WO2023153517A1 - Frp plate spring - Google Patents

Frp plate spring Download PDF

Info

Publication number
WO2023153517A1
WO2023153517A1 PCT/JP2023/004875 JP2023004875W WO2023153517A1 WO 2023153517 A1 WO2023153517 A1 WO 2023153517A1 JP 2023004875 W JP2023004875 W JP 2023004875W WO 2023153517 A1 WO2023153517 A1 WO 2023153517A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcing fibers
resin material
less
divided regions
cross
Prior art date
Application number
PCT/JP2023/004875
Other languages
French (fr)
Japanese (ja)
Inventor
孝充 佐野
勝 今村
昌威 木下
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Publication of WO2023153517A1 publication Critical patent/WO2023153517A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/18Leaf springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/366Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers made of fibre-reinforced plastics, i.e. characterised by their special construction from such materials
    • F16F1/368Leaf springs

Definitions

  • the present invention relates to FRP leaf springs.
  • This application claims priority based on Japanese Patent Application No. 2022-020431 filed in Japan on February 14, 2022, the contents of which are incorporated herein.
  • an FRP leaf spring as shown in Patent Document 1 below, for example, has been known.
  • a plurality of reinforcing fibers extending in one direction are embedded in a resin material.
  • the conventional FRP leaf spring has a problem that it is difficult to improve the fatigue limit. Therefore, the inventors of the present application have made intensive studies on solutions to solve the problem, and found that a plurality of reinforcing fibers are arranged in a cross section orthogonal to one direction in which the reinforcing fibers extend, so as to reduce variations. In other words, the inventors have found that uniform provision is effective in improving the fatigue limit.
  • the present invention has been made in consideration of such circumstances, and an object of the present invention is to provide an FRP leaf spring capable of improving the fatigue limit.
  • a first aspect of the present invention comprises a resin material and a plurality of reinforcing fibers embedded in the resin material and extending in one direction, wherein each reinforcing fiber of the plurality of reinforcing fibers has a diameter of 1 ⁇ m or more and 100 ⁇ m or less.
  • the plurality of reinforcing fibers are contained in the resin material at 50% by volume or more and 70% by volume or less, and in a cross-sectional view orthogonal to the one direction, each of the plurality of divided fibers includes a part of the plurality of reinforcing fibers
  • the FRP leaf spring has a standard deviation of 3% or less of the area ratio of the reinforcing fibers in each of the plurality of divided regions when the region is magnified 300 times.
  • the standard deviation of the area ratio of the reinforcing fibers in each divided region is 3% or less. kept to a low value.
  • a plurality of reinforcing fibers can be provided in a cross section perpendicular to the one direction with less variation, that is, evenly. Therefore, when a bending stress is repeatedly applied to the FRP leaf spring in the plate thickness direction, it becomes possible to make it difficult for cracks to occur, and the fatigue limit of the FRP leaf spring can be improved.
  • a second aspect of the present invention is obtained by a box counting method at a resolution such that the length of 1 pixel is 0.15 ⁇ m or more and 2.3 ⁇ m or less based on an image obtained by enlarging the cross section orthogonal to the one direction by 100 times.
  • the fractal dimension of the resin material is suppressed to a low value of 2.01 or less even when the cross section perpendicular to the one direction is enlarged at a low magnification of 100 times.
  • This makes it possible to reduce variations in the pattern expressed by the reinforcing fibers and the resin material in the cross section, that is, to make it uniform. Therefore, when a bending stress is repeatedly applied to the FRP leaf spring in the plate thickness direction, it is possible to reliably prevent the origin of cracks from occurring.
  • the fractal dimension of the resin material is 1.98 or more when the cross section perpendicular to the one direction is enlarged at a low magnification of 100 times.
  • a third aspect of the present invention is a resin material obtained based on each of a plurality of images obtained by enlarging the plurality of divided regions each containing the part of the plurality of reinforcing fibers in the cross-sectional view by 100 times.
  • the fatigue limit can be improved.
  • FIG. 1 is a cross-sectional photograph of an FRP leaf spring of one embodiment; 1 is a cross-sectional photograph of an FRP leaf spring of one embodiment;
  • FIG. 2 is a SEM photograph showing a plurality of divided regions in FIG. 1;
  • FIG. FIG. 2 is a SEM photograph showing a plurality of divided regions in FIG. 1;
  • FIG. FIG. 2 is a SEM photograph showing a plurality of divided regions in FIG. 1;
  • FIG. FIG. 2 is a SEM photograph showing a plurality of divided regions in FIG. 1;
  • FIG. FIG. 2 is a SEM photograph showing a plurality of divided regions in FIG. 1;
  • FIG. FIG. 2 is a SEM photograph showing a plurality of divided regions in FIG. 1;
  • FIG. FIG. 2 is a SEM photograph showing a plurality of divided regions in FIG. 1;
  • FIG. 1 is a cross-sectional photograph of an FRP leaf spring of one embodiment;
  • FIG. 2 is a SEM photograph
  • the FRP leaf spring 1 is used, for example, in a suspension system of a vehicle.
  • the FRP leaf spring 1 is formed in a plate shape having front and back surfaces facing in the vertical direction Z and having a rectangular shape elongated in one direction X when viewed from the vertical direction Z.
  • the FRP leaf spring 1 is constructed by embedding a plurality of reinforcing fibers F extending in one direction X in a resin material R, as shown in FIGS. 3A to 3F.
  • the diameter of the reinforcing fiber F is 1 ⁇ m or more and 100 ⁇ m or less, preferably 10 ⁇ m or more and 30 ⁇ m or less.
  • the reinforcing fibers F are contained in the resin material R in an amount of 50% by volume or more and 70% by volume or less.
  • the area ratio of the reinforcing fibers F is obtained by equally dividing the predetermined region A in the cross-sectional view into a plurality of divided regions x1 and x2 each having a size (for example, 250 ⁇ m ⁇ 250 ⁇ m or more) containing a plurality of reinforcing fibers F, and dividing each divided region It is obtained by dividing the number of pixels where the reinforcing fibers F are located in the images of the regions x1 and x2 by the total number of pixels.
  • the standard deviation of the area ratio of the reinforcing fibers F in each of the plurality of divided regions x1 and x2 is 3% or less when the plurality of divided regions x1 and x2 are enlarged at least 100 times or more and 300 times or less.
  • the predetermined area A in the cross section is equally divided into six divided areas x1 (1160 ⁇ m ⁇ 870 ⁇ m), and the image of each divided area x1 is magnified 100 times (SEM, backscattered electron image, acceleration voltage 21 kV), and the length of one pixel in the enlarged image (images shown in FIGS. 3A to 3F) is 0.15 ⁇ m or more and 2.3 ⁇ m or less.
  • the area ratio of the reinforcing fibers F in each of the six divided regions x1 is obtained.
  • white portions indicate the reinforcing fibers F
  • black portions indicate the resin material R.
  • the standard deviation of the area ratio of the reinforcing fibers F occupying each of the six divided regions x1 is as shown in Table 1 and FIG. 14%.
  • the predetermined area A in the cross section is equally divided into 54 divided areas x2 (387 ⁇ m ⁇ 290 ⁇ m), and the image of each divided area x2 is enlarged 300 times (SEM, Backscattered electron image, accelerating voltage 21 kV), the length of one pixel in the enlarged image is 0.15 ⁇ m or more and 2.3 ⁇ m or less.
  • SEM Backscattered electron image, accelerating voltage 21 kV
  • the standard deviation of the area ratio of the reinforcing fibers F occupying each of the 54 divided regions x2 is 1, as shown in Table 1 and FIG. .90%.
  • the fractal dimension of the resin material R is 1.98 or more, which is obtained by the box counting method at a resolution where the length of one pixel is 0.15 ⁇ m or more and 2.3 ⁇ m or less based on the cross-sectional image orthogonal to the one direction X. 2.01 or less.
  • the fractal dimension of the resin material R is 1.98 or more and 2.01 or less when the plurality of divided regions x1 and x2 are enlarged at least 100 times or more and 300 times or less.
  • the fractal dimension of the resin material R is defined as the number of pixels in which the resin material R is positioned in an image of the same region included in a cross section perpendicular to the one direction X, with the length of one pixel being in the range of 0.15 ⁇ m or more and 2.3 ⁇ m or less.
  • Approximate straight line calculated by the method of least squares based on a double logarithmic graph (horizontal axis: pixel size, vertical axis: number of pixels where resin material R is located) plotted for each of a plurality of different pixel sizes (that is, for each resolution) becomes the slope of
  • the number of pixels in which the resin material R is positioned decreases, and as the pixel size decreases, the number of pixels in which the resin material R is positioned increases.
  • the patterns expressed by the reinforcing fibers F and the resin material R in the cross-section view have less variation in the cross-section, that is, become uniform, even if the pixel size fluctuates greatly, the resin material R The variation in the number of pixels where is located is kept small.
  • the standard deviation of the fractal dimension of the resin material R obtained based on each of the plurality of images of the plurality of divided regions x1 and x2 each including the plurality of reinforcing fibers F is 0.3% or less. It's becoming This standard deviation is 0.3% or less when the divided regions x1 and x2 are enlarged at least 100 times or more and 300 times or less.
  • the predetermined area A in the cross section is equally divided into six divided areas x1, the image of each divided area x1 is magnified 100 times, and in the enlarged image
  • the number of pixels in which the resin material R is located is obtained based on a double-logarithmic graph plotted for each of three different pixel sizes, where the length of one pixel is 0.57 ⁇ m, 1.13 ⁇ m, and 2.27 ⁇ m.
  • the fractal dimensions of the six divided regions x1 are 1.998 or more and 2.003 or less.
  • the average value of the fractal dimension in the six divided regions x1 is 1.9999, and the standard deviation is 0.18%.
  • the predetermined region A in the cross section is equally divided into 54 divided regions x2, and the image of each divided region x2 is magnified 300 times (SEM, reflection electron image, acceleration voltage 21 kV), the number of pixels where the resin material R is located in the magnified image for each of three different pixel sizes, where the length of one pixel is 0.19 ⁇ m, 0.38 ⁇ m, and 0.76 ⁇ m. is obtained based on the log-log graph plotted on In this case, as shown in Table 1 and FIG. 7, the average value of the fractal dimensions in the 54 divided regions x2 is 1.9927 and the standard deviation is 0.15%.
  • the FRP leaf spring 1 can be obtained as follows. First, while the reinforcing fibers F wound around the bobbin are let out, the reinforcing fibers F are submerged in a pool in which the molten resin material R is stored. After that, the reinforcing fibers F coated with the molten resin material R are pulled out from the pool and wound around the outer peripheral surface of the rotating body over a plurality of turns to form a plate-shaped intermediate. After that, the FRP leaf spring 1 can be obtained by heating the molded intermediate while pressurizing it in the plate thickness direction (pressing step).
  • the reinforcing fibers F flow through the resin material R in a molten state, so that the plurality of reinforcing fibers F become uniform within the cross section orthogonal to the one direction X so that the variation is reduced. is provided as follows.
  • a plurality of divided regions x2 each including a plurality of reinforcing fibers F are magnified at a high magnification of 300 times.
  • the standard deviation of the area ratio of the reinforcing fibers F occupying each divided region x2 is suppressed to a low numerical value of 3% or less.
  • a plurality of reinforcing fibers F can be provided in a cross section orthogonal to the one direction X so as to reduce variations, that is, evenly. Therefore, when a bending stress is repeatedly applied to the FRP leaf spring 1 in the plate thickness direction, it is possible to make it difficult for cracks to occur, and the fatigue limit of the FRP leaf spring 1 can be improved.
  • the fractal dimension of the resin material R can be kept low at 2.01 or less.
  • the pattern expressed by the reinforcing fiber F and the resin material R in the cross-sectional view can be made uniform within the cross-section, that is, it can be made uniform, and repeated bending stress is applied in the plate thickness direction. It is possible to reliably make it difficult to generate the starting point where cracks are generated when it is crushed.
  • the fractal dimension of the resin material R is 1.98 or more when the cross section orthogonal to the one direction X is enlarged at a low magnification of 100 times.
  • the fractal dimension of the resin material R becomes smaller than 1.98, the resin material R is visually recognized as a region containing no reinforcing fibers F, ie, a clear and wide region in the cross section.
  • FRP leaf spring 1 shown in FIGS. 1, 2, and 3A to 3F was adopted, and as comparative examples 1 to 3, FRP leaf springs 101 to 103 were prepared.
  • the FRP leaf spring 101 of Comparative Example 1 was formed by a manufacturing method that does not include the pressing process, in contrast to the manufacturing method of the FRP leaf spring 1 of Example. Images of the FRP leaf spring 101 of Comparative Example 1 are shown in FIGS. 4A to 4F. 4A to 4F correspond to FIGS. 3A to 3F showing images of the FRP leaf spring 1 of the embodiment.
  • a bundle in which a plurality of reinforcing fibers F are bundled includes a portion surrounded by layers of the resin material R, as shown in FIGS. 4A to 4F.
  • the FRP leaf spring 102 of Comparative Example 2 is set in a cavity of a molding die in a state in which a plurality of sheets in which reinforcing fibers F are woven are laminated, and in such a state, a molten resin material R is placed in the cavity. Formed by pouring and curing. Images of the FRP leaf spring 102 of Comparative Example 2 are shown in FIGS. 5A to 5F. 5A to 5F correspond to FIGS. 3A to 3F showing images of the FRP leaf spring 1 of the embodiment.
  • the FRP leaf spring 103 of Comparative Example 3 was formed by laminating prepreg sheets in which reinforcing fibers F were embedded in an uncured resin material R, and then pressing and heating the prepreg sheets.
  • FIGS. 6A to 6F Images of the FRP leaf spring 103 of Comparative Example 3 are shown in FIGS. 6A to 6F.
  • 6A to 6F correspond to FIGS. 3A to 3F showing images of the FRP leaf spring 1 of the embodiment.
  • fiber layers composed of a plurality of reinforcing fibers F are laminated via a layered resin material R. includes the part that is
  • Comparative Examples 1 to 3 the standard deviation of the area ratio of the reinforcing fibers F occupying each divided region x2 was higher than 3% when each of the plurality of divided regions x2 was magnified 300 times in the cross-sectional view.
  • the fractal dimension of the resin material R obtained based on the image obtained by enlarging the cross section perpendicular to the one direction X by 100 times is greater than 2.01.
  • the fractal dimension of the resin material R obtained based on the image obtained by enlarging the cross section perpendicular to the one direction X by 100 times is smaller than 1.98.
  • the life cycle number of the example was about 16 times longer than that of Comparative Example 1, about 100 times longer than that of Comparative Example 2, and about 22 times longer than that of Comparative Example 3. was done.
  • Comparative Example 1, and Comparative Example 3 for example, tensile breakage or the like occurred in the reinforcing fibers F when the life cycle number was reached.
  • Comparative Example 2 in which the fractal dimension of the resin material R is less than 1.98, which is obtained based on the image obtained by enlarging the cross section perpendicular to the one direction X by 100 times, cracks occurred in the resin material R (interlaminar shear fracture).
  • One aspect of the present invention includes a resin material and a plurality of reinforcing fibers embedded in the resin material and extending in one direction, and the diameter of each reinforcing fiber of the plurality of reinforcing fibers is 1 ⁇ m or more and 100 ⁇ m or less.
  • the plurality of reinforcing fibers are contained in the resin material at 50% by volume or more and 70% by volume or less, and in a cross-sectional view perpendicular to the one direction, a plurality of divided regions each including a part of the plurality of reinforcing fibers is magnified 300 times, the standard deviation of the area ratio of the reinforcing fibers in each divided region of the plurality of divided regions is 3% or less.
  • the resin is obtained by a box counting method with a resolution such that the length of one pixel is 0.15 ⁇ m or more and 2.3 ⁇ m or less based on an image obtained by enlarging a cross section orthogonal to the one direction by 100 times.
  • the fractal dimension of the material may be between 1.98 and 2.01.
  • the resin material is obtained based on each of a plurality of images obtained by enlarging the plurality of divided regions each containing the part of the plurality of reinforcing fibers by 100 times.
  • a standard deviation of the fractal dimension may be 0.3% or less.
  • the fractal dimension of the resin material R obtained by the box counting method with a resolution of 0.15 ⁇ m or more and 2.3 ⁇ m or less in length of one pixel based on a 100-fold enlarged image of a cross section orthogonal to one direction X is calculated as follows: , may be less than 1.98 or greater than 2.01. Further, in the cross-sectional view, the standard deviation of the fractal dimension of the resin material R obtained based on an image obtained by enlarging each of the plurality of divided regions x1 by 100 times may be larger than 0.3%.
  • the fatigue limit can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Textile Engineering (AREA)
  • Springs (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

