JP2023117715A - Frp plate spring - Google Patents

Frp plate spring Download PDF

Info

Publication number
JP2023117715A
JP2023117715A JP2022020431A JP2022020431A JP2023117715A JP 2023117715 A JP2023117715 A JP 2023117715A JP 2022020431 A JP2022020431 A JP 2022020431A JP 2022020431 A JP2022020431 A JP 2022020431A JP 2023117715 A JP2023117715 A JP 2023117715A
Authority
JP
Japan
Prior art keywords
reinforcing fibers
resin material
divided regions
cross
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022020431A
Other languages
Japanese (ja)
Inventor
孝充 佐野
Takamitsu Sano
勝 今村
Masaru Imamura
昌威 木下
Masatake Kinoshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2022020431A priority Critical patent/JP2023117715A/en
Priority to PCT/JP2023/004875 priority patent/WO2023153517A1/en
Publication of JP2023117715A publication Critical patent/JP2023117715A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/18Leaf springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/366Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers made of fibre-reinforced plastics, i.e. characterised by their special construction from such materials
    • F16F1/368Leaf springs

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Textile Engineering (AREA)
  • Springs (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

To achieve improved fatigue limit.SOLUTION: The present invention pertains to an FRP plate spring including a resin material R with a plurality of reinforcing fibers F embedded therein, the reinforcing fibers extending in one direction X. The diameters of the reinforcing fibers range from 1 μm to 100 μm inclusive. The amount of the reinforcing fibers contained in the resin material is 50 vol.% to 70 vol.% inclusive. In a cross-sectional view orthogonal to the one direction, when a plurality of divided regions each including the plurality of reinforcing fibers is magnified 300 times, the standard deviation of the area proportion of the reinforcing fibers included in each of the divided regions is 3% or less.SELECTED DRAWING: Figure 3A

Description

本発明は、FRP板ばねに関するものである。 The present invention relates to FRP leaf springs.

従来から、例えば下記特許文献1に示されるような、樹脂材料中に一方向に延びる複数の強化繊維が埋設されたFRP板ばねが知られている。 Conventionally, there has been known an FRP leaf spring in which a plurality of reinforcing fibers extending in one direction are embedded in a resin material, as disclosed in Patent Document 1 below.

特公昭59-45858号公報Japanese Patent Publication No. 59-45858

しかしながら、前記従来のFRP板ばねでは、疲労限度を向上させることが困難であるという問題があった。
そこで、本願発明者等は鋭意検討した結果、強化繊維の延びる一方向に直交する断面内に複数の強化繊維をばらつき少なく均等に設けることが、疲労限度の向上に有効であることを見出した。
However, the conventional FRP leaf spring has a problem that it is difficult to improve the fatigue limit.
Therefore, the inventors of the present application have made extensive studies and found that it is effective to improve the fatigue limit by evenly disposing a plurality of reinforcing fibers in a cross section orthogonal to one direction in which the reinforcing fibers extend.

この発明は、このような事情を考慮してなされたもので、疲労限度を向上させることができるFRP板ばねを提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide an FRP leaf spring capable of improving the fatigue limit.

前記課題を解決して、このような目的を達成するために、本発明のFRP板ばねは、樹脂材料中に一方向に延びる複数の強化繊維が埋設され、強化繊維の直径は、1μm以上100μm以下とされ、強化繊維は、樹脂材料中に50体積%以上70体積%以下含有され、前記一方向に直交する断面視において、それぞれが複数の強化繊維を含む複数の分割領域を300倍拡大した状態で、各分割領域に占める強化繊維の面積割合の標準偏差が3%以下となっている。 In order to solve the above problems and achieve such objects, the FRP leaf spring of the present invention has a plurality of reinforced fibers extending in one direction embedded in a resin material, and the diameter of the reinforced fibers is 1 μm or more and 100 μm. The reinforcing fibers are contained in the resin material at 50% by volume or more and 70% by volume or less, and in a cross-sectional view orthogonal to the one direction, the plurality of divided regions each including a plurality of reinforcing fibers are enlarged 300 times. In this state, the standard deviation of the area ratio of the reinforcing fibers in each divided region is 3% or less.

前記断面視において、それぞれが複数の強化繊維を含む複数の分割領域を、300倍と高倍率で拡大した状態でも、各分割領域に占める強化繊維の面積割合の標準偏差を3%以下と低く抑えられていることから、前記一方向に直交する断面内に複数の強化繊維をばらつき少なく均等に設けることができる。したがって、FRP板ばねに板厚方向に繰り返し曲げ応力が加えられたときに亀裂が発生する起点を生じにくくすることが可能になり、FRP板ばねの疲労限度を向上させることができる。 In the cross-sectional view, even when a plurality of divided regions each containing a plurality of reinforcing fibers are enlarged at a high magnification of 300 times, the standard deviation of the area ratio of the reinforcing fibers in each divided region is suppressed to 3% or less. Therefore, a plurality of reinforcing fibers can be evenly provided with little variation in the cross section orthogonal to the one direction. Therefore, when a bending stress is repeatedly applied to the FRP leaf spring in the plate thickness direction, it becomes possible to make it difficult for cracks to occur, and the fatigue limit of the FRP leaf spring can be improved.

