JP3771360B2 - Tubular body made of fiber reinforced composite material - Google Patents

Tubular body made of fiber reinforced composite material Download PDF

Info

Publication number
JP3771360B2
JP3771360B2 JP30951797A JP30951797A JP3771360B2 JP 3771360 B2 JP3771360 B2 JP 3771360B2 JP 30951797 A JP30951797 A JP 30951797A JP 30951797 A JP30951797 A JP 30951797A JP 3771360 B2 JP3771360 B2 JP 3771360B2
Authority
JP
Japan
Prior art keywords
tubular body
prepreg
layer
fiber
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30951797A
Other languages
Japanese (ja)
Other versions
JPH11123782A (en
Inventor
振一 竹村
喜穂 早田
秀幸 大野
美樹男 島
豊 荒井
朋宏 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Eneos Corp
Original Assignee
Nippon Steel Corp
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Oil Corp filed Critical Nippon Steel Corp
Priority to JP30951797A priority Critical patent/JP3771360B2/en
Priority to KR1019980044255A priority patent/KR100298101B1/en
Priority to CN98124563A priority patent/CN1131139C/en
Priority to TW087117620A priority patent/TW429216B/en
Publication of JPH11123782A publication Critical patent/JPH11123782A/en
Application granted granted Critical
Publication of JP3771360B2 publication Critical patent/JP3771360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D23/00Producing tubular articles
    • B29D23/001Pipes; Pipe joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement
    • F16L9/121Rigid pipes of plastics with or without reinforcement with three layers