The present invention pertains to an FRP plate spring (1) provided with a resin material (R) and a plurality of reinforcing fibers (F) that are embedded in the resin material (R) and that extend in one direction (X). The diameter of each of the plurality of reinforcing fibers (F) is 1-100 μm. The amount of the plurality of reinforcing fibers (F) contained in the resin material (R) is 50-70 vol%. In a cross-sectional view orthogonal to the one direction (X), when a plurality of divided regions (x1, x2) including a portion of the plurality of reinforcing fibers (F) is magnified 300 times, the standard deviation of the area proportion of the reinforcing fibers (F) included in each of the divided regions (x1, x2) is 3% or less.

Description

FRP板ばねFRP leaf spring
 本発明は、FRP板ばねに関するものである。本願は、2022年2月14日に日本に出願された日本国特願2022-020431号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to FRP leaf springs. This application claims priority based on Japanese Patent Application No. 2022-020431 filed in Japan on February 14, 2022, the contents of which are incorporated herein.
 従来から、例えば下記特許文献1に示されるようなFRP板ばねが知られている。このようなFRP板ばねでは、樹脂材料中に一方向に延びる複数の強化繊維が埋設されている。 Conventionally, an FRP leaf spring as shown in Patent Document 1 below, for example, has been known. In such an FRP leaf spring, a plurality of reinforcing fibers extending in one direction are embedded in a resin material.
日本国特公昭59-45858号公報Japanese Patent Publication No. 59-45858
 しかしながら、前記従来のFRP板ばねでは、疲労限度を向上させることが困難であるという問題がある。そこで、本願の発明者等は、当該問題を解決するための解決策を鋭意検討した結果、強化繊維の延びる一方向に直交する断面内に、複数の強化繊維を、ばらつきが少なくなるように、すなわち、均等になるように設けることが、疲労限度の向上に有効であることを見出した。 However, the conventional FRP leaf spring has a problem that it is difficult to improve the fatigue limit. Therefore, the inventors of the present application have made intensive studies on solutions to solve the problem, and found that a plurality of reinforcing fibers are arranged in a cross section orthogonal to one direction in which the reinforcing fibers extend, so as to reduce variations. In other words, the inventors have found that uniform provision is effective in improving the fatigue limit.
 本発明は、このような事情を考慮してなされたもので、疲労限度を向上させることができるFRP板ばねを提供することを目的とする。 The present invention has been made in consideration of such circumstances, and an object of the present invention is to provide an FRP leaf spring capable of improving the fatigue limit.
 本発明の第1態様は、樹脂材料と、前記樹脂材料中に埋没され、一方向に延びる複数の強化繊維とを備え、前記複数の強化繊維の各強化繊維の直径は、1μm以上100μm以下とされ、前記複数の強化繊維は、前記樹脂材料中に50体積%以上70体積%以下含有され、前記一方向に直交する断面視において、それぞれが前記複数の強化繊維の一部を含む複数の分割領域を300倍拡大した状態で、複数の分割領域の各分割領域に占める強化繊維の面積割合の標準偏差が、3%以下となっている、FRP板ばねである。 A first aspect of the present invention comprises a resin material and a plurality of reinforcing fibers embedded in the resin material and extending in one direction, wherein each reinforcing fiber of the plurality of reinforcing fibers has a diameter of 1 μm or more and 100 μm or less. The plurality of reinforcing fibers are contained in the resin material at 50% by volume or more and 70% by volume or less, and in a cross-sectional view orthogonal to the one direction, each of the plurality of divided fibers includes a part of the plurality of reinforcing fibers The FRP leaf spring has a standard deviation of 3% or less of the area ratio of the reinforcing fibers in each of the plurality of divided regions when the region is magnified 300 times.
 この場合、前記断面視において、それぞれが複数の強化繊維を含む複数の分割領域を300倍という高倍率で拡大した状態でも、各分割領域に占める強化繊維の面積割合の標準偏差を3%以下の低い数値に抑えられている。これにより、前記一方向に直交する断面内に、複数の強化繊維を、ばらつきが少なくなるように、すなわち、均等になるように設けることができる。したがって、FRP板ばねに板厚方向に繰り返し曲げ応力が加えられたときに亀裂が発生する起点を生じにくくすることが可能になり、FRP板ばねの疲労限度を向上させることができる。 In this case, in the cross-sectional view, even when a plurality of divided regions each containing a plurality of reinforcing fibers are enlarged at a high magnification of 300 times, the standard deviation of the area ratio of the reinforcing fibers in each divided region is 3% or less. kept to a low value. As a result, a plurality of reinforcing fibers can be provided in a cross section perpendicular to the one direction with less variation, that is, evenly. Therefore, when a bending stress is repeatedly applied to the FRP leaf spring in the plate thickness direction, it becomes possible to make it difficult for cracks to occur, and the fatigue limit of the FRP leaf spring can be improved.
 本発明の第2態様は、前記一方向に直交する断面を100倍拡大した画像に基づいて、1ピクセルの長さが0.15μm以上2.3μm以下となる解像度でボックスカウント法により得られる、前記樹脂材料のフラクタル次元が、1.98以上2.01以下となっている、前記第1態様のFRP板ばねである。 A second aspect of the present invention is obtained by a box counting method at a resolution such that the length of 1 pixel is 0.15 μm or more and 2.3 μm or less based on an image obtained by enlarging the cross section orthogonal to the one direction by 100 times. The FRP leaf spring according to the first aspect, wherein the resin material has a fractal dimension of 1.98 or more and 2.01 or less.
 この場合、前記一方向に直交する断面を100倍という低倍率で拡大した状態でも、樹脂材料のフラクタル次元が2.01以下の低い数値に抑えられている。これにより、前記断面視において強化繊維および樹脂材料により発現される模様を、この断面内において、ばらつきが少なくなるようにする、すなわち均等にすることが可能になる。したがって、FRP板ばねに板厚方向に繰り返し曲げ応力が加えられたときに亀裂が発生する起点を確実に生じにくくすることができる。
 また、前記一方向に直交する断面を100倍という低倍率で拡大した状態で、樹脂材料のフラクタル次元が1.98以上となっている。これにより、FRP板ばねに層間せん断破壊が生ずるのを抑制することが可能になり、FRP板ばねの疲労限度を確実に向上させることができる。すなわち、樹脂材料のフラクタル次元が1.98より小さくなると、前記断面視で、樹脂材料が、強化繊維を全く含有していない明瞭で広い領域となって視認される。
In this case, the fractal dimension of the resin material is suppressed to a low value of 2.01 or less even when the cross section perpendicular to the one direction is enlarged at a low magnification of 100 times. This makes it possible to reduce variations in the pattern expressed by the reinforcing fibers and the resin material in the cross section, that is, to make it uniform. Therefore, when a bending stress is repeatedly applied to the FRP leaf spring in the plate thickness direction, it is possible to reliably prevent the origin of cracks from occurring.
In addition, the fractal dimension of the resin material is 1.98 or more when the cross section perpendicular to the one direction is enlarged at a low magnification of 100 times. As a result, it is possible to suppress the occurrence of interlaminar shear fracture in the FRP leaf spring, and the fatigue limit of the FRP leaf spring can be reliably improved. That is, when the fractal dimension of the resin material is smaller than 1.98, the resin material is visually recognized as a clear and wide region containing no reinforcing fibers in the cross section.
 本発明の第3態様は、前記断面視において、それぞれが前記複数の強化繊維の前記一部を含む前記複数の分割領域を100倍拡大した複数の画像の各画像に基づいて得られる、樹脂材料のフラクタル次元の標準偏差が、0.3%以下となっている、前記第2態様のFRP板ばねである。 A third aspect of the present invention is a resin material obtained based on each of a plurality of images obtained by enlarging the plurality of divided regions each containing the part of the plurality of reinforcing fibers in the cross-sectional view by 100 times. The FRP leaf spring according to the second aspect, wherein the standard deviation of the fractal dimension of is 0.3% or less.