前記一方向に直交する断面を100倍拡大した画像に基づいて、1ピクセルの長さが0.15μm以上2.3μm以下の解像度でボックスカウント法により得られる、樹脂材料のフラクタル次元が1.98以上2.01以下となっていてもよい。 The fractal dimension of the resin material is 1.98, which is obtained by a box counting method with a resolution of 0.15 μm or more and 2.3 μm or less for the length of one pixel based on the image of the cross section orthogonal to the one direction magnified 100 times. It may be greater than or equal to 2.01 or less.

前記一方向に直交する断面を100倍と低倍率で拡大した状態でも、樹脂材料のフラクタル次元が2.01以下と低く抑えられ、前記断面視において強化繊維および樹脂材料により発現される模様を、この断面内においてばらつき少なく均等にすることが可能になり、板厚方向に繰り返し曲げ応力が加えられたときに亀裂が発生する起点を確実に生じにくくすることができる。
前記一方向に直交する断面を100倍と低倍率で拡大した状態で、樹脂材料のフラクタル次元が1.98以上となっているので、層間せん断破壊が生ずるのを抑制することが可能になり、FRP板ばねの疲労限度を確実に向上させることができる。すなわち、樹脂材料のフラクタル次元が1.98より小さくなると、前記断面視で、樹脂材料が、強化繊維を全く含有していない明瞭で広い領域となって視認されることとなる。
Even when the cross section orthogonal to the one direction is enlarged at a low magnification of 100 times, the fractal dimension of the resin material is suppressed to 2.01 or less, and the pattern expressed by the reinforcing fiber and the resin material in the cross section is It is possible to make the cross section uniform with little variation, and it is possible to reliably prevent the occurrence of starting points where cracks occur when repeated bending stress is applied in the plate thickness direction.
Since the fractal dimension of the resin material is 1.98 or more when the cross section orthogonal to the one direction is magnified at a low magnification of 100 times, it is possible to suppress the occurrence of interlaminar shear fracture, It is possible to reliably improve the fatigue limit of the FRP leaf spring. That is, when the fractal dimension of the resin material is smaller than 1.98, the resin material is visually recognized as a clear and wide region containing no reinforcing fibers in the cross section.

前記断面視において、それぞれが複数の強化繊維を含む複数の分割領域を100倍拡大した各画像に基づいて得られた、樹脂材料の各フラクタル次元の標準偏差が0.3%以下となっていてもよい。 In the cross-sectional view, the standard deviation of each fractal dimension of the resin material obtained based on each image obtained by enlarging a plurality of divided regions each containing a plurality of reinforcing fibers by 100 times is 0.3% or less. good too.

前記断面視において、それぞれが複数の強化繊維を含む複数の分割領域を、100倍と低倍率で拡大した状態でも、複数の分割領域における樹脂材料の各フラクタル次元の標準偏差が0.3%以下と低く抑えられていることから、前記断面視において強化繊維および樹脂材料により発現される模様を、この断面内においてばらつき少なく均等にすることを確実に実現することができる。 In the cross-sectional view, the standard deviation of each fractal dimension of the resin material in the plurality of divided regions is 0.3% or less even when the plurality of divided regions, each containing a plurality of reinforcing fibers, is enlarged at a low magnification of 100 times. , it is possible to ensure that the pattern expressed by the reinforcing fibers and the resin material in the cross section is uniform with little variation in the cross section.

この発明によれば、疲労限度を向上させることができる。 According to this invention, the fatigue limit can be improved.

一実施形態のFRP板ばねの断面写真である。1 is a cross-sectional photograph of an FRP leaf spring of one embodiment; 一実施形態のFRP板ばねの断面写真である。1 is a cross-sectional photograph of an FRP leaf spring of one embodiment; 図1において複数の分割領域を示すSEM写真である。FIG. 2 is a SEM photograph showing a plurality of divided regions in FIG. 1; FIG. 図1において複数の分割領域を示すSEM写真である。FIG. 2 is a SEM photograph showing a plurality of divided regions in FIG. 1; FIG. 図1において複数の分割領域を示すSEM写真である。FIG. 2 is a SEM photograph showing a plurality of divided regions in FIG. 1; FIG. 図1において複数の分割領域を示すSEM写真である。FIG. 2 is a SEM photograph showing a plurality of divided regions in FIG. 1; FIG. 図1において複数の分割領域を示すSEM写真である。FIG. 2 is a SEM photograph showing a plurality of divided regions in FIG. 1; FIG. 図1において複数の分割領域を示すSEM写真である。FIG. 2 is a SEM photograph showing a plurality of divided regions in FIG. 1; FIG. 比較例1における複数の分割領域を示すSEM写真である。4 is a SEM photograph showing a plurality of divided regions in Comparative Example 1; 比較例1における複数の分割領域を示すSEM写真である。4 is a SEM photograph showing a plurality of divided regions in Comparative Example 1; 比較例1における複数の分割領域を示すSEM写真である。4 is a SEM photograph showing a plurality of divided regions in Comparative Example 1; 比較例1における複数の分割領域を示すSEM写真である。4 is a SEM photograph showing a plurality of divided regions in Comparative Example 1; 比較例1における複数の分割領域を示すSEM写真である。4 is a SEM photograph showing a plurality of divided regions in Comparative Example 1; 比較例1における複数の分割領域を示すSEM写真である。4 is a SEM photograph showing a plurality of divided regions in Comparative Example 1; 比較例2における複数の分割領域を示すSEM写真である。10 is an SEM photograph showing a plurality of divided regions in Comparative Example 2; 比較例2における複数の分割領域を示すSEM写真である。10 is an SEM photograph showing a plurality of divided regions in Comparative Example 2; 比較例2における複数の分割領域を示すSEM写真である。10 is an SEM photograph showing a plurality of divided regions in Comparative Example 2; 比較例2における複数の分割領域を示すSEM写真である。10 is an SEM photograph showing a plurality of divided regions in Comparative Example 2; 比較例2における複数の分割領域を示すSEM写真である。10 is an SEM photograph showing a plurality of divided regions in Comparative Example 2; 比較例2における複数の分割領域を示すSEM写真である。10 is an SEM photograph showing a plurality of divided regions in Comparative Example 2; 比較例3における複数の分割領域を示すSEM写真である。11 is an SEM photograph showing a plurality of divided regions in Comparative Example 3; 比較例3における複数の分割領域を示すSEM写真である。11 is an SEM photograph showing a plurality of divided regions in Comparative Example 3; 比較例3における複数の分割領域を示すSEM写真である。11 is an SEM photograph showing a plurality of divided regions in Comparative Example 3; 比較例3における複数の分割領域を示すSEM写真である。11 is an SEM photograph showing a plurality of divided regions in Comparative Example 3; 比較例3における複数の分割領域を示すSEM写真である。11 is an SEM photograph showing a plurality of divided regions in Comparative Example 3; 比較例3における複数の分割領域を示すSEM写真である。11 is an SEM photograph showing a plurality of divided regions in Comparative Example 3; 検証試験の結果を示す図である。It is a figure which shows the result of a verification test.

