW法−クロス積
層法によるために作業性が非常に良好であり、特に高強
度・高剛性の板ばねの製造を能率的になし得るという効
果を併有する。
[Industrial Application Field] The present invention relates to an FRP leaf spring and a manufacturing method thereof. [Prior Art] In recent years, efforts have been made to reduce the weight of vehicles such as automobiles and aircraft, mainly to improve fuel consumption efficiency.
As a means of achieving this, there is a need to reduce the weight of spring materials. In addition, light spring materials are required for various industrial machines for various purposes, and FRP, which has excellent mechanical properties due to the combination of reinforcing fibers and matrix resin, has attracted attention, and has been used as a new industrial material for spring materials. Applications are being expanded to. Conventional FRP leaf springs use epoxy resin or polyester resin as the matrix resin. The spring material was carbon fiber or glass fiber roving material, which was impregnated with matrix resin. [Problem to be solved by the invention] In FRP, the matrix resin integrates the reinforcing fibers and compensates for the physical property defects of the resin through bonding with them, while retaining its properties in the molded product. It plays an important role. In addition, the physical properties required for matrix resins include high toughness and strength, as well as good moldability.
For example, it has heat resistance. However, until now, there has been no leaf spring that has sufficient characteristics such as the selection of matrix resin and the composition of the spring material. In view of the above-mentioned circumstances, it is an object of the present invention to provide an FRP leaf spring that has high strength, high rigidity, excellent heat resistance, and good workability, and a method for manufacturing the same. [Means for Solving the Problems] In order to achieve the above object, the inventors conducted various experiments and research, and found that the matrix resin has well-balanced physical properties, ease of molding, and reinforcement. Based on research results showing good adhesion to materials and good heat resistance, alicyclic epoxy resin was selected and this invention was completed. That is, the configuration of the present invention is as follows. 1) Regarding the FRP leaf spring, a cloth 2 also made of reinforcing fibers is laminated between roving materials 1 made of reinforcing fibers, and the matrix resin M is an alicyclic epoxy resin. 2) Regarding the manufacturing method of the FRP leaf spring, the roving material 1 made of reinforcing fibers is formed by the FW method, and
A cloth 2 made of reinforcing fibers is laminated between roving materials 1, and an alicyclic epoxy resin is used as the matrix resin M. [Function] Since the FRP leaf spring and its manufacturing method are configured as described above, it is possible to increase the work efficiency of manufacturing the FRP leaf spring, and it also has high strength and high rigidity that exhibits the characteristics of a composite material. I was able to obtain a leaf spring. As mentioned above, the primary reason for this is that the alicyclic epoxy resin has well-balanced physical properties, is easy to mold, has good adhesion to reinforcing materials, and has good heat resistance. It can be considered. Therefore, in the structure of the leaf spring S, since the matrix resin M has good affinity with the reinforcing fibers, cracks in the plate thickness direction are improved and reinforcement against torsion is strengthened. In addition, as for the manufacturing method, the leaf spring S can be manufactured particularly efficiently by the FW method. The alicyclic epoxy resin includes a cyclic oxirane type, an aromatic-containing type, a glycidyl ether type, and a glycidyl ester type.Next, examples of the present invention will be described based on the drawings. The example is a case in which compression molding of a mini leaf spring S using carbon fiber roving material 1 and cloth 2 is carried out by the FW method, and the number of cloths 2 inserted is divided into 2 layers and 6 layers. , conducted various evaluation tests on the prototype leaf spring S. Regarding the matrix resin, alicyclic epoxy resin (■