 この場合、前記断面視において、それぞれが前記複数の強化繊維の前記一部を含む前記複数の分割領域を100倍という低倍率で拡大した状態でも、複数の分割領域の各分割領域における樹脂材料のフラクタル次元の標準偏差が0.3%以下の低い数値に抑えられている。これにより、前記断面視において強化繊維および樹脂材料により発現される模様を、この断面内において、ばらつきが少なくなるようにする、すなわち均等にすることを確実に実現することができる。 In this case, in the cross-sectional view, even in a state in which the plurality of divided regions each including the part of the plurality of reinforcing fibers is enlarged at a low magnification of 100 times, the resin material in each divided region of the plurality of divided regions The standard deviation of the fractal dimension is suppressed to a low numerical value of 0.3% or less. As a result, it is possible to reliably realize that the patterns expressed by the reinforcing fibers and the resin material in the cross section are made uniform within the cross section.
 本発明によれば、疲労限度を向上させることができる。 According to the present invention, the fatigue limit can be improved.
一実施形態のFRP板ばねの断面写真である。1 is a cross-sectional photograph of an FRP leaf spring of one embodiment; 一実施形態のFRP板ばねの断面写真である。1 is a cross-sectional photograph of an FRP leaf spring of one embodiment; 図1において複数の分割領域を示すSEM写真である。FIG. 2 is a SEM photograph showing a plurality of divided regions in FIG. 1; FIG. 図1において複数の分割領域を示すSEM写真である。FIG. 2 is a SEM photograph showing a plurality of divided regions in FIG. 1; FIG. 図1において複数の分割領域を示すSEM写真である。FIG. 2 is a SEM photograph showing a plurality of divided regions in FIG. 1; FIG. 図1において複数の分割領域を示すSEM写真である。FIG. 2 is a SEM photograph showing a plurality of divided regions in FIG. 1; FIG. 図1において複数の分割領域を示すSEM写真である。FIG. 2 is a SEM photograph showing a plurality of divided regions in FIG. 1; FIG. 図1において複数の分割領域を示すSEM写真である。FIG. 2 is a SEM photograph showing a plurality of divided regions in FIG. 1; FIG. 比較例1における複数の分割領域を示すSEM写真である。4 is a SEM photograph showing a plurality of divided regions in Comparative Example 1; 比較例1における複数の分割領域を示すSEM写真である。4 is a SEM photograph showing a plurality of divided regions in Comparative Example 1; 比較例1における複数の分割領域を示すSEM写真である。4 is a SEM photograph showing a plurality of divided regions in Comparative Example 1; 比較例1における複数の分割領域を示すSEM写真である。4 is a SEM photograph showing a plurality of divided regions in Comparative Example 1; 比較例1における複数の分割領域を示すSEM写真である。4 is a SEM photograph showing a plurality of divided regions in Comparative Example 1; 比較例1における複数の分割領域を示すSEM写真である。4 is a SEM photograph showing a plurality of divided regions in Comparative Example 1; 比較例2における複数の分割領域を示すSEM写真である。10 is an SEM photograph showing a plurality of divided regions in Comparative Example 2; 比較例2における複数の分割領域を示すSEM写真である。10 is an SEM photograph showing a plurality of divided regions in Comparative Example 2; 比較例2における複数の分割領域を示すSEM写真である。10 is an SEM photograph showing a plurality of divided regions in Comparative Example 2; 比較例2における複数の分割領域を示すSEM写真である。10 is an SEM photograph showing a plurality of divided regions in Comparative Example 2; 比較例2における複数の分割領域を示すSEM写真である。10 is an SEM photograph showing a plurality of divided regions in Comparative Example 2; 比較例2における複数の分割領域を示すSEM写真である。10 is an SEM photograph showing a plurality of divided regions in Comparative Example 2; 比較例3における複数の分割領域を示すSEM写真である。11 is an SEM photograph showing a plurality of divided regions in Comparative Example 3; 比較例3における複数の分割領域を示すSEM写真である。11 is an SEM photograph showing a plurality of divided regions in Comparative Example 3; 比較例3における複数の分割領域を示すSEM写真である。11 is an SEM photograph showing a plurality of divided regions in Comparative Example 3; 比較例3における複数の分割領域を示すSEM写真である。11 is an SEM photograph showing a plurality of divided regions in Comparative Example 3; 比較例3における複数の分割領域を示すSEM写真である。11 is an SEM photograph showing a plurality of divided regions in Comparative Example 3; 比較例3における複数の分割領域を示すSEM写真である。11 is an SEM photograph showing a plurality of divided regions in Comparative Example 3; 検証試験の結果を示す図である。It is a figure which shows the result of a verification test.
 以下、FRP板ばねの一実施形態を、図1を参照しながら説明する。
 FRP板ばね1は、例えば車両の懸架装置等に用いられる。FRP板ばね1は、表裏面が上下方向Zを向き、かつ上下方向Zから見て一方向Xに長い長方形状を呈する、板状に形成されている。FRP板ばね1は、図3A~図3Fに示されるように、樹脂材料R中に一方向Xに延びる複数の強化繊維Fが埋設されて構成されている。強化繊維Fの直径は、1μm以上100μm以下とされ、好ましくは10μm以上30μm以下とされる。強化繊維Fは、樹脂材料R中に50体積%以上70体積%以下含有されている。
An embodiment of the FRP leaf spring will now be described with reference to FIG.
The FRP leaf spring 1 is used, for example, in a suspension system of a vehicle. The FRP leaf spring 1 is formed in a plate shape having front and back surfaces facing in the vertical direction Z and having a rectangular shape elongated in one direction X when viewed from the vertical direction Z. As shown in FIG. The FRP leaf spring 1 is constructed by embedding a plurality of reinforcing fibers F extending in one direction X in a resin material R, as shown in FIGS. 3A to 3F. The diameter of the reinforcing fiber F is 1 μm or more and 100 μm or less, preferably 10 μm or more and 30 μm or less. The reinforcing fibers F are contained in the resin material R in an amount of 50% by volume or more and 70% by volume or less.
 図1および図2に示される一方向Xに直交する断面視において、それぞれが複数の強化繊維Fを含む複数の分割領域x1、x2のそれぞれに占める強化繊維Fの面積割合の標準偏差が、3%以下となっている。
 強化繊維Fの面積割合は、前記断面視における所定領域Aを、それぞれが複数の強化繊維Fを含む大きさ(例えば250μm×250μm以上)の複数の分割領域x1、x2に等分割し、各分割領域x1、x2の画像について、強化繊維Fが位置するピクセル数を総ピクセル数で除すことで得られる。複数の分割領域x1、x2のそれぞれに占める強化繊維Fの面積割合の標準偏差は、複数の分割領域x1、x2を少なくとも100倍以上300倍以下拡大した状態では、3%以下となっている。
In a cross-sectional view orthogonal to one direction X shown in FIGS. % or less.
The area ratio of the reinforcing fibers F is obtained by equally dividing the predetermined region A in the cross-sectional view into a plurality of divided regions x1 and x2 each having a size (for example, 250 μm × 250 μm or more) containing a plurality of reinforcing fibers F, and dividing each divided region It is obtained by dividing the number of pixels where the reinforcing fibers F are located in the images of the regions x1 and x2 by the total number of pixels. The standard deviation of the area ratio of the reinforcing fibers F in each of the plurality of divided regions x1 and x2 is 3% or less when the plurality of divided regions x1 and x2 are enlarged at least 100 times or more and 300 times or less.
 例えば図1に示されるように、前記断面視における所定領域Aを6個の分割領域x1(1160μm×870μm)に等分割し、各分割領域x1の画像を100倍に拡大し(SEM、反射電子像、加速電圧21kV)、拡大された画像(図3A~図3Fに示される画像)における1ピクセルの長さを0.15μm以上2.3μm以下とする。これにより、6つの分割領域x1のそれぞれに占める強化繊維Fの面積割合が、得られる。なお、図3A~図3Fにおいて、白い部分は強化繊維Fを示し、黒い部分は樹脂材料Rを示している。この際、例えば1ピクセルの長さを1.13μmとすると、6つの分割領域x1それぞれに占める強化繊維Fの面積割合の標準偏差は、表1および図7にも記載している通り、1.14%となっている。 For example, as shown in FIG. 1, the predetermined area A in the cross section is equally divided into six divided areas x1 (1160 μm×870 μm), and the image of each divided area x1 is magnified 100 times (SEM, backscattered electron image, acceleration voltage 21 kV), and the length of one pixel in the enlarged image (images shown in FIGS. 3A to 3F) is 0.15 μm or more and 2.3 μm or less. As a result, the area ratio of the reinforcing fibers F in each of the six divided regions x1 is obtained. 3A to 3F, white portions indicate the reinforcing fibers F, and black portions indicate the resin material R. As shown in FIG. At this time, for example, if the length of one pixel is 1.13 μm, the standard deviation of the area ratio of the reinforcing fibers F occupying each of the six divided regions x1 is as shown in Table 1 and FIG. 14%.