以下、FRP板ばねの一実施形態を、図1を参照しながら説明する。
FRP板ばね1は、例えば車両の懸架装置等に用いられ、表裏面が上下方向Zを向き、かつ上下方向Zから見て一方向Xに長い長方形状を呈する板状に形成されている。FRP板ばね1は、図3A~図3Fに示されるように、樹脂材料R中に一方向Xに延びる複数の強化繊維Fが埋設されて構成されている。強化繊維Fの直径は、1μm以上100μm以下、好ましくは10μm以上30μm以下とされ、強化繊維Fは、樹脂材料R中に50体積%以上70体積%以下含有されている。
An embodiment of the FRP leaf spring will now be described with reference to FIG.
The FRP leaf spring 1 is used, for example, in a suspension system of a vehicle, and is formed in a plate shape having front and back surfaces facing in the vertical direction Z and having a long rectangular shape in one direction X when viewed from the vertical direction Z. The FRP leaf spring 1 is constructed by embedding a plurality of reinforcing fibers F extending in one direction X in a resin material R, as shown in FIGS. 3A to 3F. The reinforcing fibers F have a diameter of 1 μm or more and 100 μm or less, preferably 10 μm or more and 30 μm or less.

図1および図2に示されるような、一方向Xに直交する断面視において、それぞれが複数の強化繊維Fを含む複数の分割領域x1、x2に占める強化繊維Fの各面積割合の標準偏差が3%以下となっている。
強化繊維Fの面積割合は、前記断面視における所定領域Aを、それぞれが複数の強化繊維Fを含む大きさ(例えば250μm×250μm以上)に等分割し、各分割領域x1、x2の画像について、強化繊維Fが位置するピクセル数を、総ピクセル数で除すことで得られる。複数の分割領域x1、x2それぞれに占める強化繊維Fの各面積割合の標準偏差は、分割領域x1、x2を少なくとも100倍以上300倍以下拡大した状態では、3%以下となっている。
In a cross-sectional view perpendicular to one direction X, as shown in FIGS. 3% or less.
The area ratio of the reinforcing fibers F is obtained by equally dividing the predetermined region A in the cross-sectional view into a size (for example, 250 μm × 250 μm or more) each containing a plurality of reinforcing fibers F, and for the images of the divided regions x1 and x2, It is obtained by dividing the number of pixels where the reinforcing fibers F are located by the total number of pixels. The standard deviation of the area ratio of the reinforcing fibers F in each of the divided regions x1 and x2 is 3% or less when the divided regions x1 and x2 are enlarged at least 100 times or more and 300 times or less.

例えば図1に示されるように、前記断面視における所定領域Aを6個(1160μm×870μm)に等分割し、各分割領域x1の画像として、図3A~図3Fに示されるような、100倍に拡大したものを用い(SEM、反射電子像、加速電圧21kV)、この画像において、1ピクセルの長さを0.15μm以上2.3μm以下とすることで、6つの分割領域x1それぞれに占める強化繊維Fの各面積割合が得られる。なお、図3A~図3Fにおいて、白い部分は強化繊維Fを示し、黒い部分は樹脂材料Rを示している。
この際、例えば1ピクセルの長さを1.13μmとすると、6つの分割領域x1それぞれに占める強化繊維Fの各面積割合の標準偏差は、表1および図7にも記載している通り1.14%となっている。
For example, as shown in FIG. 1, the predetermined region A in the cross section is equally divided into 6 (1160 μm × 870 μm), and the image of each divided region x1 is 100 times as shown in FIGS. 3A to 3F. (SEM, backscattered electron image, accelerating voltage 21 kV), and in this image, by setting the length of 1 pixel to 0.15 μm or more and 2.3 μm or less, enhancement occupying each of the six divided regions x1 Each area ratio of the fiber F is obtained. 3A to 3F, white portions indicate the reinforcing fibers F, and black portions indicate the resin material R. As shown in FIG.
At this time, if the length of one pixel is 1.13 μm, for example, the standard deviation of the area ratio of the reinforcing fibers F occupying each of the six divided regions x1 is 1.1. 14%.