EX-1,9) manufactured by Asahi Chemical Research Institute is used, and an acid anhydride curing agent (the above-mentioned curing agent for EX-19) is mixed therein to prepare matrix resin M. The physical properties of the constituent materials of FRP are shown in Table 1 below. Table I: Types of main physical properties of FRP constituent materials. Among them, glycidyl ether type has low viscosity and
It is most suitable for use due to its excellent adhesiveness and heat resistance. [Example] Regarding the specifications of the carbon fiber cloth 2 used for the purpose of compensating for the drawbacks of the unidirectionally reinforced carbon fiber of the roving material 1, the number of filaments was 1000 and the weight was 119 g/rrr. As shown in FIG. 1, the FW method employs a method in which the carbon fibers 1a of the roving material 1 wound around a bobbin are passed through a resin impregnating device 5 and then wound onto a core 6. For the cross-laminated structure (number of inserted sheets: 72 layers and 6M), the sheets were inserted using the hand-removal method at a predetermined FW molding stage. After the resin-impregnated roving material 1 and cloth 2 reach a predetermined weight, an upper mold (
Hot press molding was performed using a mold consisting of a leaf spring molding section (R900 ma+) and a lower mold. The molding load is gradually applied when the mold temperature reaches 50℃, and the load (approximately 15℃) is applied when there is no gap in the stopper.
(back and forth) continued to be held. The molding temperature is 100℃
After holding for a minute, the temperature was raised to 160°C. After the molded sample was released from the mold, it was subjected to after-cure at 160° C. for 3 hours. FIG. 2 shows the external appearance of the leaf spring S formed in this way, and has a loop shape. An evaluation test piece cut out from a loop-shaped molded sample was subjected to a bending test, etc. using an Instron chamber strain tester. In addition, a small hydraulic vibrator was used for the repeated bending test of the leaf spring S. Next, the experimental results for the above-mentioned prototype leaf spring S will be discussed. FIG. 3 shows a cross-sectional photograph of the leaf spring S in order to examine the dispersibility of fibers and resin. Unidirectional reinforcing fiber of roving material 1 and matrix resin M
In this condition, the dispersibility of the fibers is good overall, and the resin is also impregnated in a manner that wraps the fibers. The same applies to the second cross portion. (]) Bending strength and bending elastic modulus Figure 4 shows the relationship between carbon fiber content, bending strength, and bending elasticity. In the figure, only cross lamination (
The results for the matrix resin (also an alicyclic epoxy resin) are also shown. From the figure, carbon fiber FR by FW method
P (in the case of the temporary spring S of this example, Ol
The bending strength of
~130 kg f/tm'', and no major changes were observed as in the case of only cross lamination.Also, compared to the case of cross lamination, carbon fiber F by the FW method
The bending strength of RP is Vf (reinforced fiber volume content) of 60
We were able to improve the load by approximately 35 to 40 kgf/kaku2 at around 35% to 40%. This is thought to be because the FW method made the fiber stacking direction the same as the direction of force action. In addition, the bending strength reaches its maximum value when Vf is around 60%,
At 70% or more, it tends to decrease. this is. This is thought to be because the matrix resin that surrounds each fiber is expelled, resulting in an insufficient amount of resin to adhere to the fiber at the interface. In addition, the 1 bending elastic modulus increases linearly as Vf increases. This is considered to be because the stiffness of the fiber is directly related to the bending modulus. In addition, the bending elastic modulus is approximately 3 x 10'' compared to the cross lamination method.
〜4×103kgf/m+2 could be improved. When considering application to springs, Vf does not reduce bending strength and has an elastic modulus of approximately 8.5 x 103 kgf/m.