 また、例えば図2に示されるように、前記断面視における所定領域Aを54個の分割領域x2(387μm×290μm)に等分割し、各分割領域x2の画像を300倍に拡大し(SEM、反射電子像、加速電圧21kV)、拡大された画像における1ピクセルの長さを0.15μm以上2.3μm以下とする。これにより、54個の分割領域x2のそれぞれに占める強化繊維Fの面積割合が得られる。この際、例えば1ピクセルの長さを0.38μmとすると、54個の分割領域x2それぞれに占める強化繊維Fの面積割合の標準偏差は、表1および図7にも記載している通り、1.90%となっている。 Further, for example, as shown in FIG. 2, the predetermined area A in the cross section is equally divided into 54 divided areas x2 (387 μm×290 μm), and the image of each divided area x2 is enlarged 300 times (SEM, Backscattered electron image, accelerating voltage 21 kV), the length of one pixel in the enlarged image is 0.15 μm or more and 2.3 μm or less. As a result, the area ratio of the reinforcing fibers F to each of the 54 divided regions x2 is obtained. At this time, for example, if the length of one pixel is 0.38 μm, the standard deviation of the area ratio of the reinforcing fibers F occupying each of the 54 divided regions x2 is 1, as shown in Table 1 and FIG. .90%.
 一方向Xに直交する断面視の画像に基づいて、1ピクセルの長さが0.15μm以上2.3μm以下となる解像度でボックスカウント法により得られる、樹脂材料Rのフラクタル次元が1.98以上2.01以下となっている。樹脂材料Rのフラクタル次元は、複数の分割領域x1、x2を少なくとも100倍以上300倍以下拡大した状態で、1.98以上2.01以下となっている。 The fractal dimension of the resin material R is 1.98 or more, which is obtained by the box counting method at a resolution where the length of one pixel is 0.15 μm or more and 2.3 μm or less based on the cross-sectional image orthogonal to the one direction X. 2.01 or less. The fractal dimension of the resin material R is 1.98 or more and 2.01 or less when the plurality of divided regions x1 and x2 are enlarged at least 100 times or more and 300 times or less.
 樹脂材料Rのフラクタル次元は、一方向Xに直交する断面に含まれる同一領域の画像において樹脂材料Rが位置するピクセル数を、1ピクセルの長さが0.15μm以上2.3μm以下の範囲で互いに異なる複数のピクセルサイズごと(すなわち、解像度ごと)にプロットした両対数グラフ(横軸:ピクセルサイズ、縦軸:樹脂材料Rが位置するピクセル数)に基づいて、最小二乗法により算出した近似直線の傾きとなる。 The fractal dimension of the resin material R is defined as the number of pixels in which the resin material R is positioned in an image of the same region included in a cross section perpendicular to the one direction X, with the length of one pixel being in the range of 0.15 μm or more and 2.3 μm or less. Approximate straight line calculated by the method of least squares based on a double logarithmic graph (horizontal axis: pixel size, vertical axis: number of pixels where resin material R is located) plotted for each of a plurality of different pixel sizes (that is, for each resolution) becomes the slope of
 なお、ピクセルサイズが大きくなると、樹脂材料Rが位置するピクセル数が少なくなり、ピクセルサイズが小さくなると、樹脂材料Rが位置するピクセル数が多くなる。また、前記断面視において強化繊維Fおよび樹脂材料Rにより発現される模様が、この断面内において、ばらつきが少なくなるようになる、すなわち均等になると、ピクセルサイズが大きく変動しても、樹脂材料Rが位置するピクセル数の変動は小さく抑えられる。 Note that as the pixel size increases, the number of pixels in which the resin material R is positioned decreases, and as the pixel size decreases, the number of pixels in which the resin material R is positioned increases. In addition, when the patterns expressed by the reinforcing fibers F and the resin material R in the cross-section view have less variation in the cross-section, that is, become uniform, even if the pixel size fluctuates greatly, the resin material R The variation in the number of pixels where is located is kept small.
 前記断面視において、それぞれが複数の強化繊維Fを含む複数の分割領域x1、x2の複数の画像の各画像に基づいて得られる、樹脂材料Rのフラクタル次元の標準偏差が0.3%以下となっている。この標準偏差は、分割領域x1、x2を少なくとも100倍以上300倍以下拡大した状態では、0.3%以下となっている。 In the cross-sectional view, the standard deviation of the fractal dimension of the resin material R obtained based on each of the plurality of images of the plurality of divided regions x1 and x2 each including the plurality of reinforcing fibers F is 0.3% or less. It's becoming This standard deviation is 0.3% or less when the divided regions x1 and x2 are enlarged at least 100 times or more and 300 times or less.
 フラクタル次元は、例えば図1に示されるように、前記断面視における所定領域Aを6個の分割領域x1に等分割し、各分割領域x1の画像を100倍に拡大し、拡大された画像において樹脂材料Rが位置するピクセル数を、1ピクセルの長さが0.57μm、1.13μm、および2.27μmとなる互いに異なる3つのピクセルサイズごとにプロットした両対数グラフに基づいて、得られる。この場合、6つの分割領域x1におけるフラクタル次元は、1.998以上2.003以下となっている。また、表1および図7にも記載している通り、6つの分割領域x1におけるフラクタル次元の平均値が1.9999、標準偏差が0.18%となっている。 For the fractal dimension, for example, as shown in FIG. 1, the predetermined area A in the cross section is equally divided into six divided areas x1, the image of each divided area x1 is magnified 100 times, and in the enlarged image The number of pixels in which the resin material R is located is obtained based on a double-logarithmic graph plotted for each of three different pixel sizes, where the length of one pixel is 0.57 μm, 1.13 μm, and 2.27 μm. In this case, the fractal dimensions of the six divided regions x1 are 1.998 or more and 2.003 or less. Also, as shown in Table 1 and FIG. 7, the average value of the fractal dimension in the six divided regions x1 is 1.9999, and the standard deviation is 0.18%.
 また、フラクタル次元は、例えば図2に示されるように、前記断面視における所定領域Aを54個の分割領域x2に等分割し、各分割領域x2の画像を300倍に拡大し(SEM、反射電子像、加速電圧21kV)、拡大された画像において樹脂材料Rが位置するピクセル数を、1ピクセルの長さが0.19μm、0.38μm、および0.76μmとなる互いに異なる3つのピクセルサイズごとにプロットした両対数グラフに基づいて、得られる。この場合、表1および図7にも記載している通り、54個の分割領域x2におけるフラクタル次元の平均値が1.9927、標準偏差が0.15%となっている。 For the fractal dimension, for example, as shown in FIG. 2, the predetermined region A in the cross section is equally divided into 54 divided regions x2, and the image of each divided region x2 is magnified 300 times (SEM, reflection electron image, acceleration voltage 21 kV), the number of pixels where the resin material R is located in the magnified image for each of three different pixel sizes, where the length of one pixel is 0.19 μm, 0.38 μm, and 0.76 μm. is obtained based on the log-log graph plotted on In this case, as shown in Table 1 and FIG. 7, the average value of the fractal dimensions in the 54 divided regions x2 is 1.9927 and the standard deviation is 0.15%.