また、例えば図2に示されるように、前記断面視における所定領域Aを54個(387μm×290μm)に等分割し、各分割領域x2の画像として、300倍に拡大したものを用い(SEM、反射電子像、加速電圧21kV)、この画像において、1ピクセルの長さを0.15μm以上2.3μm以下とすることで、54個の分割領域x2それぞれに占める強化繊維Fの各面積割合が得られる。
この際、例えば1ピクセルの長さを0.38μmとすると、54個の分割領域x2それぞれに占める強化繊維Fの各面積割合の標準偏差は、表1および図7にも記載している通り1.90%となっている。
Further, for example, as shown in FIG. 2, the predetermined area A in the cross section is equally divided into 54 pieces (387 μm×290 μm), and the image of each divided area x2 is magnified 300 times (SEM, Backscattered electron image, acceleration voltage 21 kV). In this image, by setting the length of 1 pixel to 0.15 μm or more and 2.3 μm or less, each area ratio of the reinforcing fiber F occupying each of the 54 divided regions x2 can be obtained. be done.
At this time, for example, if the length of one pixel is 0.38 μm, the standard deviation of each area ratio of the reinforcing fibers F occupying each of the 54 divided regions x2 is 1 as shown in Table 1 and FIG. .90%.

一方向Xに直交する断面視の画像に基づいて、1ピクセルの長さが0.15μm以上2.3μm以下の解像度でボックスカウント法により得られる、樹脂材料Rのフラクタル次元が1.98以上2.01以下となっている。樹脂材料Rのフラクタル次元は、分割領域x1、x2を少なくとも100倍以上300倍以下拡大した状態では、1.98以上2.01以下となっている。 The fractal dimension of the resin material R is 1.98 or more, which is obtained by the box count method with a resolution of 0.15 μm or more and 2.3 μm or less in length of 1 pixel based on a cross-sectional view image orthogonal to the one direction X. .01 or less. The fractal dimension of the resin material R is 1.98 or more and 2.01 or less when the divided regions x1 and x2 are enlarged at least 100 times or more and 300 times or less.

樹脂材料Rのフラクタル次元は、一方向Xに直交する断面に含まれる同一領域の画像において、樹脂材料Rが位置するピクセル数を、長さが0.15μm以上2.3μm以下の範囲で互いに異なる複数のピクセルサイズごと、つまり解像度ごとにプロットした両対数グラフ(横軸:ピクセルサイズ、縦軸:樹脂材料Rが位置するピクセル数)に基づいて、最小二乗法により算出した近似直線の傾きとなっている。 In the fractal dimension of the resin material R, the number of pixels in which the resin material R is positioned in the image of the same area included in the cross section orthogonal to the one direction X is different from each other within the range of 0.15 μm or more and 2.3 μm or less in length. It is the slope of the approximate straight line calculated by the least-squares method based on a log-log graph (horizontal axis: pixel size, vertical axis: number of pixels where the resin material R is located) plotted for each pixel size, that is, for each resolution. ing.

なお、ピクセルサイズが大きくなると、樹脂材料Rが位置するピクセル数が少なくなり、ピクセルサイズが小さくなると、樹脂材料Rが位置するピクセル数が多くなる。また、前記断面視において強化繊維Fおよび樹脂材料Rにより発現される模様が、この断面内においてばらつき少なく均等になると、ピクセルサイズが大きく変動しても、樹脂材料Rが位置するピクセル数の変動は小さく抑えられる。 As the pixel size increases, the number of pixels in which the resin material R is positioned decreases, and as the pixel size decreases, the number of pixels in which the resin material R is positioned increases. In addition, when the pattern expressed by the reinforcing fiber F and the resin material R in the cross section becomes uniform with little variation in the cross section, even if the pixel size fluctuates greatly, the number of pixels where the resin material R is located does not fluctuate. can be kept small.

前記断面視において、それぞれが複数の強化繊維Fを含む複数の分割領域x1、x2の各画像に基づいて得られた、樹脂材料Rの各フラクタル次元の標準偏差が0.3%以下となっている。この標準偏差は、分割領域x1、x2を少なくとも100倍以上300倍以下拡大した状態では、0.3%以下となっている。 In the cross-sectional view, the standard deviation of each fractal dimension of the resin material R obtained based on each image of a plurality of divided regions x1 and x2 each including a plurality of reinforcing fibers F is 0.3% or less. there is This standard deviation is 0.3% or less when the divided regions x1 and x2 are enlarged at least 100 times or more and 300 times or less.