It is desirable to set the content around 65%, which can be around 65%. 0, C, Δ, and Mu in the figure are 0, C, Δ, and Mu in the FW method where Vf is 65% in order to add torsional strength.
Approximately less than 10% is cross (two-layer laminated structure). These are the test results of a sample in which a little less than 30% of the sample was replaced with cloth (6-layer laminated structure). As shown in the figure, there is almost no difference in bending strength and elastic modulus in the two-layer laminated structure of the cloth compared to the FW method. In addition, the 6-layer laminated structure has a bending strength of 15 kgf/■1
, the elastic modulus has decreased by around 700 kgf/tn''. (2) Heat resistance characteristics Figure 5 shows the tensile modulus of elasticity (DMA) at 30°C with the tensile modulus (DMA) tester set at 100%, and when the elastic modulus is 5% lower than that. Temperature and V
This is an example showing the relationship with f. From the figure, the heat resistance temperature is affected by the amount of matrix resin impregnated, so Vf
tends to rise with an increase in 160-170℃ for cross lamination method, 170-180℃ for FW method
There is a difference of about 10°C. Vf
is constant at 65%, FW - 2 crosses 1) and 6 crosses (0)
The laminated structure showed almost the same heat resistance temperature as the FW method, which was around 7180°C. (3) Repeated bending test Table 2 shown in the attached sheet shows the results of the repeated bending test of the leaf spring S. The test was conducted using partial shear bending (span L = 191 degrees), and initial settings were made so that the maximum stress generated during the repeated bending test was 95% of the bending stress of the material, and the test frequency was was controlled under the excitation conditions of 10 Hz and a displacement of ±4 m. Moreover, the number of repeated lifespans was defined as the number of times the leaf spring S suffered fatigue breakage or damage to its appearance. F
In the unidirectionally reinforced material manufactured by the W method, the number of repetitions until breakage tended to increase as Vf increased. On the other hand, in the combination of the FW method and the cross lamination method, peeling of the cross layer occurred an order of magnitude fewer times than in the FW method, but this is because the matrix resin is a resin other than alicyclic epoxy resin. fewer times than in the case of FIG. 6 shows the state of destruction of the leaf spring. However, the material in which the cross layers were combined was forcibly broken by bending after being vibrated up to 106 times. From the figure, when Vf is 75% with only one direction reinforcement, the fibers in the reinforcing direction are separated after rupture, and it is thought that there is not enough matrix resin to sufficiently bundle the carbon fibers. It will be done. By setting Vf to 64%, it is possible to avoid the uneven fracture state that occurs when Vf is 75%. However, 2 perpendicular to the reinforcing direction of the fiber
Cracks were observed in both the thickness direction and the lateral direction. It can be seen that in the case of the present invention, which combines the FW method and the cross lamination method, cracks in the thickness direction are improved and a reinforcing effect against torsion is expected. [Effects of the Invention] As explained above, according to the present invention, since the cloth made of reinforcing fibers is laminated between the roving materials made of reinforcing fibers, it is strong against twisting in the thickness direction, and has high strength and high strength. A rigid heat-resistant leaf spring can be obtained, and
Since the alicyclic epoxy resin is used as the matrix resin, the manufacturing workability is good, and there is an excellent effect that a leaf spring with excellent heat resistance can be manufactured. In the method for manufacturing FRP leaf springs, workability is very good because the FW method-cross lamination method is used, and particularly high strength and high rigidity leaf springs can be manufactured efficiently.