 FRP板ばね1は、次のようにして得ることができる。最初に、ボビンに巻き付けられた強化繊維Fを繰り出しながら、溶融状態の樹脂材料Rが溜められたプール内に強化繊維Fを潜らせる。その後、溶融状態の樹脂材料Rでコーティングされた強化繊維Fを、プール内から引き出し、回転体の外周面に複数周にわたって巻き付けることで、板状の中間体を成形する。その後、成形された中間体を板厚方向に加圧(加圧工程)しながら加熱することで、FRP板ばね1を得ることができる。加圧工程時に、強化繊維Fが溶融状態の樹脂材料R中を流動することで、一方向Xに直交する断面内に、複数の強化繊維Fが、ばらつきが少なくなるように、すなわち均等になるように設けられる。 The FRP leaf spring 1 can be obtained as follows. First, while the reinforcing fibers F wound around the bobbin are let out, the reinforcing fibers F are submerged in a pool in which the molten resin material R is stored. After that, the reinforcing fibers F coated with the molten resin material R are pulled out from the pool and wound around the outer peripheral surface of the rotating body over a plurality of turns to form a plate-shaped intermediate. After that, the FRP leaf spring 1 can be obtained by heating the molded intermediate while pressurizing it in the plate thickness direction (pressing step). During the pressurizing step, the reinforcing fibers F flow through the resin material R in a molten state, so that the plurality of reinforcing fibers F become uniform within the cross section orthogonal to the one direction X so that the variation is reduced. is provided as follows.
 以上に説明したように、本実施形態によるFRP板ばね1によれば、一方向Xに直交する断面視において、それぞれが複数の強化繊維Fを含む複数の分割領域x2を、300倍と高倍率で拡大した状態でも、各分割領域x2に占める強化繊維Fの面積割合の標準偏差を3%以下の低い数値に抑えられている。すなわち、一方向Xに直交する断面内に、複数の強化繊維Fを、ばらつきが少なくなるように、すなわち均等になるように設けることができる。したがって、FRP板ばね1に板厚方向に繰り返し曲げ応力が加えられたときに亀裂が発生する起点を生じにくくすることが可能になり、FRP板ばね1の疲労限度を向上させることができる。 As described above, according to the FRP leaf spring 1 according to the present embodiment, in a cross-sectional view orthogonal to the one direction X, a plurality of divided regions x2 each including a plurality of reinforcing fibers F are magnified at a high magnification of 300 times. , the standard deviation of the area ratio of the reinforcing fibers F occupying each divided region x2 is suppressed to a low numerical value of 3% or less. In other words, a plurality of reinforcing fibers F can be provided in a cross section orthogonal to the one direction X so as to reduce variations, that is, evenly. Therefore, when a bending stress is repeatedly applied to the FRP leaf spring 1 in the plate thickness direction, it is possible to make it difficult for cracks to occur, and the fatigue limit of the FRP leaf spring 1 can be improved.
 また、一方向Xに直交する断面を100倍という低倍率で拡大した状態でも、樹脂材料Rのフラクタル次元が2.01以下と低く抑えられる。これにより。前記断面視において強化繊維Fおよび樹脂材料Rにより発現される模様を、この断面内において、ばらつきが少なくなるようにする、すなわち均等にすることが可能になり、板厚方向に繰り返し曲げ応力が加えられたときに亀裂が発生する起点を確実に生じにくくすることができる。 In addition, even when the cross section orthogonal to the one direction X is enlarged at a low magnification of 100 times, the fractal dimension of the resin material R can be kept low at 2.01 or less. By this. The pattern expressed by the reinforcing fiber F and the resin material R in the cross-sectional view can be made uniform within the cross-section, that is, it can be made uniform, and repeated bending stress is applied in the plate thickness direction. It is possible to reliably make it difficult to generate the starting point where cracks are generated when it is crushed.
 また、一方向Xに直交する断面を100倍という低倍率で拡大した状態で、樹脂材料Rのフラクタル次元が1.98以上となっている。これにより、層間せん断破壊が生じるのを抑制することが可能になり、FRP板ばね1の疲労限度を確実に向上させることができる。すなわち、樹脂材料Rのフラクタル次元が1.98より小さくなると、前記断面視で、樹脂材料Rが、強化繊維Fを全く含有していない領域、すなわち明瞭で広い領域となって視認される。 In addition, the fractal dimension of the resin material R is 1.98 or more when the cross section orthogonal to the one direction X is enlarged at a low magnification of 100 times. As a result, it is possible to suppress the occurrence of interlaminar shear fracture, and the fatigue limit of the FRP leaf spring 1 can be reliably improved. That is, when the fractal dimension of the resin material R becomes smaller than 1.98, the resin material R is visually recognized as a region containing no reinforcing fibers F, ie, a clear and wide region in the cross section.
 また、前記断面視において、それぞれが複数の強化繊維Fを含む複数の分割領域x1を100倍という低倍率で拡大した状態でも、複数の分割領域x1の各分割領域x1における樹脂材料Rのフラクタル次元の標準偏差が、0.3%以下の低い数値に抑えられている。これにより、前記断面視において強化繊維Fおよび樹脂材料Rにより発現される模様を、この断面内において、ばらつきが少なくなるようにする、すなわち均等にすることを確実に実現することができる。 In the cross-sectional view, even when the plurality of divided regions x1 each including a plurality of reinforcing fibers F is enlarged at a low magnification of 100 times, the fractal dimension of the resin material R in each divided region x1 of the plurality of divided regions x1 The standard deviation of is suppressed to a low numerical value of 0.3% or less. As a result, it is possible to ensure that the patterns expressed by the reinforcing fibers F and the resin material R in the cross section are made uniform within the cross section.
 次に、検証試験について説明する。実施例として、図1、図2、および図3A~図3Fで示したFRP板ばね1を採用し、比較例1~3として、FRP板ばね101~103を用意した。 Next, I will explain the verification test. As an example, the FRP leaf spring 1 shown in FIGS. 1, 2, and 3A to 3F was adopted, and as comparative examples 1 to 3, FRP leaf springs 101 to 103 were prepared.
 比較例1のFRP板ばね101は、実施例のFRP板ばね1の製造方法に対して、前記加圧工程を有しない製造方法で形成した。比較例1のFRP板ばね101に係る画像を図4A~図4Fに示す。図4A~図4Fは、実施例のFRP板ばね1に係る画像を示す図3A~図3Fと対応する。比較例1のFRP板ばね101では、図4A~図4Fに示されるように、複数の強化繊維Fが束ねられた束体が、樹脂材料Rの層で囲まれた部分を含んでいる。 The FRP leaf spring 101 of Comparative Example 1 was formed by a manufacturing method that does not include the pressing process, in contrast to the manufacturing method of the FRP leaf spring 1 of Example. Images of the FRP leaf spring 101 of Comparative Example 1 are shown in FIGS. 4A to 4F. 4A to 4F correspond to FIGS. 3A to 3F showing images of the FRP leaf spring 1 of the embodiment. In the FRP leaf spring 101 of Comparative Example 1, a bundle in which a plurality of reinforcing fibers F are bundled includes a portion surrounded by layers of the resin material R, as shown in FIGS. 4A to 4F.
 比較例2のFRP板ばね102は、強化繊維Fが編まれた複数のシートを積層した状態で成形金型のキャビティ内にセットし、そのような状態でキャビティ内に溶融状態の樹脂材料Rを流し込んで硬化させることで、形成した。比較例2のFRP板ばね102に係る画像を図5A~図5Fに示す。図5A~図5Fは、実施例のFRP板ばね1に係る画像を示す図3A~図3Fと対応する。
 比較例3のFRP板ばね103は、未硬化の樹脂材料Rに強化繊維Fが埋め込まれたプリプレグシートを積層した状態で、プリプレグシートを加圧および加熱することで、形成した。比較例3のFRP板ばね103に係る画像を図6A~図6Fに示す。図6A~図6Fは、実施例のFRP板ばね1に係る画像を示す図3A~図3Fと対応する。比較例2、3のFRP板ばね102、103は、図5A~図5Fおよび図6A~図6Fに示されるように、複数の強化繊維Fからなる繊維層が層状の樹脂材料Rを介して積層されている部分を含んでいる。
The FRP leaf spring 102 of Comparative Example 2 is set in a cavity of a molding die in a state in which a plurality of sheets in which reinforcing fibers F are woven are laminated, and in such a state, a molten resin material R is placed in the cavity. Formed by pouring and curing. Images of the FRP leaf spring 102 of Comparative Example 2 are shown in FIGS. 5A to 5F. 5A to 5F correspond to FIGS. 3A to 3F showing images of the FRP leaf spring 1 of the embodiment.
The FRP leaf spring 103 of Comparative Example 3 was formed by laminating prepreg sheets in which reinforcing fibers F were embedded in an uncured resin material R, and then pressing and heating the prepreg sheets. Images of the FRP leaf spring 103 of Comparative Example 3 are shown in FIGS. 6A to 6F. 6A to 6F correspond to FIGS. 3A to 3F showing images of the FRP leaf spring 1 of the embodiment. In the FRP leaf springs 102 and 103 of Comparative Examples 2 and 3, as shown in FIGS. 5A to 5F and FIGS. 6A to 6F, fiber layers composed of a plurality of reinforcing fibers F are laminated via a layered resin material R. includes the part that is