フラクタル次元は、例えば図1に示されるように、前記断面視における所定領域Aを6個に等分割し、各分割領域x1の画像として、図3A~図3Fに示されるような、100倍に拡大したものを用い、この画像において、樹脂材料Rが位置するピクセル数を、長さが0.57μm、1.13μm、および2.27μmと互いに異なる3つのピクセルサイズごとにプロットした両対数グラフに基づいて得られる。
この場合、6つの分割領域x1におけるフラクタル次元は、1.998以上2.003以下となり、表1および図7にも記載している通り、これらのフラクタル次元の平均値が1.9999、標準偏差が0.18%となっている。
For the fractal dimension, for example, as shown in FIG. 1, the predetermined region A in the cross section is equally divided into 6, and the image of each divided region x1 is 100 times as shown in FIGS. 3A to 3F. Using a magnified image, the number of pixels in which the resin material R is located is plotted for each of three different pixel sizes of 0.57 μm, 1.13 μm, and 2.27 μm in length on a log-log graph. obtained based on
In this case, the fractal dimension in the six divided regions x1 is 1.998 or more and 2.003 or less, and as shown in Table 1 and FIG. is 0.18%.

また、フラクタル次元は、例えば図2に示されるように、前記断面視における所定領域Aを54個に等分割し、各分割領域x2の画像として、300倍に拡大したものを用い(SEM、反射電子像、加速電圧21kV)、この画像において、樹脂材料Rが位置するピクセル数を、長さが0.19μm、0.38μm、および0.76μmと互いに異なる3つのピクセルサイズごとにプロットした両対数グラフに基づいて得られる。
この場合、表1および図7にも記載している通り、54個の分割領域x2におけるフラクタル次元の平均値が1.9927、標準偏差が0.15%となっている。
For the fractal dimension, for example, as shown in FIG. 2, the predetermined area A in the cross section is equally divided into 54 areas, and the image of each divided area x2 is magnified 300 times (SEM, reflection electron image, acceleration voltage 21 kV), in which the number of pixels in which the resin material R is located is plotted for each of three different pixel sizes of 0.19 μm, 0.38 μm, and 0.76 μm in length. It is obtained based on the graph.
In this case, as shown in Table 1 and FIG. 7, the average value of the fractal dimensions in the 54 divided regions x2 is 1.9927 and the standard deviation is 0.15%.

FRP板ばね1は、ボビンに巻き付けられた強化繊維Fを繰り出しながら、溶融状態の樹脂材料Rが溜められたプール内を潜らせ、その後、プール内から引き出して溶融状態の樹脂材料Rでコーティングされた強化繊維Fを、回転体の外周面に複数周にわたって巻き付けることで、板状の中間体を成形した後に、この中間体を板厚方向に加圧(加圧工程)しながら加熱することで得ることができる。
加圧工程時に、強化繊維Fが溶融状態の樹脂材料R中を流動することで、一方向Xに直交する断面内に複数の強化繊維Fがばらつき少なく均等に設けられる。
The FRP leaf spring 1 is immersed in a pool in which the molten resin material R is stored while letting out the reinforcing fibers F wound around the bobbin, and then pulled out from the pool and coated with the molten resin material R. After forming a plate-shaped intermediate by winding the reinforcing fibers F around the outer peripheral surface of the rotating body over a plurality of turns, this intermediate is heated while being pressed in the plate thickness direction (pressing process). Obtainable.
During the pressurizing step, the reinforcing fibers F flow through the resin material R in a molten state, so that the plurality of reinforcing fibers F are evenly provided in a cross section orthogonal to the one direction X with little variation.

以上説明したように、本実施形態によるFRP板ばね1によれば、一方向Xに直交する断面視において、それぞれが複数の強化繊維Fを含む複数の分割領域x2を、300倍と高倍率で拡大した状態でも、各分割領域x2に占める強化繊維Fの面積割合の標準偏差を3%以下と低く抑えられていることから、一方向Xに直交する断面内に複数の強化繊維Fをばらつき少なく均等に設けることができる。したがって、FRP板ばね1に板厚方向に繰り返し曲げ応力が加えられたときに亀裂が発生する起点を生じにくくすることが可能になり、FRP板ばね1の疲労限度を向上させることができる。 As described above, according to the FRP leaf spring 1 according to the present embodiment, in a cross-sectional view perpendicular to the one direction X, a plurality of divided regions x2 each including a plurality of reinforcing fibers F can be viewed at a high magnification of 300 times. Even in the enlarged state, the standard deviation of the area ratio of the reinforcing fibers F occupying each divided region x2 is suppressed to a low level of 3% or less, so that the plurality of reinforcing fibers F in the cross section orthogonal to the one direction X are dispersed less. can be set evenly. Therefore, when a bending stress is repeatedly applied to the FRP leaf spring 1 in the plate thickness direction, it is possible to make it difficult for cracks to occur, and the fatigue limit of the FRP leaf spring 1 can be improved.

一方向Xに直交する断面を100倍と低倍率で拡大した状態でも、樹脂材料Rのフラクタル次元が2.01以下と低く抑えられ、前記断面視において強化繊維Fおよび樹脂材料Rにより発現される模様を、この断面内においてばらつき少なく均等にすることが可能になり、板厚方向に繰り返し曲げ応力が加えられたときに亀裂が発生する起点を確実に生じにくくすることができる。 The fractal dimension of the resin material R is suppressed to a low level of 2.01 or less even when the cross section perpendicular to the one direction X is enlarged at a low magnification of 100 times, and is expressed by the reinforcing fiber F and the resin material R in the cross-sectional view. It is possible to make the pattern uniform within this cross section with little variation, and it is possible to reliably prevent crack initiation points from occurring when bending stress is repeatedly applied in the plate thickness direction.