Description

【0001】
【発明の属する技術分野】
本発明は、繊維強化複合材料製管状体に関する。
【0002】
【従来の技術】
強化繊維複合材料からなる管状体は、ゴルフクラブシャフト、釣り竿など様々な用途に使用されている。
【0003】
ゴルフクラブシャフトに関して、近年では軽量化の流れが一段と加速されている。軽量化はシャフトの曲げ破断強度の低下を招くことから、これまで優れた曲げ破断強度を有する軽量シャフトを製造することは困難だった。
【0004】
釣り竿では穂先部分が柔軟性を有することが求められる。優れた柔軟性を得るためには穂先部分の肉厚を薄くする方法が有るが、同時に曲げ破断強度の低下を招くことになることから、これまで穂先部分において優れた曲げ破断強度と柔軟性を両立させた釣り竿を製造することは困難だった。
【0005】
【発明が解決しようとする課題】
本発明の目的は、これら従来の課題を解消し、優れた曲げ破断強度、曲げ破断たわみ、衝撃吸収エネルギーを有する繊維強化複合材料製管状体を提供することにある。
【0006】
【課題を解決するための手段】
本発明の上記目的は、次に示す繊維強化複合材料製管状体によって達成される。すなわち本発明は、強化繊維が管状体の長手方向に対してほぼ直角である±70°〜90°で配向した強化繊維プリプレグを積層してなるフープ層、強化繊維が該管状体の長手方向に対してほぼ平行である0°〜±5°で配向した強化繊維プリプレグを積層してなるストレート層及び前記管状体の長手方向に対して0°〜±15°で配向した炭素繊維を含む高圧縮破断ひずみ層を含み、該高圧縮破断ひずみ層の炭素繊維の配向方向に対する圧縮破断ひずみが1〜5%かつ該炭素繊維の繊維体積含有率を60%として換算した炭素繊維の配向方向の圧縮弾性率が3〜120GPaであることを特徴とする繊維強化複合材料製管状体に関するものである。
【0007】
【発明の実施の形態】
本発明の繊維強化複合材料製管状体は、強化繊維が管状体の長手方向(軸方向)に対してほぼ平行である0°〜±5°で配向している強化繊維プリプレグを積層してなるストレート層を有することができる。
【0008】
ここで、本発明で言う積層数とはストレート層などの特定の層が平均して何層積層しているか、即ち管状体の軸の周りを何回巻回しているかを意味する。
前記管状体の用途、具体的にはゴルフシャフトなどの用途によっては、本発明の管状体は、強化繊維が該管状体の長手方向に対して±20°〜±70°で配向した強化繊維プリプレグが積層されることにより形成される斜交層を有することができる。
【0009】
該斜交層には通常、強化繊維が前記管状体の長手方向に対して+20°〜+70°で配向した強化繊維プリプレグが積層されて形成される正の斜交層と、強化繊維が前記管状体の長手方向に対して−20°〜−70°で配向した強化繊維プリプレグが積層されて形成される負の斜交層の、正負の斜交層がある。
【0010】
正の斜交層または負の斜交層を1層ごとまたは複数層ごとに交互に積層することができる。また、正の斜交層と負の斜交層の積層数は互いに異なっていてもよい。
【0011】
前記管状体の他の用途、具体的には釣り竿などの用途によっては、本発明の管状体は、強化繊維が前記管状体の長手方向に対してほぼ直角である±70°〜90°で配向した強化繊維プリプレグが積層されることにより形成されるフープ層を有することもできる。
【0012】
これら強化繊維プリプレグに使用される強化繊維としては、炭素繊維、ガラス繊維、アラミド繊維、セラミック繊維、ボロン繊維、金属繊維などを挙げることができるが、好ましくはピッチ系炭素繊維あるいはポリアクリロニトリル系炭素繊維を使用することができる。前記強化繊維プリプレグに使用されるマトリックス樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、シリコーン樹脂、ポリウレタン樹脂、ユリア樹脂、メラミン樹脂などから選ばれる熱硬化性樹脂あるいは熱可塑性樹脂が挙げられ、好ましくはエポキシ樹脂が挙げられる。
【0013】
これら強化繊維プリプレグに使用される炭素繊維として、前記炭素繊維を炭素繊維の配向方向に対する圧縮破断ひずみが0.05%以上1.0%未満かつ前記炭素繊維の繊維体積含有率を60%とした炭素繊維の配向方向の圧縮弾性率が125GPa〜600GPaである炭素繊維を用いることができる。
【0014】
本発明はかかる構成の繊維強化複合材料製管状体において、圧縮破断ひずみが1.0〜5.0%かつ圧縮弾性率が3GPa〜120GPaである炭素繊維を含むプリプレグを積層して高圧縮破断ひずみ層を形成することを特徴とするものである。
【0015】
該高圧縮破断ひずみ層に使用される炭素繊維としては、圧縮破断ひずみが1〜5%、好ましくは1.5〜5%、より好ましくは1.7〜5%、最も好ましくは2〜5%の炭素繊維を用いることができる。
【0016】
また、該高圧縮破断ひずみ層に使用される炭素繊維としては圧縮弾性率が3GPa〜120GPa、好ましくは3GPa〜100GPaの炭素繊維が望ましい。
【0017】
また、該高圧縮破断ひずみ層に使用される炭素繊維としては、密度が1.9g/cm3 未満、好ましくは1.8g/cm3 未満の炭素繊維を用いることができる。密度がこの1.9g/cm3 より大きい場合には、管状体の重量を増加させることになり好ましくない。
【0018】
さらに、該高圧縮破断ひずみ層に使用される炭素繊維としては、ストランドのフィラメント数が24000本以下、好ましくは12000本以下、より好ましくは6000本以下、最も好ましくは3000本以下の炭素繊維を用いることができる。
【0019】
ストランドのフィラメント数がこの24000本より大きい場合には、マトリックス樹脂を含浸させたプリプレグを製造するうえで、特に炭素繊維の目付が小さいプリプレグを製造する場合に目開きを生じやすくなるため好ましくない。
【0020】
前記高圧縮破断ひずみ層に用いられる炭素繊維プリプレグに使用される炭素繊維としては、ピッチ系炭素繊維、ポリアクリロニトリル系炭素繊維のいずれも用いることができ、特にピッチ系炭素繊維が好ましい。また高圧縮破断ひずみ層に用いられる炭素繊維プリプレグに使用されるマトリックス樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、シリコーン樹脂、ポリウレタン樹脂、ユリア樹脂、メラミン樹脂などから選ばれる熱硬化性樹脂あるいは熱可塑性樹脂が挙げられ、好ましくはエポキシ樹脂が挙げられる。
【0021】
本発明においてプリプレグにおける強化繊維の目付には特に制限はないが、通常、20〜300g/m2 、好ましくは50〜200g/m2 の範囲のものが用いられる。強化繊維目付がこの300g/m2 より大きいと管状体の設計時における自由度が制限されるため好ましくない。また、強化繊維目付がこの20g/m2 より小さいと管状体の製造時にプリプレグに皺(しわ)が生じやすいため好ましくない。
【0022】
前記高圧縮破断ひずみ層は、優れた曲げ破断強度を有する繊維強化複合材料製管状体を提供するため、炭素繊維が管状体の長手方向に対して0°〜±15°、好ましくは管状体の長手方向に対してほぼ平行である0°〜±5°で配向した炭素繊維プリプレグが積層されることにより形成される。
【0023】
前記高圧縮破断ひずみ層を形成するプリプレグは、本発明の繊維強化複合材料製管状体の肉厚方向においていずれの位置に積層してもよいが、好ましくは該管状体のより外側、より好ましくは該管状体の最外層となるように積層することができる。
【0024】
また、該高圧縮破断ひずみ層を形成するプリプレグとしては、2つ以上に分けられた、それぞれが同一形状若しくは非同一形状のプリプレグを用いることができる。
【0025】
前記高圧縮破断ひずみ層は、斜交層、ストレート層、フープ層のうちのいずれか1種、あるいは2種以上と組み合わせて使用することができる。前記管状体の半径方向における肉厚の前記高圧縮破断ひずみ層に対するその他の層、即ち斜交層、ストレート層、フープ層のうちのいずれか1種、あるいは2種以上と組み合わせてなる層の比率は、20:1〜1:20とすることができる。
【0026】
本発明における強化繊維プリプレグとしては織物プリプレグ、一方向プリプレグを使用することができ、一方向プリプレグが好ましく用いられる。該一方向プリプレグは強化繊維を固定する目的で横糸を疎に通すこともできる。
【0027】
本発明の管状成形体の高圧縮破断ひずみ層、斜交層、ストレート層、フープ層各層のVfは通常、40〜90vol%、好ましくは50〜75vol%とすることができる。