【別紙】【Attachment】

表2 繰り返し曲げ試験の結果 Table 2 Results of repeated bending test

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の実施例に関するもので、第1図はFW
法の説明図、第2図は板ばねの斜視図、第3図は板ばね
の断面写真、第4図は炭素繊維の体積含有率と曲げ強さ
及び曲げ弾性率の関係を示すグラフ、第5図は炭素繊維
の含有率と耐熱温度の関係を示すグラフ、第6図は板ば
ねの破壊の様相示す写真である。 M・・・マトリックス樹脂  S・・・板ばね1・・・
ロービング材    2・・・クロス(注1)クロスの
剥離が認められた回数手続補正書(方式) 平成3年6月12日 平成2年特許願第258429号 2、発明の名称 住所 名称 4、代理人 富山県富山市新総曲輪1番7号 富  山  県 知事 中 沖 豊 〒930 fi0764−33−04736、補正の対
象 7、補正の内容 1)明細書第8頁第10行目に、「板ばねSの断面写真
」とあるのを「板ばねSの断面図」と補正する。 2)明細書第13頁第11行目に、「第3図は板ばねの
断面写真」とあるのを「第3図は繊維と樹脂の分散性を
示した板ばねの断面図であり、jに補正する。 3)明細書第13頁第14行〜第15行目に、「第6図
は板ばねの破壊の様相示す写真である。」とあるのを、
r第6図は各種板ばねの破壊断面の様相を示した斜視断
面図で、同図(a)は一方向強化ロービング材のみで且
つVf(強化繊維体積含有率)75%のもの、同図(b
)は一方向強化ロービング材のみでVf64%のもの、
同図(e)は一方向強化ロービング材にクロス2層をプ
ラスさせVf65%のもの、同図(d)は一方向強化ロ
ービング材にクロス6層にプラスさせVf65%のもの
の各破壊断面を示した図である。」 4)図面の第3図及び第6図を別紙の通り補正する。
The drawings relate to embodiments of the invention, and FIG.
Figure 2 is a perspective view of a leaf spring, Figure 3 is a cross-sectional photograph of a leaf spring, Figure 4 is a graph showing the relationship between carbon fiber volume content, bending strength, and bending modulus. Fig. 5 is a graph showing the relationship between carbon fiber content and heat resistance temperature, and Fig. 6 is a photograph showing the state of destruction of the leaf spring. M... Matrix resin S... Leaf spring 1...
Roving material 2...Cross (Note 1) Number of times peeling of cloth was recognized Procedural amendment (method) June 12, 1991 1990 Patent Application No. 258429 2 Name of invention Address name 4 Agent 1-7 Shinsokuruwa, Toyama City, Toyama Prefecture Toyama Prefectural Governor Yutaka Nakaoki 930 fi0764-33-04736, Subject of amendment 7, Contents of amendment 1) On page 8, line 10 of the specification, there is a ``Cross-sectional photograph of spring S'' has been corrected to ``Cross-sectional view of leaf spring S.'' 2) In the 11th line of page 13 of the specification, the phrase "Fig. 3 is a cross-sectional photograph of a leaf spring" is replaced with "Fig. 3 is a cross-sectional view of a leaf spring showing the dispersibility of fibers and resin. 3) On page 13, lines 14 to 15 of the specification, the statement ``Figure 6 is a photograph showing the state of destruction of the leaf spring.'' has been corrected.
Figure 6 is a perspective cross-sectional view showing the fractured cross section of various leaf springs, and Figure (a) is one made of only one-way reinforced roving material and with a Vf (volume content of reinforcing fibers) of 75%; (b
) is one-way reinforced roving material with Vf64%,
Figure (e) shows the fracture cross section of a unidirectionally reinforced roving material with two layers of cloth plus Vf of 65%, and Figure (d) shows the fracture cross section of a unidirectionally reinforced roving material with six layers of cloth plus Vf of 65%. This is a diagram. 4) Figures 3 and 6 of the drawings will be corrected as shown in the attached sheet.

Claims (1)

【特許請求の範囲】 1)強化繊維からなるロービング材1の間に、同じく強
化繊維からなるクロス2を積層し、マトリックス樹脂M
が脂環式エポキシ樹脂であることを特徴とするFRP板
ばね。 2)FW法により強化繊維からなるロービング材1を形
成するとともに、ロービング材1の間に強化繊維からな
るクロス2を積層し、マトリックス樹脂Mに脂環式エポ
キシ樹脂を使用することを特徴とするFRP板ばねの製
造方法。
[Claims] 1) A cloth 2 also made of reinforcing fibers is laminated between roving materials 1 made of reinforcing fibers, and matrix resin M
An FRP leaf spring characterized in that is an alicyclic epoxy resin. 2) A roving material 1 made of reinforcing fibers is formed by the FW method, a cloth 2 made of reinforcing fibers is laminated between the roving materials 1, and an alicyclic epoxy resin is used as the matrix resin M. Manufacturing method for FRP leaf springs.
JP2258429A 1990-09-27 1990-09-27 Frp plate spring and manufacture thereof Pending JPH04136531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2258429A JPH04136531A (en) 1990-09-27 1990-09-27 Frp plate spring and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2258429A JPH04136531A (en) 1990-09-27 1990-09-27 Frp plate spring and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04136531A true JPH04136531A (en) 1992-05-11