一方向Xに直交する断面を100倍と低倍率で拡大した状態で、樹脂材料Rのフラクタル次元が1.98以上となっているので、層間せん断破壊が生ずるのを抑制することが可能になり、FRP板ばね1の疲労限度を確実に向上させることができる。すなわち、樹脂材料Rのフラクタル次元が1.98より小さくなると、前記断面視で、樹脂材料Rが、強化繊維Fを全く含有していない明瞭で広い領域となって視認されることとなる。 Since the fractal dimension of the resin material R is 1.98 or more when the cross section orthogonal to the one direction X is magnified at a low magnification of 100 times, it is possible to suppress the occurrence of interlaminar shear fracture. , the fatigue limit of the FRP leaf spring 1 can be reliably improved. That is, when the fractal dimension of the resin material R becomes smaller than 1.98, the resin material R is visually recognized as a clear and wide region containing no reinforcing fibers F in the cross-sectional view.

前記断面視において、それぞれが複数の強化繊維Fを含む複数の分割領域x1を、100倍と低倍率で拡大した状態でも、複数の分割領域x1における樹脂材料Rの各フラクタル次元の標準偏差が0.3%以下と低く抑えられていることから、前記断面視において強化繊維Fおよび樹脂材料Rにより発現される模様を、この断面内においてばらつき少なく均等にすることを確実に実現することができる。 In the cross-sectional view, the standard deviation of each fractal dimension of the resin material R in the plurality of divided regions x1 is 0 even when the divided regions x1 each including a plurality of reinforcing fibers F are enlarged at a low magnification of 100 times. Since it is kept as low as 0.3% or less, it is possible to ensure that the pattern expressed by the reinforcing fibers F and the resin material R in the cross section is made uniform with little variation in the cross section.

次に、検証試験について説明する。
実施例として、図1、図2、および図3A~図3Fで示したFRP板ばね1を採用し、比較例1~3のFRP板ばね101~103を用意した。
Next, the verification test will be explained.
As an example, the FRP leaf spring 1 shown in FIGS. 1, 2, and 3A to 3F was adopted, and FRP leaf springs 101 to 103 of Comparative Examples 1 to 3 were prepared.

比較例1のFRP板ばね101は、実施例のFRP板ばね1の製造方法に対して、前記加圧工程を有しない製造方法で形成した。比較例1のFRP板ばね101において、実施例の図3A~図3Fと対応する画像を図4A~図4Fに示す。
比較例1では、図4A~図4Fに示されるように、複数の強化繊維Fが束ねられた束体が、樹脂材料Rの層で囲まれた部分を含んでいる。
The FRP leaf spring 101 of Comparative Example 1 was formed by a manufacturing method that does not include the pressing process, in contrast to the manufacturing method of the FRP leaf spring 1 of the embodiment. Images of the FRP leaf spring 101 of Comparative Example 1 corresponding to FIGS. 3A to 3F of the example are shown in FIGS. 4A to 4F.
In Comparative Example 1, as shown in FIGS. 4A to 4F, a bundle in which a plurality of reinforcing fibers F are bundled includes a portion surrounded by a layer of resin material R. FIG.

比較例2のFRP板ばね102は、強化繊維Fが編まれた複数のシートを積層状態で成形金型のキャビティ内にセットした状態で、キャビティ内に溶融状態の樹脂材料Rを流し込んで硬化させることで形成した。比較例2のFRP板ばね102において、実施例の図3A~図3Fと対応する画像を図5A~図5Fに示す。
比較例3のFRP板ばね103は、未硬化の樹脂材料Rに強化繊維Fが埋め込まれたプリプレグシートを積層した状態で、加圧および加熱することで形成した。比較例3のFRP板ばね103において、実施例の図3A~図3Fと対応する画像を図6A~図6Fに示す。
比較例2、3では、図5A~図5Fおよび図6A~図6Fに示されるように、複数の強化繊維Fからなる繊維層が、層状の樹脂材料Rを介して積層された部分を含んでいる。
In the FRP leaf spring 102 of Comparative Example 2, a plurality of sheets in which reinforcing fibers F are woven are set in a cavity of a molding die in a laminated state, and a resin material R in a molten state is poured into the cavity and cured. formed by Images of the FRP leaf spring 102 of Comparative Example 2 corresponding to FIGS. 3A to 3F of the example are shown in FIGS. 5A to 5F.
The FRP leaf spring 103 of Comparative Example 3 was formed by pressing and heating the prepreg sheets in which the reinforcing fibers F were embedded in the uncured resin material R in a state of being laminated. Images of the FRP leaf spring 103 of Comparative Example 3 corresponding to FIGS. 3A to 3F of the embodiment are shown in FIGS. 6A to 6F.
In Comparative Examples 2 and 3, as shown in FIGS. 5A to 5F and FIGS. 6A to 6F, a fiber layer made of a plurality of reinforcing fibers F includes a portion laminated via a layered resin material R. there is

比較例1~3それぞれにおいて、実施例と同様に、複数の分割領域x1、x2それぞれに占める強化繊維Fの各面積割合の標準偏差と、複数の分割領域x1、x2それぞれの画像に基づいて得られた、樹脂材料Rの各フラクタル次元の平均値、および各フラクタル次元の標準偏差と、を求めた。
結果を表1および図7に示す。
In each of Comparative Examples 1 to 3, similarly to Example, the standard deviation of the area ratio of the reinforcing fibers F in each of the plurality of divided regions x1 and x2 and the images of each of the plurality of divided regions x1 and x2 were obtained. The average value of each fractal dimension of the resin material R and the standard deviation of each fractal dimension were obtained.
Results are shown in Table 1 and FIG.