【0028】
本発明では、強化繊維プリプレグにガラス繊維クロスを重ねて得られたものを巻き付けて管状体を形成し、管状体の圧潰強度を増すことができる。
本発明の繊維強化複合材料製管状体はテーパを有する管状体でもテーパを有さない軸に平行な管状体でも良い。
【0029】
【実施例】
以下に実施例を示すが、本発明はこれにより限定されるものではない。
本発明における三点曲げ試験は、支点間距離300mm、圧子径R75mm、支点径R12.5mm、試験速度5mm/minの条件のもとで行った。
【0030】
また、本発明における衝撃試験は、米倉製作所製落錘型衝撃試験機(IITM−18型)を使用し、支点間距離300mm、圧子径R75mm 支点径R12.5mm、落錘重量766g、落下高さ1800mm、衝突時落錘速度6.0m/secの条件のもとで行った。
【0031】
圧縮弾性率、圧縮破断ひずみは繊維強化複合材料の圧縮試験法ASTM D3410に準拠して行い、圧縮荷重と試験片の断面積から計算される圧縮応力と圧縮試験片に貼り付けたひずみゲージから得られる圧縮ひずみとから圧縮弾性率を測定した。なお、本発明における圧縮弾性率の値はVf60%換算値である。また、圧縮破断ひずみはコンポジットの圧縮試験における実測値である。引張弾性率の値は、ASTM D3039に準拠して測定して得られた値である。
【0032】
実施例1
直径が6.0mm、長さが1200mmのマンドレルに、離型剤としてワックスを塗布した後、斜交層として東レ(株)製P3052S−12(商品名、ポリアクリロニトリル系炭素繊維T700S、引張弾性率230GPa、炭素繊維目付125g/m2 、エポキシ樹脂含有量33wt%)のプリプレグを使用し、それぞれマンドレル上を3周するようにこのプリプレグを裁断して得られた正負2枚の斜交層プリプレグを、正負の斜交層プリプレグの炭素繊維がマンドレルの長手方向に対してそれぞれ+45°、−45°で配向するように、マンドレルの半周分に相当する距離ほど一方を他方からずらして重ねた後、マンドレルに巻き付けた。
【0033】
ストレート層として東レ(株)製P8055S−12(商品名、ポリアクリロニトリル系炭素繊維M30S、引張弾性率300GPa、炭素繊維目付125g/m2 、エポキシ樹脂含有量24wt%)のプリプレグを使用し、このプリプレグが斜交層上を4周するようにこのプリプレグを裁断して得られたストレート層プリプレグ(1枚)を、該プリプレグの強化繊維がマンドレルの長手方向と平行となるように斜交層の上に巻き付けた。
【0034】
さらに高圧縮破断ひずみ層として日本グラファイトファイバー(株)製E0526A−10(商品名、ピッチ系炭素繊維XN−05、引張弾性率50GPa、炭素繊維目付100g/m2 、エポキシ樹脂含有量37wt%、圧縮破断ひずみ2.9%、圧縮弾性率32GPa)のプリプレグを使用し、このプリプレグがストレート層上を3周するようにこのプリプレグを裁断して得られた高圧縮破断ひずみ層プリプレグ(1枚)を、このプリプレグの強化繊維がマンドレルの長手方向と平行となるように、ストレート層の上に巻き付けた。以上の積層(巻き付け)により得られた積層体にシュリンクテープを巻き付け、130℃に加熱し脱泡硬化した後、マンドレルを抜きパイプを得た。図1にマンドレルを抜き取る前の管状体の断面図を示す。図中、1はマンドレルの平面図を示し、2aは正の斜交層プリプレグ、2bは負の斜交層プリプレグ、3はストレート層プリプレグ、4は高圧縮破断ひずみ層プリプレグそれぞれの平面図を示す。パイプの外径は9.0mmだった。表1に、得られたパイプの三点曲げ物性および衝撃物性を示す。
【0035】
表1に示すように、実施例1のパイプは優れた三点曲げ破断荷重(曲げ破断強度のこと)、三点曲げ破断たわみ、衝撃吸収エネルギーを有していた。
本実施例では、マンドレルに斜交層、ストレート層の順に積層しているが、ストレート層、斜交層の順に積層してもよい。
【0036】
比較例1
高圧縮破断ひずみ層として東レ(株)製P3052S−12(商品名、ポリアクリロニトリル系炭素繊維T700S、引張弾性率230GPa、炭素繊維目付125g/m2 、エポキシ樹脂含有量33wt%、圧縮破断ひずみ1.4%、圧縮弾性率130GPa)のプリプレグを使用した以外は、実施例1と同様にパイプを成形した。
【0037】
表1に示すように、比較例1のパイプは、三点曲げ破断荷重、三点曲げ破断たわみ、衝撃吸収エネルギーが低く、劣っていた。
【0038】
比較例2
高圧縮破断ひずみ層として新日鐵化学(株)製GE−100(商品名、ガラス繊維強化プリプレグ、引張弾性率73GPa、ガラス繊維目付100g/m2 、エポキシ樹脂含有量35wt%、圧縮破断ひずみ1.3%、圧縮弾性率44GPa)のプリプレグを使用し、このプリプレグがストレート層上を4周するようにこのプリプレグを裁断して得られた高圧縮破断ひずみ層プリプレグを使用した以外は、実施例1と同様にパイプを成形した。
表1に示すように、比較例2のパイプは、三点曲げ破断荷重、三点曲げ破断たわみ、衝撃吸収エネルギーが低く、劣っていた。
【0039】
実施例2
全長1200mm、細径側直径6mm、太径側直径13.2mmのテーパを有するマンドレルに離型剤としてワックスを塗布した後、斜交層として東レ(株)製P3052S−12(商品名、ポリアクリロニトリル系炭素繊維T700S、引張弾性率230GPa、炭素繊維目付125g/m2 、エポキシ樹脂含有量33wt%)のプリプレグを使用し、それぞれマンドレル上を2.5周するようにこのプリプレグを裁断して得られた2枚の正負の斜交層プリプレグを、正負の斜交層プリプレグの炭素繊維がマンドレルの長手方向に対してそれぞれ+45°、−45°で配向するように、マンドレルの半周分に相当する距離ほど一方を他方からずらして重ねた後、マンドレルに巻き付けた。
【0040】
ストレート層として東レ(株)製P8055S−12(商品名、ポリアクリロニトリル系炭素繊維M30S、引張弾性率300GPa、炭素繊維目付125g/m2 、エポキシ樹脂含有量24wt%)のプリプレグを使用し、このプリプレグが斜交層上を3周するようにこのプリプレグを裁断して得られたストレート層プリプレグ(1枚)を、該プリプレグの強化繊維がマンドレルの長手方向とほぼ平行になるように斜交層の上に巻き付けた。
【0041】
さらに高圧縮破断ひずみ層として日本グラファイトファイバー(株)製E1526C−10(商品名、ピッチ系炭素繊維XN−15、引張弾性率150GPa、炭素繊維目付100g/m2 、エポキシ樹脂含有量33wt%、圧縮破断ひずみ1.8%、圧縮弾性率85GPa)のプリプレグを使用し、このプリプレグがストレート層上を2周するようにこのプリプレグを裁断して、高圧縮破断ひずみ層プリプレグを得た。該プリプレグの強化繊維がマンドレルの長手方向とほぼ平行となるように高圧縮破断ひずみ層プリプレグ(1枚)をストレート層の上に巻き付けた。
【0042】
以上の積層により得られた積層体にシュリンクテープを巻き付け、130℃に加熱し脱泡硬化した後、マンドレルを抜きシャフトを得た。図2にマンドレルを抜く前の管状体の断面図を示す。図中1はマンドレルの平面図を示し、2aは正の斜交層プリプレグ、2bは負の斜交層プリプレグ、3はストレート層プリプレグ、eは高圧縮破断ひずみ層プリプレグそれぞれの平面図を示す。
【0043】
シャフトの細径側端部での外径は8.2mm、太径側端部での外径は15.5mmだった。さらに該シャフトを細径側端部より400mm、800mm部分で切断し、直径が異なる長さ400mmの3種類の試験体を得た。3種類の試験体をそれぞれシャフトからの切り出し位置によって、細径部分、中央部分、太径部分とした。表2に、得られたシャフトの三点曲げ物性を示す。
表2に示すように、実施例2のシャフトは、細径部分、中央部分、太径部分のいずれにおいても優れた三点曲げ破断荷重を有していた。
【0044】
比較例3
高圧縮破断ひずみ層として東レ(株)製P8055S−12(商品名、ポリアクリロニトリル系炭素繊維M30S、引張弾性率300GPa、炭素繊維目付125g/m2、エポキシ樹脂含有量 24wt%、圧縮破断ひずみ0.9%、圧縮弾性率175GPa)のプリプレグを使用した以外は、実施例2と同様にシャフトを成形した。
【0045】
表2に示すように、比較例3のシャフトは、細径部分、中央部分、太径部分のいずれにおいても三点曲げ破断荷重が低く、劣っていた。
【0046】
【表1】