 比較例1~3のそれぞれにおいて、実施例と同様に、複数の分割領域x1、x2のそれぞれに占める強化繊維Fの面積割合の標準偏差と、複数の分割領域x1、x2のそれぞれの画像に基づいて得られる、樹脂材料Rのフラクタル次元の平均値およびフラクタル次元の標準偏差と、を求めた。その結果を表1および図7に示す。 In each of Comparative Examples 1 to 3, similarly to Example, based on the standard deviation of the area ratio of the reinforcing fibers F in each of the plurality of divided regions x1 and x2 and the images of each of the plurality of divided regions x1 and x2 The average value of the fractal dimension and the standard deviation of the fractal dimension of the resin material R obtained by The results are shown in Table 1 and FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 比較例1~3では、前記断面視において、複数の分割領域x2のそれぞれを300倍拡大した状態で、各分割領域x2に占める強化繊維Fの面積割合の標準偏差が、3%より高くなっている。比較例1、3では、一方向Xに直交する断面を100倍拡大した画像に基づいて得られる、樹脂材料Rのフラクタル次元が、2.01より大きくなっている。比較例2では、一方向Xに直交する断面を100倍拡大した画像に基づいて得られる、樹脂材料Rのフラクタル次元が、1.98より小さくなっている。 In Comparative Examples 1 to 3, the standard deviation of the area ratio of the reinforcing fibers F occupying each divided region x2 was higher than 3% when each of the plurality of divided regions x2 was magnified 300 times in the cross-sectional view. there is In Comparative Examples 1 and 3, the fractal dimension of the resin material R obtained based on the image obtained by enlarging the cross section perpendicular to the one direction X by 100 times is greater than 2.01. In Comparative Example 2, the fractal dimension of the resin material R obtained based on the image obtained by enlarging the cross section perpendicular to the one direction X by 100 times is smaller than 1.98.
 次に、実施例および比較例1~3(厚さ2mm、幅15mm、長さ(一方向Xの長さ)60mm)について、3点曲げ疲労試験(支点間距離(一方向Xの距離)45mm、圧子半径7.5mm、支点半径5.0mm、周波数6Hz、荷重制御)を行った。 Next, for Examples and Comparative Examples 1 to 3 (thickness 2 mm, width 15 mm, length (length in one direction X) 60 mm), three-point bending fatigue test (distance between fulcrums (distance in one direction X) 45 mm , indenter radius 7.5 mm, fulcrum radius 5.0 mm, frequency 6 Hz, load control).
 その結果、実施例の寿命サイクル数が、比較例1と比べて約16倍長くなり、比較例2と比べて約100倍長くなり、比較例3と比べて約22倍長くなることが、確認された。なお、寿命サイクル数に達すると、実施例、比較例1、および比較例3では、強化繊維Fに例えば引張破断等が生じた。一方向Xに直交する断面を100倍拡大した画像に基づいて得られる、樹脂材料Rのフラクタル次元が1.98より小さい比較例2では、樹脂材料Rに亀裂が生じた(層間せん断破壊)。以上より、実施例のように、前記断面視において、それぞれが複数の強化繊維Fを含む複数の分割領域x2を300倍拡大した状態で、各分割領域x2に占める強化繊維Fの面積割合の標準偏差が3%以下となっていれば、FRP板ばねの疲労限度を向上させることができることが、確認された。 As a result, it was confirmed that the life cycle number of the example was about 16 times longer than that of Comparative Example 1, about 100 times longer than that of Comparative Example 2, and about 22 times longer than that of Comparative Example 3. was done. In addition, in Example, Comparative Example 1, and Comparative Example 3, for example, tensile breakage or the like occurred in the reinforcing fibers F when the life cycle number was reached. In Comparative Example 2, in which the fractal dimension of the resin material R is less than 1.98, which is obtained based on the image obtained by enlarging the cross section perpendicular to the one direction X by 100 times, cracks occurred in the resin material R (interlaminar shear fracture). From the above, as in the embodiment, when the plurality of divided regions x2 each including a plurality of reinforcing fibers F are magnified 300 times in the cross-sectional view, the standard of the area ratio of the reinforcing fibers F occupying each divided region x2 It was confirmed that the fatigue limit of the FRP leaf spring can be improved if the deviation is 3% or less.
 本発明の一態様は、樹脂材料と、前記樹脂材料中に埋没され、一方向に延びる複数の強化繊維とを備え、前記複数の強化繊維の各強化繊維の直径は、1μm以上100μm以下とされ、前記複数の強化繊維は、前記樹脂材料中に50体積%以上70体積%以下含有され、前記一方向に直交する断面視において、それぞれが前記複数の強化繊維の一部を含む複数の分割領域を300倍拡大した状態で、前記複数の分割領域の各分割領域に占める強化繊維の面積割合の標準偏差が、3%以下となっている、FRP板ばねである。 One aspect of the present invention includes a resin material and a plurality of reinforcing fibers embedded in the resin material and extending in one direction, and the diameter of each reinforcing fiber of the plurality of reinforcing fibers is 1 μm or more and 100 μm or less. , the plurality of reinforcing fibers are contained in the resin material at 50% by volume or more and 70% by volume or less, and in a cross-sectional view perpendicular to the one direction, a plurality of divided regions each including a part of the plurality of reinforcing fibers is magnified 300 times, the standard deviation of the area ratio of the reinforcing fibers in each divided region of the plurality of divided regions is 3% or less.
 前記FRP板ばねにおいて、前記一方向に直交する断面を100倍拡大した画像に基づいて、1ピクセルの長さが0.15μm以上2.3μm以下となる解像度でボックスカウント法により得られる、前記樹脂材料のフラクタル次元が、1.98以上2.01以下となっていてもよい。 In the FRP leaf spring, the resin is obtained by a box counting method with a resolution such that the length of one pixel is 0.15 μm or more and 2.3 μm or less based on an image obtained by enlarging a cross section orthogonal to the one direction by 100 times. The fractal dimension of the material may be between 1.98 and 2.01.
 前記FRP板ばねにおいて、前記断面視において、それぞれが前記複数の強化繊維の前記一部を含む前記複数の分割領域を100倍拡大した複数の画像の各画像に基づいて得られる、前記樹脂材料の前記フラクタル次元の標準偏差が、0.3%以下となっていてもよい。 In the FRP leaf spring, in the cross-sectional view, the resin material is obtained based on each of a plurality of images obtained by enlarging the plurality of divided regions each containing the part of the plurality of reinforcing fibers by 100 times. A standard deviation of the fractal dimension may be 0.3% or less.
 なお、本発明の技術的範囲は前記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 It should be noted that the technical scope of the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention.
 例えば、一方向Xに直交する断面を100倍拡大した画像に基づいて、1ピクセルの長さが0.15μm以上2.3μm以下の解像度でボックスカウント法により得られる、樹脂材料Rのフラクタル次元を、1.98より小さくしてもよいし、2.01より大きくしてもよい。また、前記断面視において、複数の分割領域x1のそれぞれを100倍拡大した画像に基づいて得られる、樹脂材料Rのフラクタル次元の標準偏差を0.3%より大きくしてもよい。 For example, the fractal dimension of the resin material R obtained by the box counting method with a resolution of 0.15 μm or more and 2.3 μm or less in length of one pixel based on a 100-fold enlarged image of a cross section orthogonal to one direction X is calculated as follows: , may be less than 1.98 or greater than 2.01. Further, in the cross-sectional view, the standard deviation of the fractal dimension of the resin material R obtained based on an image obtained by enlarging each of the plurality of divided regions x1 by 100 times may be larger than 0.3%.
 その他、本発明の趣旨を逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した実施形態、および変形例を適宜組み合わせてもよい。 In addition, it is possible to appropriately replace the components in the above-described embodiment with known components within the scope of the present invention, and the above-described embodiments and modifications may be combined as appropriate.
 本発明によれば、疲労限度を向上させることができる。 According to the present invention, the fatigue limit can be improved.
 1 FRP板ばね
 F 強化繊維
 R 樹脂材料
 X 一方向
 x1、x2 分割領域
1 FRP leaf spring F Reinforcement fiber R Resin material X One direction x1, x2 Divided area