Family

ID=17320092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2258429A Pending JPH04136531A (en) 1990-09-27 1990-09-27 Frp plate spring and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04136531A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202814A (en) * 2012-03-27 2013-10-07 Toho Tenax Co Ltd Filament winding molded article and method for manufacturing the same
WO2023153517A1 (en) * 2022-02-14 2023-08-17 日本発條株式会社 Frp plate spring

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732917A (en) * 1980-08-07 1982-02-22 Toyota Motor Corp Manufacture of fiber-reinforced plastic leaf spring
JPS5779345A (en) * 1980-11-04 1982-05-18 Chuo Spring Co Ltd Frp leaf spring for car having excellent fatigue withstandability characteristic
JPS5828454A (en) * 1981-08-10 1983-02-19 Toyota Motor Corp Automatic grinding device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732917A (en) * 1980-08-07 1982-02-22 Toyota Motor Corp Manufacture of fiber-reinforced plastic leaf spring
JPS5779345A (en) * 1980-11-04 1982-05-18 Chuo Spring Co Ltd Frp leaf spring for car having excellent fatigue withstandability characteristic
JPS5828454A (en) * 1981-08-10 1983-02-19 Toyota Motor Corp Automatic grinding device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202814A (en) * 2012-03-27 2013-10-07 Toho Tenax Co Ltd Filament winding molded article and method for manufacturing the same
WO2023153517A1 (en) * 2022-02-14 2023-08-17 日本発條株式会社 Frp plate spring

Similar Documents

Publication Publication Date Title
US4489123A (en) Laminate of metal sheet material and threads bonded thereto, as well as processes for the manufacture thereof
US3472730A (en) Heat-curable filament-reinforced resinous sheeting and laminating process using same
EP3018293A1 (en) Composite article with fibre-reinforced sandwich core
KR960000558B1 (en) Oriented prepreg and carbon fiber reinforced composite
EP2872685A1 (en) Reinforcing textile complex for composite parts, and composite parts integrating said complex
Sonparote et al. Mechanical properties of carbon/glass fibre reinforced hybrids
JP2018039115A (en) Fiber-reinforced resin composite structure and high-pressure container, and method for producing them
US20150217535A1 (en) Prestressed Rod Stiffened Composite Structures
JPH0575575B2 (en)
Schaller et al. High-performance liquid-crystalline polymer films for monolithic “composites”
JP3771360B2 (en) Tubular body made of fiber reinforced composite material
JPH04136531A (en) Frp plate spring and manufacture thereof
JP4506189B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
Vasudevan et al. Effect of Kevlar ply orientation on mechanical characterization of Kevlar-glass fiber laminated composites
Manalo et al. Mechanical properties of bamboo fiber-polyester composites
JPH05293919A (en) Carbon fiber reinforced resin composite material and production thereof
JPH10272699A (en) Manufacture of fiber reinforced resin tubular body
JP2705319B2 (en) Method for producing carbon fiber reinforced composite material
JPH04136530A (en) Frp coil spring and manufacture thereof
JPH07103253B2 (en) Synthetic resin reinforced composite fiber cloth
JPH05278032A (en) Unidirectional prepreg, carbon fiber reinforced resin composite material and their manufacture
JPH043769B2 (en)
JP7455689B2 (en) CFRP sheet, FRP-metal composite and manufacturing method thereof
CN115044167B (en) Resin composition and composite material
Nugroho et al. Evaluation of tensile properties of composite lycal/epoxy polymer laminates reinforced with E-glass fiber±45° woven fabrics