Figure 0003771360
【0047】
【表2】
Figure 0003771360
【0048】
【発明の効果】
以上説明したように、本発明により優れた曲げ破断強度、曲げ破断たわみ、衝撃吸収エネルギーを有する繊維強化複合材料製管状体を得ることができる。
【図面の簡単な説明】
【図1】 マンドレルや各層に用いるプリプレグそれぞれの平面図および実施例1で製造した管状体の断面図である。
【図2】 マンドレルや各層に用いるプリプレグそれぞれの平面図および実施例2で製造した管状体の断面図である。
【符号の説明】
1:マンドレル、2a:正の斜交層プリプレグ、2b:負の斜交層プリプレグ、3:ストレート層プリプレグ、4:高圧縮破断ひずみ層プリプレグ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tubular body made of fiber reinforced composite material.
[0002]
[Prior art]
Tubular bodies made of reinforced fiber composite materials are used in various applications such as golf club shafts and fishing rods.
[0003]
In recent years, the trend of weight reduction for golf club shafts has been further accelerated. Since weight reduction causes a decrease in the bending rupture strength of the shaft, it has been difficult to produce a lightweight shaft having an excellent bending rupture strength.
[0004]
A fishing rod is required to have a flexible tip part. In order to obtain excellent flexibility, there is a method of reducing the thickness of the tip part, but at the same time, the bending break strength is reduced, so that excellent bending break strength and flexibility have been achieved in the tip part so far. It was difficult to produce a fishing rod that was compatible.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to solve these conventional problems and to provide a fiber-reinforced composite material tubular body having excellent bending rupture strength, bending rupture deflection, and impact absorption energy.
[0006]
[Means for Solving the Problems]
The above object of the present invention is achieved by the following fiber-reinforced composite material tubular body. That is, the present invention provides a hoop layer formed by laminating reinforcing fiber prepregs in which reinforcing fibers are oriented at ± 70 ° to 90 ° that are substantially perpendicular to the longitudinal direction of the tubular body , and the reinforcing fibers in the longitudinal direction of the tubular body. High compression including a straight layer formed by laminating reinforcing fiber prepregs oriented at 0 ° to ± 5 ° which are substantially parallel to each other and carbon fibers oriented at 0 ° to ± 15 ° with respect to the longitudinal direction of the tubular body Compressive elasticity in the orientation direction of carbon fibers, including a fracture strain layer, wherein the compression fracture strain in the orientation direction of carbon fibers of the high compression fracture strain layer is 1 to 5% and the fiber volume content of the carbon fibers is converted to 60%. The present invention relates to a fiber-reinforced composite material tubular body having a rate of 3 to 120 GPa.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The tubular body made of fiber-reinforced composite material of the present invention is formed by laminating reinforcing fiber prepregs in which reinforcing fibers are oriented at 0 ° to ± 5 ° that are substantially parallel to the longitudinal direction (axial direction) of the tubular body. It can have a straight layer.
[0008]
Here, the number of layers referred to in the present invention means an average number of layers of specific layers such as a straight layer, that is, how many turns are wound around the axis of the tubular body.
Depending on the use of the tubular body, specifically a golf shaft or the like, the tubular body of the present invention has a reinforcing fiber prepreg in which reinforcing fibers are oriented at ± 20 ° to ± 70 ° with respect to the longitudinal direction of the tubular body. It is possible to have an oblique layer formed by laminating.
[0009]
The oblique layer is usually formed by laminating reinforcing fiber prepregs in which reinforcing fibers are oriented at + 20 ° to + 70 ° with respect to the longitudinal direction of the tubular body, and reinforcing fibers are formed in the tubular shape. There is a positive and negative oblique layer of a negative oblique layer formed by laminating reinforcing fiber prepregs oriented at −20 ° to −70 ° with respect to the longitudinal direction of the body.
[0010]
The positive oblique layer or the negative oblique layer can be alternately laminated every one layer or every plural layers. Further, the number of positive and negative oblique layers may be different from each other.
[0011]
Depending on other uses of the tubular body, in particular, fishing rods, etc., the tubular body of the present invention is oriented at ± 70 ° to 90 ° where the reinforcing fibers are substantially perpendicular to the longitudinal direction of the tubular body. It can also have a hoop layer formed by laminating the reinforced fiber prepreg.
[0012]
Examples of the reinforcing fibers used in these reinforcing fiber prepregs include carbon fibers, glass fibers, aramid fibers, ceramic fibers, boron fibers, metal fibers, etc., preferably pitch-based carbon fibers or polyacrylonitrile-based carbon fibers. Can be used. Examples of the matrix resin used for the reinforcing fiber prepreg include a thermosetting resin or a thermoplastic resin selected from an epoxy resin, an unsaturated polyester resin, a phenol resin, a silicone resin, a polyurethane resin, a urea resin, a melamine resin, and the like. Preferably, an epoxy resin is used.
[0013]
As carbon fibers used in these reinforced fiber prepregs, the carbon fiber has a compression breaking strain of 0.05% or more and less than 1.0% with respect to the orientation direction of the carbon fibers, and the fiber volume content of the carbon fibers is 60%. Carbon fibers having a compressive modulus in the orientation direction of the carbon fibers of 125 GPa to 600 GPa can be used.
[0014]
The present invention provides a fiber-reinforced composite material tubular body having such a configuration, in which a prepreg containing carbon fibers having a compression breaking strain of 1.0 to 5.0% and a compression modulus of 3 GPa to 120 GPa is laminated to obtain a high compression breaking strain. A layer is formed.
[0015]
The carbon fiber used in the high compression breaking strain layer has a compression breaking strain of 1 to 5%, preferably 1.5 to 5%, more preferably 1.7 to 5%, most preferably 2 to 5%. The carbon fiber can be used.
[0016]
Moreover, as a carbon fiber used for this high compression fracture | rupture strain layer, the compression elastic modulus is 3 GPa-120 GPa, Preferably 3 GPa-100 GPa carbon fiber is desirable.
[0017]
Moreover, as a carbon fiber used for this high compression breaking strain layer, a carbon fiber with a density of less than 1.9 g / cm 3 , preferably less than 1.8 g / cm 3 can be used. When the density is larger than 1.9 g / cm 3 , the weight of the tubular body is increased, which is not preferable.
[0018]
Further, as the carbon fiber used for the high compression breaking strain layer, a carbon fiber having a strand number of 24000 or less, preferably 12000 or less, more preferably 6000 or less, and most preferably 3000 or less is used. be able to.
[0019]