Figure 2023117715000002
Figure 2023117715000002

比較例1~3では、前記断面視において、複数の分割領域x2をそれぞれ300倍拡大した状態で、各分割領域x2に占める強化繊維Fの面積割合の標準偏差が3%より高く、一方向Xに直交する断面を100倍拡大した画像に基づいて得られる、樹脂材料Rのフラクタル次元が、比較例1、3では2.01より大きく、比較例2では1.98より小さくなっている。 In Comparative Examples 1 to 3, in the cross-sectional view, the standard deviation of the area ratio of the reinforcing fibers F occupying each divided region x2 is higher than 3% when each of the plurality of divided regions x2 is magnified 300 times. The fractal dimension of the resin material R, which is obtained based on an image obtained by enlarging a cross section orthogonal to 100 times, is larger than 2.01 in Comparative Examples 1 and 3, and smaller than 1.98 in Comparative Example 2.

次に、実施例、および比較例1~3について(厚さ2mm、幅15mm、長さ(一方向X)60mm)、3点曲げ疲労試験(支点間距離(一方向X)45mm、圧子半径7.5mm、支点半径5.0mm、周波数6Hz、荷重制御)を行った。 Next, for Examples and Comparative Examples 1 to 3 (thickness 2 mm, width 15 mm, length (one direction X) 60 mm), three-point bending fatigue test (distance between fulcrums (one direction X) 45 mm, indenter radius 7 .5 mm, fulcrum radius 5.0 mm, frequency 6 Hz, load control).

結果、実施例の寿命サイクル数が、比較例1と比べて約16倍長くなり、比較例2と比べて約100倍長くなり、比較例3と比べて約22倍長くなることが確認された。なお、寿命サイクル数に達すると、実施例、比較例1および比較例3では、強化繊維Fが例えば引張破断等し、一方向Xに直交する断面を100倍拡大した画像に基づいて得られる、樹脂材料Rのフラクタル次元が1.98より小さい比較例2では、樹脂材料Rに亀裂が生じた(層間せん断破壊)。
以上より、実施例のように、前記断面視において、それぞれが複数の強化繊維Fを含む複数の分割領域x2を300倍拡大した状態で、各分割領域x2に占める強化繊維Fの面積割合の標準偏差が3%以下となっていれば、疲労限度を向上させることができることが確認された。
As a result, it was confirmed that the life cycle number of the example was about 16 times longer than that of Comparative Example 1, about 100 times longer than that of Comparative Example 2, and about 22 times longer than that of Comparative Example 3. . In addition, when the life cycle number is reached, in Example, Comparative Example 1 and Comparative Example 3, the reinforcing fiber F is, for example, tensile fractured, and the cross section perpendicular to the one direction X is magnified 100 times. In Comparative Example 2 in which the fractal dimension of the resin material R was less than 1.98, cracks occurred in the resin material R (interlaminar shear fracture).
From the above, as in the embodiment, when the plurality of divided regions x2 each including a plurality of reinforcing fibers F are magnified 300 times in the cross-sectional view, the standard of the area ratio of the reinforcing fibers F occupying each divided region x2 It was confirmed that the fatigue limit can be improved if the deviation is 3% or less.

なお、本発明の技術的範囲は前記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 The technical scope of the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention.

例えば、一方向Xに直交する断面を100倍拡大した画像に基づいて、1ピクセルの長さが0.15μm以上2.3μm以下の解像度でボックスカウント法により得られる、樹脂材料Rのフラクタル次元を、1.98より小さくしてもよいし、2.01より大きくしてもよい。
また、前記断面視において、複数の分割領域x1をそれぞれ100倍拡大した画像に基づいて得られる、樹脂材料Rの各フラクタル次元の標準偏差を0.3%より大きくしてもよい。
For example, the fractal dimension of the resin material R obtained by the box counting method with a resolution of 0.15 μm or more and 2.3 μm or less in length of one pixel based on a 100-fold enlarged image of a cross section orthogonal to one direction X is calculated as follows: , may be less than 1.98 or greater than 2.01.
Further, in the cross-sectional view, the standard deviation of each fractal dimension of the resin material R obtained based on an image obtained by enlarging each of the plurality of divided regions x1 by 100 times may be larger than 0.3%.

その他、本発明の趣旨を逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した実施形態、および変形例を適宜組み合わせてもよい。 In addition, it is possible to appropriately replace the components in the above-described embodiments with known components without departing from the scope of the present invention, and the above-described embodiments and modifications may be combined as appropriate.