Claims (3)

  1.  樹脂材料と、
     前記樹脂材料中に埋没され、一方向に延びる複数の強化繊維と、
    を備え、
     前記複数の強化繊維の各強化繊維の直径は、1μm以上100μm以下とされ、
     前記複数の強化繊維は、前記樹脂材料中に50体積%以上70体積%以下含有され、
     前記一方向に直交する断面視において、それぞれが前記複数の強化繊維の一部を含む複数の分割領域を300倍拡大した状態で、前記複数の分割領域の各分割領域に占める強化繊維の面積割合の標準偏差が、3%以下となっている、FRP板ばね。
    a resin material;
    a plurality of reinforcing fibers embedded in the resin material and extending in one direction;
    with
    The diameter of each reinforcing fiber of the plurality of reinforcing fibers is 1 μm or more and 100 μm or less,
    The plurality of reinforcing fibers are contained in the resin material in an amount of 50% by volume or more and 70% by volume or less,
    In a cross-sectional view orthogonal to the one direction, in a state in which the plurality of divided regions each including a part of the plurality of reinforcing fibers are magnified 300 times, the area ratio of the reinforcing fibers in each divided region of the plurality of divided regions A FRP leaf spring with a standard deviation of 3% or less.
  2.  前記一方向に直交する断面を100倍拡大した画像に基づいて、1ピクセルの長さが0.15μm以上2.3μm以下となる解像度でボックスカウント法により得られる、前記樹脂材料のフラクタル次元が、1.98以上2.01以下となっている、請求項1に記載のFRP板ばね。 The fractal dimension of the resin material, which is obtained by a box counting method at a resolution where the length of one pixel is 0.15 μm or more and 2.3 μm or less, based on an image obtained by enlarging the cross section perpendicular to the one direction by 100 times, 2. The FRP leaf spring according to claim 1, which is 1.98 or more and 2.01 or less.
  3.  前記複数の分割領域を100倍拡大した複数の画像の各画像に基づいて得られる、前記樹脂材料の前記フラクタル次元の標準偏差が、0.3%以下となっている、請求項2に記載のFRP板ばね。 3. The method according to claim 2, wherein the standard deviation of the fractal dimension of the resin material obtained based on each of a plurality of images obtained by enlarging the plurality of divided regions by 100 times is 0.3% or less. FRP leaf spring.
PCT/JP2023/004875 2022-02-14 2023-02-14 Frp plate spring WO2023153517A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-020431 2022-02-14
JP2022020431A JP2023117715A (en) 2022-02-14 2022-02-14 Frp plate spring