If the number of filaments in the strand is larger than 24,000, it is not preferable because when the prepreg impregnated with the matrix resin is produced, particularly when a prepreg having a small basis weight of carbon fiber is produced, openings are likely to occur.
[0020]
As the carbon fiber used for the carbon fiber prepreg used in the high compression breaking strain layer, both pitch-based carbon fiber and polyacrylonitrile-based carbon fiber can be used, and pitch-based carbon fiber is particularly preferable. The matrix resin used for the carbon fiber prepreg used in the high compression fracture strain layer is thermosetting selected from epoxy resin, unsaturated polyester resin, phenol resin, silicone resin, polyurethane resin, urea resin, melamine resin, etc. Resin or thermoplastic resin is mentioned, Preferably an epoxy resin is mentioned.
[0021]
There is no particular limitation on the weight of the reinforcing fibers in the prepreg in the present invention, usually, 20 to 300 g / m 2, preferably is used in the range of 50 to 200 g / m 2. If the basis weight of the reinforcing fiber is larger than 300 g / m 2, the degree of freedom in designing the tubular body is limited, which is not preferable. Further, if the basis weight of the reinforcing fiber is less than 20 g / m 2 , wrinkles are likely to occur in the prepreg during the production of the tubular body, which is not preferable.
[0022]
In order to provide a fiber-reinforced composite material tubular body having an excellent bending fracture strength, the high compressive breaking strain layer has a carbon fiber of 0 ° to ± 15 ° with respect to the longitudinal direction of the tubular body, preferably a tubular body. It is formed by laminating carbon fiber prepregs oriented at 0 ° to ± 5 ° which are substantially parallel to the longitudinal direction.
[0023]
The prepreg for forming the high compressive fracture strain layer may be laminated at any position in the thickness direction of the fiber-reinforced composite material tubular body of the present invention, preferably outside the tubular body, more preferably It can laminate | stack so that it may become the outermost layer of this tubular body.
[0024]
Moreover, as a prepreg which forms this high compression fracture | rupture strain layer, the prepreg divided into two or more and each is the same shape or a non-identical shape can be used.
[0025]
The high compressive fracture strain layer can be used in combination with one or more of an oblique layer, a straight layer, and a hoop layer. Ratio of other layers to the high compression fracture strain layer having a thickness in the radial direction of the tubular body, that is, any one of oblique layers, straight layers, hoop layers, or a combination of two or more layers Can be 20: 1 to 1:20.
[0026]
As the reinforcing fiber prepreg in the present invention, a woven prepreg or a unidirectional prepreg can be used, and a unidirectional prepreg is preferably used. The unidirectional prepreg can pass a weft thread loosely for the purpose of fixing reinforcing fibers.
[0027]
Vf of each layer of the high compression fracture strain layer, the oblique layer, the straight layer, and the hoop layer of the tubular molded body of the present invention can be usually 40 to 90 vol%, preferably 50 to 75 vol%.
[0028]
In the present invention, a tubular body can be formed by winding a reinforcing fiber prepreg obtained by overlapping glass fiber cloths, and the crushing strength of the tubular body can be increased.
The tubular body made of fiber-reinforced composite material of the present invention may be a tubular body having a taper or a tubular body parallel to an axis having no taper.
[0029]
【Example】
Examples are shown below, but the present invention is not limited thereby.
The three-point bending test in the present invention was performed under the conditions of a distance between fulcrums of 300 mm, an indenter diameter of R75 mm, a fulcrum diameter of R12.5 mm, and a test speed of 5 mm / min.
[0030]
In addition, the impact test in the present invention uses a drop weight impact tester (IITM-18 type) manufactured by Yonekura Seisakusho, distance between fulcrums of 300 mm, indenter diameter R75 mm, fulcrum diameter R12.5 mm, drop weight weight 766 g, drop height. The test was performed under the conditions of 1800 mm and a falling weight speed at impact of 6.0 m / sec.
[0031]
The compressive modulus and compressive breaking strain are measured in accordance with ASTM D3410, a compression test method for fiber reinforced composite materials, and obtained from the compressive stress calculated from the cross-sectional area of the compressive load and the test piece and the strain gauge attached to the test piece. The compression elastic modulus was measured from the compression strain. In addition, the value of the compression elastic modulus in this invention is a Vf60% conversion value. The compression breaking strain is an actual measurement value in a compression test of the composite. The value of the tensile elastic modulus is a value obtained by measurement according to ASTM D3039.
[0032]
Example 1
After applying wax as a mold release agent to a mandrel having a diameter of 6.0 mm and a length of 1200 mm, as an oblique layer, P3052S-12 manufactured by Toray Industries, Inc. (trade name, polyacrylonitrile-based carbon fiber T700S, tensile elastic modulus 230 GPa, carbon fiber basis weight 125 g / m 2 , epoxy resin content 33 wt%) prepreg was used, and each prepreg was obtained by cutting the prepreg so as to make three rounds on the mandrel. After the carbon fiber of the positive and negative oblique layer prepreg is oriented at + 45 ° and −45 ° with respect to the longitudinal direction of the mandrel, respectively, the distance corresponding to the half circumference of the mandrel is shifted from the other and overlapped. Wound around a mandrel.
[0033]
A prepreg made of P8055S-12 (trade name, polyacrylonitrile-based carbon fiber M30S, tensile elastic modulus 300 GPa, carbon fiber basis weight 125 g / m 2 , epoxy resin content 24 wt%) manufactured by Toray Industries, Inc. was used as the straight layer. Straight prepreg (1 sheet) obtained by cutting this prepreg so that it wraps around the oblique layer on the oblique layer so that the reinforcing fiber of the prepreg is parallel to the longitudinal direction of the mandrel. Wound around.
[0034]
Furthermore, E0526A-10 (trade name, pitch-based carbon fiber XN-05, tensile elastic modulus 50 GPa, carbon fiber basis weight 100 g / m 2 , epoxy resin content 37 wt%, compression made by Nippon Graphite Fiber Co., Ltd. A prepreg having a breaking strain of 2.9% and a compressive elastic modulus of 32 GPa is used, and a high compression breaking strain layer prepreg (one sheet) obtained by cutting the prepreg so that the prepreg makes three rounds on the straight layer is obtained. The prepreg reinforcing fiber was wound on the straight layer so as to be parallel to the longitudinal direction of the mandrel. A shrink tape was wound around the laminate obtained by the above lamination (winding), heated to 130 ° C. and defoamed and cured, and then the mandrel was pulled out to obtain a pipe. FIG. 1 shows a cross-sectional view of the tubular body before the mandrel is extracted. In the figure, 1 is a plan view of a mandrel, 2a is a positive oblique layer prepreg, 2b is a negative oblique layer prepreg, 3 is a straight layer prepreg, and 4 is a plan view of a high compression fracture strained layer prepreg. . The outer diameter of the pipe was 9.0 mm. Table 1 shows the three-point bending physical properties and impact physical properties of the obtained pipe.