1 FRP板ばね
F 強化繊維
R 樹脂材料
X 一方向
x1、x2 分割領域
1 FRP leaf spring F Reinforcement fiber R Resin material X One direction x1, x2 Divided area

Claims (3)

樹脂材料中に一方向に延びる複数の強化繊維が埋設され、
強化繊維の直径は、1μm以上100μm以下とされ、
強化繊維は、樹脂材料中に50体積%以上70体積%以下含有され、
前記一方向に直交する断面視において、それぞれが複数の強化繊維を含む複数の分割領域を300倍拡大した状態で、各分割領域に占める強化繊維の面積割合の標準偏差が3%以下となっている、FRP板ばね。
A plurality of reinforcing fibers extending in one direction are embedded in a resin material,
The diameter of the reinforcing fiber is 1 μm or more and 100 μm or less,
The reinforcing fiber is contained in the resin material at 50% by volume or more and 70% by volume or less,
In a cross-sectional view orthogonal to the one direction, the standard deviation of the area ratio of the reinforcing fibers in each divided region is 3% or less in a state where the divided regions each include a plurality of reinforcing fibers are magnified 300 times. There is an FRP leaf spring.
前記一方向に直交する断面を100倍拡大した画像に基づいて、1ピクセルの長さが0.15μm以上2.3μm以下の解像度でボックスカウント法により得られる、樹脂材料のフラクタル次元が1.98以上2.01以下となっている、請求項1に記載のFRP板ばね。 The fractal dimension of the resin material is 1.98, which is obtained by a box counting method with a resolution of 0.15 μm or more and 2.3 μm or less for the length of one pixel based on the image of the cross section orthogonal to the one direction magnified 100 times. 2. The FRP leaf spring according to claim 1, wherein the FRP leaf spring is equal to or greater than 2.01 or less. 前記断面視において、それぞれが複数の強化繊維を含む複数の分割領域を100倍拡大した各画像に基づいて得られた、樹脂材料の各フラクタル次元の標準偏差が0.3%以下となっている、請求項2に記載のFRP板ばね。 In the cross-sectional view, the standard deviation of each fractal dimension of the resin material is 0.3% or less, which is obtained based on each image obtained by enlarging a plurality of divided regions each containing a plurality of reinforcing fibers by 100 times. 3. The FRP leaf spring according to claim 2.
JP2022020431A 2022-02-14 2022-02-14 Frp plate spring Pending JP2023117715A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022020431A JP2023117715A (en) 2022-02-14 2022-02-14 Frp plate spring
PCT/JP2023/004875 WO2023153517A1 (en) 2022-02-14 2023-02-14 Frp plate spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022020431A JP2023117715A (en) 2022-02-14 2022-02-14 Frp plate spring

Publications (1)

Publication Number Publication Date
JP2023117715A true JP2023117715A (en) 2023-08-24

Family

ID=87564588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022020431A Pending JP2023117715A (en) 2022-02-14 2022-02-14 Frp plate spring

Country Status (2)

Country Link
JP (1) JP2023117715A (en)
WO (1) WO2023153517A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116933A (en) * 1983-11-29 1985-06-24 Nhk Spring Co Ltd Frp leaf spring and manufacture thereof
JPH0267122A (en) * 1988-09-01 1990-03-07 Daido Steel Co Ltd Spring made of fiber reinforced resin
JPH04136531A (en) * 1990-09-27 1992-05-11 Toyama Pref Gov Frp plate spring and manufacture thereof

Also Published As

Publication number Publication date
WO2023153517A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
JP6944658B2 (en) Fiber reinforced resin molded product and its compression molding method
JP5416341B2 (en) Method for producing round fiber reinforced plastic wire
JP5915929B2 (en) Manufacturing method of carbon fiber reinforced plastic molded product
WO2017159263A1 (en) Fiber-reinforced resin molding material and production method therefor
JP2014108898A (en) Composite frp-made short linear material for cement reinforcement and method for manufacturing the same
JPWO2005092814A1 (en) Production method of chopped strand
JP2023117715A (en) Frp plate spring
WO2018070254A1 (en) Random mat and production method therefor, and fiber-reinforced resin molded material using random mat
WO2017163860A1 (en) Coil spring
JP6262160B2 (en) Winding core and manufacturing method of winding core
JPH07119059A (en) Production of superconducting laid wire
JP2021100904A (en) Glass direct roving and manufacturing method of the same
JP2012097386A (en) Filament body of fiber-reinforced resin and method for producing the same, and electric wire cable using the same and method for manufacturing the same
JP2003328284A (en) Twisted wire made of fiber-reinforced resin and method for producing the same
CN116568487A (en) Method for winding filaments of an additive manufacturing device
JP3237902B2 (en) Fiber reinforcement and structural material using the same
JPH0757820B2 (en) Fiber reinforced resin composition
JP2020113763A (en) Core component, method of manufacturing the same, inductor, choke coil, noise filter, and transformer
JP7545060B2 (en) Glass yarn roving, random mat for forming thermoplastic composite material, and glass fiber reinforced thermoplastic resin sheet
DE102019102817A1 (en) Production method for high-pressure tank
JP2002248693A (en) Frp long molded object and method for manufacturing the same
US20220281531A1 (en) Additively manufactured composite parts having voids for weight reduction
JP2021155286A (en) Concrete reinforcement member
CN115044167B (en) Resin composition and composite material
JP2024006114A (en) Molding device of fiber-reinforced resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240801