Publications (1)

Publication Number Publication Date
WO2023153517A1 true WO2023153517A1 (en) 2023-08-17

Family

ID=87564588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004875 WO2023153517A1 (en) 2022-02-14 2023-02-14 Frp plate spring

Country Status (2)

Country Link
JP (1) JP2023117715A (en)
WO (1) WO2023153517A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116933A (en) * 1983-11-29 1985-06-24 Nhk Spring Co Ltd Frp leaf spring and manufacture thereof
JPH0267122A (en) * 1988-09-01 1990-03-07 Daido Steel Co Ltd Spring made of fiber reinforced resin
JPH04136531A (en) * 1990-09-27 1992-05-11 Toyama Pref Gov Frp plate spring and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116933A (en) * 1983-11-29 1985-06-24 Nhk Spring Co Ltd Frp leaf spring and manufacture thereof
JPH0267122A (en) * 1988-09-01 1990-03-07 Daido Steel Co Ltd Spring made of fiber reinforced resin
JPH04136531A (en) * 1990-09-27 1992-05-11 Toyama Pref Gov Frp plate spring and manufacture thereof

Also Published As

Publication number Publication date
JP2023117715A (en) 2023-08-24

Similar Documents

Publication Publication Date Title
JP6944658B2 (en) Fiber reinforced resin molded product and its compression molding method
JP5915929B2 (en) Manufacturing method of carbon fiber reinforced plastic molded product
US8883060B2 (en) Method for producing FRP cylinder and FRP cylinder
JP6846015B2 (en) Fiber reinforced resin molding material and its manufacturing method
EP2685125B1 (en) Fiber reinforced plastic spring
WO2023153517A1 (en) Frp plate spring
WO2017018088A1 (en) Glass cloth
WO2016125666A1 (en) Concrete reinforcing material and concrete formed body
JP7035536B2 (en) Random mat and its manufacturing method and fiber reinforced resin molding material using it
EP3434927A1 (en) Coil spring
US20200294702A1 (en) Method for manufacturing powder magnetic core
JPH07119059A (en) Production of superconducting laid wire
US6403179B1 (en) Fiberglass boom and method of making same
US20160237227A1 (en) Fiber reinforced thermoplastic resin member
KR100473073B1 (en) Fiber reinforced polymer bar enhanced adhesion for reinforcing concrete structure
CN111435621A (en) Core member, method of manufacturing core member, and inductor
JPH05168375A (en) Material for fishing rod and its production
EP3680919A1 (en) Core component, method of manufacturing same, and inductor
JP2012097386A (en) Filament body of fiber-reinforced resin and method for producing the same, and electric wire cable using the same and method for manufacturing the same
JP2019019954A (en) High-pressure tank manufacturing method
DE20122677U1 (en) Piezoelectric bending transducer
JP5559450B2 (en) Conveyor belt
JP2002248693A (en) Frp long molded object and method for manufacturing the same
JPH08158274A (en) Steel cord for reinforcing rubber material and pneumatic tire
JPS6149833A (en) Manufacture of fiber-reinforced resin structural member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752979

Country of ref document: EP

Kind code of ref document: A1