[0035]
As shown in Table 1, the pipe of Example 1 had excellent three-point bending fracture load (bending fracture strength), three-point bending fracture deflection, and impact absorption energy.
In this embodiment, the oblique layer and the straight layer are laminated on the mandrel in this order, but the straight layer and the oblique layer may be laminated in this order.
[0036]
Comparative Example 1
P3052S-12 (trade name, polyacrylonitrile-based carbon fiber T700S, tensile elastic modulus 230 GPa, carbon fiber basis weight 125 g / m 2 , epoxy resin content 33 wt%, compression fracture strain 1. A pipe was molded in the same manner as in Example 1 except that a prepreg having 4% compression modulus of 130 GPa was used.
[0037]
As shown in Table 1, the pipe of Comparative Example 1 was inferior because of its low three-point bending break load, three-point bending break deflection, and impact absorption energy.
[0038]
Comparative Example 2
GE-100 (trade name, glass fiber reinforced prepreg, tensile elastic modulus 73 GPa, glass fiber basis weight 100 g / m 2 , epoxy resin content 35 wt%, compression fracture strain 1 as a high compression fracture strain layer Except for using a prepreg having a .3% compression modulus of 44 GPa) and using a high compression fracture strained layer prepreg obtained by cutting the prepreg so that the prepreg makes four rounds on the straight layer. A pipe was molded as in 1.
As shown in Table 1, the pipe of Comparative Example 2 was inferior because of low three-point bending break load, three-point bending break deflection, and impact absorption energy.
[0039]
Example 2
After applying wax as a mold release agent to a mandrel having a total length of 1200 mm, a narrow diameter side diameter of 6 mm, and a large diameter side diameter of 13.2 mm, P3052S-12 (trade name, polyacrylonitrile) manufactured by Toray Industries, Inc. Obtained by using a prepreg having a carbon fiber T700S, a tensile elastic modulus of 230 GPa, a carbon fiber basis weight of 125 g / m 2 , and an epoxy resin content of 33 wt%, and cutting the prepreg to make 2.5 turns on the mandrel. Distance between the two positive and negative oblique layer prepregs and the half circumference of the mandrel so that the carbon fibers of the positive and negative oblique layer prepregs are oriented at + 45 ° and −45 ° with respect to the longitudinal direction of the mandrel, respectively. After one side was shifted from the other, it was wrapped around a mandrel.
[0040]
A prepreg made of P8055S-12 (trade name, polyacrylonitrile-based carbon fiber M30S, tensile elastic modulus 300 GPa, carbon fiber basis weight 125 g / m 2 , epoxy resin content 24 wt%) manufactured by Toray Industries, Inc. was used as the straight layer. Straight layer prepreg obtained by cutting this prepreg so that it circulates three times on the oblique layer. The prepreg reinforcing fiber is formed so that the reinforcing fiber of the prepreg is substantially parallel to the longitudinal direction of the mandrel. Wrapped on top.
[0041]
Furthermore, as a high compressive breaking strain layer, Nippon Graphite Fiber Co., Ltd. E1526C-10 (trade name, pitch-based carbon fiber XN-15, tensile elastic modulus 150 GPa, carbon fiber basis weight 100 g / m 2 , epoxy resin content 33 wt%, compression A prepreg having a breaking strain of 1.8% and a compression elastic modulus of 85 GPa was used, and the prepreg was cut so that the prepreg made two rounds on the straight layer to obtain a high compression breaking strain layer prepreg. A high compression breaking strain layer prepreg (1 sheet) was wound on the straight layer so that the reinforcing fibers of the prepreg were substantially parallel to the longitudinal direction of the mandrel.
[0042]
A shrink tape was wound around the laminate obtained by the above lamination, heated to 130 ° C. and defoamed and cured, and then the mandrel was removed to obtain a shaft. FIG. 2 shows a cross-sectional view of the tubular body before the mandrel is pulled out. In the figure, 1 is a plan view of the mandrel, 2a is a positive oblique layer prepreg, 2b is a negative oblique layer prepreg, 3 is a straight layer prepreg, and e is a plan view of each of the high compression fracture strained layer prepregs.
[0043]
The outer diameter at the small diameter end of the shaft was 8.2 mm, and the outer diameter at the large diameter end was 15.5 mm. Further, the shaft was cut at 400 mm and 800 mm portions from the end portion on the small diameter side to obtain three types of test bodies having a length of 400 mm with different diameters. Three types of specimens were made into a small diameter part, a central part, and a large diameter part, respectively, depending on the cut-out position from the shaft. Table 2 shows the three-point bending physical properties of the obtained shaft.
As shown in Table 2, the shaft of Example 2 had an excellent three-point bending fracture load in any of the small diameter portion, the central portion, and the large diameter portion.
[0044]
Comparative Example 3
P8055S-12 (trade name, polyacrylonitrile carbon fiber M30S, tensile elastic modulus 300 GPa, carbon fiber basis weight 125 g / m 2, epoxy resin content 24 wt%, compression fracture strain 0.9 as a high compression fracture strain layer manufactured by Toray Industries, Inc. %, A shaft was molded in the same manner as in Example 2 except that a prepreg having a compression modulus of 175 GPa was used.
[0045]
As shown in Table 2, the shaft of Comparative Example 3 was inferior because the three-point bending fracture load was low in any of the small diameter portion, the central portion, and the large diameter portion.
[0046]
[Table 1]
Figure 0003771360
[0047]
[Table 2]
Figure 0003771360
[0048]
【The invention's effect】
As described above, a fiber-reinforced composite material tubular body having excellent bending rupture strength, bending rupture deflection, and impact absorption energy can be obtained according to the present invention.
[Brief description of the drawings]
FIG. 1 is a plan view of a prepreg used for a mandrel and each layer and a cross-sectional view of a tubular body manufactured in Example 1. FIG.
2 is a plan view of a prepreg used for a mandrel and each layer, and a cross-sectional view of a tubular body manufactured in Example 2. FIG.
[Explanation of symbols]
1: Mandrel, 2a: Positive oblique layer prepreg, 2b: Negative oblique layer prepreg, 3: Straight layer prepreg, 4: High compression fracture strained layer prepreg.

Claims (2)

強化繊維が管状体の長手方向に対してほぼ直角である±70°〜90°で配向した強化繊維プリプレグを積層してなるフープ層、強化繊維が該管状体の長手方向に対してほぼ平行である0°〜±5°で配向した強化繊維プリプレグを積層してなるストレート層及び前記管状体の長手方向に対して0°〜±15°で配向した炭素繊維を含む高圧縮破断ひずみ層を含み、該高圧縮破断ひずみ層の炭素繊維の配向方向に対する圧縮破断ひずみが1〜5%かつ該炭素繊維の繊維体積含有率を60%として換算した炭素繊維の配向方向の圧縮弾性率が3〜120GPaであることを特徴とする繊維強化複合材料製管状体。 A hoop layer formed by laminating reinforcing fiber prepregs whose reinforcing fibers are oriented at ± 70 ° to 90 ° that are substantially perpendicular to the longitudinal direction of the tubular body, and the reinforcing fibers are substantially parallel to the longitudinal direction of the tubular body. A straight layer formed by laminating reinforcing fiber prepregs oriented at 0 ° to ± 5 ° and a high compression breaking strain layer containing carbon fibers oriented at 0 ° to ± 15 ° with respect to the longitudinal direction of the tubular body The compression elastic modulus in the orientation direction of the carbon fiber is 3 to 120 GPa in terms of the compression fracture strain in the orientation direction of the carbon fiber of the high compression breaking strain layer of 1 to 5% and the fiber volume content of the carbon fiber converted to 60%. A tubular body made of a fiber-reinforced composite material, characterized in that 前記管状体がさらに斜交層を含んでいることを特徴とする請求項1に記載の繊維強化複合材料製管状体。The tubular body made of fiber-reinforced composite material according to claim 1, wherein the tubular body further includes an oblique layer.
JP30951797A 1997-10-24 1997-10-24 Tubular body made of fiber reinforced composite material Expired - Fee Related JP3771360B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP30951797A JP3771360B2 (en) 1997-10-24 1997-10-24 Tubular body made of fiber reinforced composite material
KR1019980044255A KR100298101B1 (en) 1997-10-24 1998-10-22 Fiber Reinforced Composite Material
CN98124563A CN1131139C (en) 1997-10-24 1998-10-23 Tubelike body made of fiber-reinforced composite material
TW087117620A TW429216B (en) 1997-10-24 1998-10-23 A tubular article made from fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30951797A JP3771360B2 (en) 1997-10-24 1997-10-24 Tubular body made of fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JPH11123782A JPH11123782A (en) 1999-05-11
JP3771360B2 true JP3771360B2 (en) 2006-04-26

Family

ID=17993966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30951797A Expired - Fee Related JP3771360B2 (en) 1997-10-24 1997-10-24 Tubular body made of fiber reinforced composite material

Country Status (4)

Country Link
JP (1) JP3771360B2 (en)
KR (1) KR100298101B1 (en)
CN (1) CN1131139C (en)
TW (1) TW429216B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4249998B2 (en) * 2002-03-15 2009-04-08 Sriスポーツ株式会社 Golf club shaft
JP4314785B2 (en) * 2002-06-14 2009-08-19 村田機械株式会社 Laminated structure of braid
JP2004081230A (en) * 2002-08-22 2004-03-18 Sumitomo Rubber Ind Ltd Golf club shaft
JP4533063B2 (en) * 2004-09-14 2010-08-25 Sriスポーツ株式会社 Golf club shaft
JP5479832B2 (en) * 2009-09-30 2014-04-23 株式会社シマノ Fishing reel handle assembly
CN103047486A (en) * 2011-10-17 2013-04-17 上海伟星新型建材有限公司 Double-orientation fiber-reinforced polypropylene randon copolymer three-layer composite tube
CN104006284A (en) * 2014-05-26 2014-08-27 中山市卡邦碳纤维材料制品有限公司 Carbon fiber tube
JP6292185B2 (en) * 2015-07-07 2018-03-14 株式会社豊田自動織機 Fiber laminate, method for producing fiber laminate, and fiber reinforced composite material
CN109642635B (en) * 2016-08-24 2021-01-15 Jxtg能源株式会社 Supporting member
JP2019013157A (en) * 2017-07-04 2019-01-31 株式会社シマノ fishing rod

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3317619B2 (en) * 1995-11-17 2002-08-26 新日本石油株式会社 Hollow shaft with taper

Also Published As

Publication number Publication date
CN1131139C (en) 2003-12-17
CN1217443A (en) 1999-05-26
KR100298101B1 (en) 2001-10-27
JPH11123782A (en) 1999-05-11
TW429216B (en) 2001-04-11
KR19990037286A (en) 1999-05-25

Similar Documents

Publication Publication Date Title
JP3009311B2 (en) Fiber-reinforced resin coil spring and method of manufacturing the same
US6273830B1 (en) Tapered hollow shaft
JP3771360B2 (en) Tubular body made of fiber reinforced composite material
JP3317619B2 (en) Hollow shaft with taper
JP3981980B2 (en) Hybrid fiber reinforced plastic
JP3529009B2 (en) Carbon fiber reinforced composite
JPH10329247A (en) Composite material tubular member
JPS6143579B2 (en)
JPH07144371A (en) Carbon fiber reinforced resin composite material having high damping capacity
JP2004121402A (en) Golf club shaft
JP2554821B2 (en) Carbon fiber reinforced resin composite material and method for producing the same
JP3296970B2 (en) Hollow shaft with taper
JP4402477B2 (en) Tubular laminate comprising non-woven fabric and method for producing the same
JP2007000528A (en) Shaft for golf club made of fiber-reinforced composite material
JPH10272699A (en) Manufacture of fiber reinforced resin tubular body
JP2566705B2 (en) Unidirectional prepreg, carbon fiber reinforced resin composite material and manufacturing method thereof
JP4157357B2 (en) Golf club shaft
JP3692691B2 (en) Fiber reinforced plastic tubular body
JP2007030793A (en) Arm-shaped stress transmitting member
JPS62162519A (en) Fiber reinforced structure and its manufacture
JP2000263653A (en) Tubular body made of fiber-reinforced composite material
KR100760168B1 (en) Transport member
JPH10180910A (en) Tubular body
JP3257238B2 (en) Fiber reinforced plastic cylinder
JP2003053852A (en) Tubular object made of carbon fiber reinforced composite material and golf club shaft

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees