JPH11123782A - Tubular form of fiber-reinforced composite material - Google Patents

Tubular form of fiber-reinforced composite material

Info

Publication number
JPH11123782A
JPH11123782A JP9309517A JP30951797A JPH11123782A JP H11123782 A JPH11123782 A JP H11123782A JP 9309517 A JP9309517 A JP 9309517A JP 30951797 A JP30951797 A JP 30951797A JP H11123782 A JPH11123782 A JP H11123782A
Authority
JP
Japan
Prior art keywords
fiber
layer
prepreg
tubular body
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9309517A
Other languages
Japanese (ja)
Other versions
JP3771360B2 (en
Inventor
Shinichi Takemura
振一 竹村
Yoshiho Hayata
喜穂 早田
Hideyuki Ono
秀幸 大野
Mikio Shima
美樹男 島
Yutaka Arai
豊 荒井
Tomohiro Nakanishi
朋宏 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Graphite Fiber Corp
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Eneos Corp
Original Assignee
Nippon Graphite Fiber Corp
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Graphite Fiber Corp, Nippon Steel Corp, Nippon Steel Chemical Co Ltd, Nippon Oil Corp filed Critical Nippon Graphite Fiber Corp
Priority to JP30951797A priority Critical patent/JP3771360B2/en
Priority to KR1019980044255A priority patent/KR100298101B1/en
Priority to CN98124563A priority patent/CN1131139C/en
Priority to TW087117620A priority patent/TW429216B/en
Publication of JPH11123782A publication Critical patent/JPH11123782A/en
Application granted granted Critical
Publication of JP3771360B2 publication Critical patent/JP3771360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D23/00Producing tubular articles
    • B29D23/001Pipes; Pipe joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement
    • F16L9/121Rigid pipes of plastics with or without reinforcement with three layers

Abstract

PROBLEM TO BE SOLVED: To obtain a tubular form of fiber-reinforced composite material which has outstanding rupture strength in bending, rupture deflection in bending and high impact absorbing energy. SOLUTION: This tubular form contains a high compression breaking strain layer which contains carbon fibers orientated θ±15 deg. with the longitudinal direction of the tubular form. In addition, the modulas of compression elasticity, in a direction in which the carbon fibers are orientated, of the carbon fibers, which is calculated based on the conversion of a compression breaking strain in the high compression breaking strain layer, in the direction in which the carbon fibers are orientated, as 1-5% and the fiber-volume content of the carbon fibers as 60%, is 3-120 GPa.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、繊維強化複合材料
製管状体に関する。
The present invention relates to a tubular body made of a fiber-reinforced composite material.

【0002】[0002]

【従来の技術】強化繊維複合材料からなる管状体は、ゴ
ルフクラブシャフト、釣り竿など様々な用途に使用され
ている。
2. Description of the Related Art Tubular bodies made of a reinforced fiber composite material are used in various applications such as golf club shafts and fishing rods.

【0003】ゴルフクラブシャフトに関して、近年では
軽量化の流れが一段と加速されている。軽量化はシャフ
トの曲げ破断強度の低下を招くことから、これまで優れ
た曲げ破断強度を有する軽量シャフトを製造することは
困難だった。
[0003] With respect to golf club shafts, the trend of weight reduction has been further accelerated in recent years. Since the weight reduction leads to a decrease in the bending rupture strength of the shaft, it has been difficult to produce a lightweight shaft having excellent bending rupture strength.

【0004】釣り竿では穂先部分が柔軟性を有すること
が求められる。優れた柔軟性を得るためには穂先部分の
肉厚を薄くする方法が有るが、同時に曲げ破断強度の低
下を招くことになることから、これまで穂先部分におい
て優れた曲げ破断強度と柔軟性を両立させた釣り竿を製
造することは困難だった。
In a fishing rod, it is required that the tip portion has flexibility. In order to obtain excellent flexibility, there is a method of reducing the wall thickness of the tip part, but at the same time, the bending rupture strength is lowered, so that the superior bending rupture strength and flexibility in the tip part have been achieved so far. It was difficult to produce a compatible fishing rod.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、これ
ら従来の課題を解消し、優れた曲げ破断強度、曲げ破断
たわみ、衝撃吸収エネルギーを有する繊維強化複合材料
製管状体を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a tubular body made of a fiber-reinforced composite material having an excellent flexural strength, flexural flexure and impact energy. is there.

【0006】[0006]

【課題を解決するための手段】本発明の上記目的は、次
に示す繊維強化複合材料製管状体によって達成される。
すなわち本発明は、管状体の長手方向に対して0°〜±
15°で配向した炭素繊維を含む高圧縮破断ひずみ層を
含み、該高圧縮破断ひずみ層の炭素繊維の配向方向に対
する圧縮破断ひずみが1〜5%かつ該炭素繊維の繊維体
積含有率を60%として換算した炭素繊維の配向方向の
圧縮弾性率が3〜120GPaであることを特徴とする
繊維強化複合材料製管状体に関するものである。
The above object of the present invention is achieved by a tubular body made of a fiber-reinforced composite material as described below.
That is, the present invention provides 0 ° to ±
A high compression rupture strain layer containing carbon fibers oriented at 15 °, wherein the high compression rupture strain layer has a compression rupture strain in the carbon fiber orientation direction of 1 to 5% and a fiber volume content of the carbon fiber of 60% The present invention relates to a tubular body made of a fiber-reinforced composite material, characterized in that the compression elastic modulus in the direction of orientation of the carbon fiber calculated as (3) is 3 to 120 GPa.

【0007】[0007]

【発明の実施の形態】本発明の繊維強化複合材料製管状
体は、強化繊維が管状体の長手方向(軸方向)に対して
ほぼ平行である0°〜±5°で配向している強化繊維プ
リプレグを積層してなるストレート層を有することがで
きる。
BEST MODE FOR CARRYING OUT THE INVENTION The fiber-reinforced composite material tubular body of the present invention has a reinforcement in which the reinforcing fibers are oriented at 0 ° to ± 5 ° which is substantially parallel to the longitudinal direction (axial direction) of the tubular body. It may have a straight layer formed by laminating fiber prepregs.

【0008】ここで、本発明で言う積層数とはストレー
ト層などの特定の層が平均して何層積層しているか、即
ち管状体の軸の周りを何回巻回しているかを意味する。
前記管状体の用途、具体的にはゴルフシャフトなどの用
途によっては、本発明の管状体は、強化繊維が該管状体
の長手方向に対して±20°〜±70°で配向した強化
繊維プリプレグが積層されることにより形成される斜交
層を有することができる。
Here, the number of layers referred to in the present invention means how many specific layers such as straight layers are laminated on average, that is, how many turns are wound around the axis of the tubular body.
Depending on the use of the tubular body, specifically the use of a golf shaft or the like, the tubular body of the present invention is a reinforced fiber prepreg in which the reinforcing fibers are oriented at ± 20 ° to ± 70 ° with respect to the longitudinal direction of the tubular body. May be provided with an oblique layer.

【0009】該斜交層には通常、強化繊維が前記管状体
の長手方向に対して+20°〜+70°で配向した強化
繊維プリプレグが積層されて形成される正の斜交層と、
強化繊維が前記管状体の長手方向に対して−20°〜−
70°で配向した強化繊維プリプレグが積層されて形成
される負の斜交層の、正負の斜交層がある。
[0009] The oblique layer is usually a positive oblique layer formed by laminating reinforcing fiber prepregs in which reinforcing fibers are oriented at + 20 ° to + 70 ° with respect to the longitudinal direction of the tubular body.
Reinforcing fiber is -20 ° to the longitudinal direction of the tubular body.
There is a positive-negative oblique layer of a negative oblique layer formed by laminating reinforcing fiber prepregs oriented at 70 °.

【0010】正の斜交層または負の斜交層を1層ごとま
たは複数層ごとに交互に積層することができる。また、
正の斜交層と負の斜交層の積層数は互いに異なっていて
もよい。
[0010] The positive oblique layers or the negative oblique layers can be alternately laminated every single layer or every plural layers. Also,
The number of layers of the positive oblique layer and the negative oblique layer may be different from each other.

【0011】前記管状体の他の用途、具体的には釣り竿
などの用途によっては、本発明の管状体は、強化繊維が
前記管状体の長手方向に対してほぼ直角である±70°
〜90°で配向した強化繊維プリプレグが積層されるこ
とにより形成されるフープ層を有することもできる。
[0011] Depending on other uses of the tubular body, specifically applications such as fishing rods, the tubular body of the present invention has a reinforcing fiber in which the reinforcing fibers are approximately ± 70 ° at right angles to the longitudinal direction of the tubular body.
It may also have a hoop layer formed by laminating reinforcing fiber prepregs oriented at ~ 90 °.

【0012】これら強化繊維プリプレグに使用される強
化繊維としては、炭素繊維、ガラス繊維、アラミド繊
維、セラミック繊維、ボロン繊維、金属繊維などを挙げ
ることができるが、好ましくはピッチ系炭素繊維あるい
はポリアクリロニトリル系炭素繊維を使用することがで
きる。前記強化繊維プリプレグに使用されるマトリック
ス樹脂としては、エポキシ樹脂、不飽和ポリエステル樹
脂、フェノール樹脂、シリコーン樹脂、ポリウレタン樹
脂、ユリア樹脂、メラミン樹脂などから選ばれる熱硬化
性樹脂あるいは熱可塑性樹脂が挙げられ、好ましくはエ
ポキシ樹脂が挙げられる。
[0012] Examples of the reinforcing fibers used in these reinforcing fiber prepregs include carbon fibers, glass fibers, aramid fibers, ceramic fibers, boron fibers, metal fibers, etc., but preferably pitch-based carbon fibers or polyacrylonitrile. Based carbon fibers can be used. Examples of the matrix resin used in the reinforcing fiber prepreg include a thermosetting resin or a thermoplastic resin selected from an epoxy resin, an unsaturated polyester resin, a phenol resin, a silicone resin, a polyurethane resin, a urea resin, a melamine resin, and the like. And preferably an epoxy resin.

【0013】これら強化繊維プリプレグに使用される炭
素繊維として、前記炭素繊維を炭素繊維の配向方向に対
する圧縮破断ひずみが0.05%以上1.0%未満かつ
前記炭素繊維の繊維体積含有率を60%とした炭素繊維
の配向方向の圧縮弾性率が125GPa〜600GPa
である炭素繊維を用いることができる。
[0013] The carbon fibers used in these reinforced fiber prepregs have a compression breaking strain in the direction of orientation of the carbon fibers of 0.05% or more and less than 1.0%, and a fiber volume content of the carbon fibers of 60% or less. % Of the compression elastic modulus in the orientation direction of the carbon fiber is 125 GPa to 600 GPa.
Can be used.

【0014】本発明はかかる構成の繊維強化複合材料製
管状体において、圧縮破断ひずみが1.0〜5.0%か
つ圧縮弾性率が3GPa〜120GPaである炭素繊維
を含むプリプレグを積層して高圧縮破断ひずみ層を形成
することを特徴とするものである。
According to the present invention, there is provided a tubular body made of a fiber-reinforced composite material having such a structure, wherein a prepreg containing carbon fibers having a compressive breaking strain of 1.0 to 5.0% and a compression modulus of 3 to 120 GPa is laminated. A compression breaking strain layer is formed.

【0015】該高圧縮破断ひずみ層に使用される炭素繊
維としては、圧縮破断ひずみが1〜5%、好ましくは
1.5〜5%、より好ましくは1.7〜5%、最も好ま
しくは2〜5%の炭素繊維を用いることができる。
The carbon fibers used in the high compression breaking strain layer have a compression breaking strain of 1 to 5%, preferably 1.5 to 5%, more preferably 1.7 to 5%, and most preferably 2 to 5%. ~ 5% carbon fiber can be used.

【0016】また、該高圧縮破断ひずみ層に使用される
炭素繊維としては圧縮弾性率が3GPa〜120GP
a、好ましくは3GPa〜100GPaの炭素繊維が望
ましい。
The carbon fiber used for the high compression breaking strain layer has a compression modulus of 3 GPa to 120 GPa.
a, preferably 3 GPa to 100 GPa carbon fiber.

【0017】また、該高圧縮破断ひずみ層に使用される
炭素繊維としては、密度が1.9g/cm3 未満、好ま
しくは1.8g/cm3 未満の炭素繊維を用いることが
できる。密度がこの1.9g/cm3 より大きい場合に
は、管状体の重量を増加させることになり好ましくな
い。
Further, as the carbon fibers used in the high compression breaking strain layer, carbon fibers having a density of less than 1.9 g / cm 3 , preferably less than 1.8 g / cm 3 can be used. If the density is higher than 1.9 g / cm 3 , the weight of the tubular body increases, which is not preferable.

【0018】さらに、該高圧縮破断ひずみ層に使用され
る炭素繊維としては、ストランドのフィラメント数が2
4000本以下、好ましくは12000本以下、より好
ましくは6000本以下、最も好ましくは3000本以
下の炭素繊維を用いることができる。
Further, as the carbon fibers used in the high compression breaking strain layer, the number of strand filaments is 2
4000 or less, preferably 12000 or less, more preferably 6000 or less, most preferably 3000 or less carbon fibers can be used.

【0019】ストランドのフィラメント数がこの240
00本より大きい場合には、マトリックス樹脂を含浸さ
せたプリプレグを製造するうえで、特に炭素繊維の目付
が小さいプリプレグを製造する場合に目開きを生じやす
くなるため好ましくない。
The number of filaments of the strand is 240
If the number is larger than 00, it is not preferable because a prepreg impregnated with a matrix resin is easily produced, especially when a prepreg having a small basis weight of carbon fibers is produced.

【0020】前記高圧縮破断ひずみ層に用いられる炭素
繊維プリプレグに使用される炭素繊維としては、ピッチ
系炭素繊維、ポリアクリロニトリル系炭素繊維のいずれ
も用いることができ、特にピッチ系炭素繊維が好まし
い。また高圧縮破断ひずみ層に用いられる炭素繊維プリ
プレグに使用されるマトリックス樹脂としては、エポキ
シ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、シ
リコーン樹脂、ポリウレタン樹脂、ユリア樹脂、メラミ
ン樹脂などから選ばれる熱硬化性樹脂あるいは熱可塑性
樹脂が挙げられ、好ましくはエポキシ樹脂が挙げられ
る。
As the carbon fiber used for the carbon fiber prepreg used for the high compression strain layer, any of pitch-based carbon fiber and polyacrylonitrile-based carbon fiber can be used, and pitch-based carbon fiber is particularly preferable. The matrix resin used for the carbon fiber prepreg used for the high compression breaking strain layer is a thermosetting resin selected from epoxy resin, unsaturated polyester resin, phenol resin, silicone resin, polyurethane resin, urea resin, melamine resin, etc. A resin or a thermoplastic resin is used, and an epoxy resin is preferable.

【0021】本発明においてプリプレグにおける強化繊
維の目付には特に制限はないが、通常、20〜300g
/m2 、好ましくは50〜200g/m2 の範囲のもの
が用いられる。強化繊維目付がこの300g/m2 より
大きいと管状体の設計時における自由度が制限されるた
め好ましくない。また、強化繊維目付がこの20g/m
2 より小さいと管状体の製造時にプリプレグに皺(し
わ)が生じやすいため好ましくない。
In the present invention, the basis weight of the reinforcing fibers in the prepreg is not particularly limited.
/ M 2 , preferably in the range of 50 to 200 g / m 2 . If the basis weight of the reinforcing fibers is greater than 300 g / m 2, the degree of freedom in designing the tubular body is undesirably limited. The reinforcing fiber weight is 20 g / m2.
If it is smaller than 2 , the prepreg is apt to wrinkle during the production of the tubular body, which is not preferable.

【0022】前記高圧縮破断ひずみ層は、優れた曲げ破
断強度を有する繊維強化複合材料製管状体を提供するた
め、炭素繊維が管状体の長手方向に対して0°〜±15
°、好ましくは管状体の長手方向に対してほぼ平行であ
る0°〜±5°で配向した炭素繊維プリプレグが積層さ
れることにより形成される。
The high-compression-rupture strain layer provides a tubular body made of a fiber-reinforced composite material having excellent flexural rupture strength.
°, preferably formed by laminating carbon fiber prepregs oriented at 0 ° to ± 5 ° substantially parallel to the longitudinal direction of the tubular body.

【0023】前記高圧縮破断ひずみ層を形成するプリプ
レグは、本発明の繊維強化複合材料製管状体の肉厚方向
においていずれの位置に積層してもよいが、好ましくは
該管状体のより外側、より好ましくは該管状体の最外層
となるように積層することができる。
The prepreg for forming the high compression rupture strain layer may be laminated at any position in the thickness direction of the fiber-reinforced composite material tubular body of the present invention. More preferably, it can be laminated so as to be the outermost layer of the tubular body.

【0024】また、該高圧縮破断ひずみ層を形成するプ
リプレグとしては、2つ以上に分けられた、それぞれが
同一形状若しくは非同一形状のプリプレグを用いること
ができる。
Further, as the prepreg for forming the high compression rupture strain layer, two or more prepregs each having the same shape or non-identical shape can be used.

【0025】前記高圧縮破断ひずみ層は、斜交層、スト
レート層、フープ層のうちのいずれか1種、あるいは2
種以上と組み合わせて使用することができる。前記管状
体の半径方向における肉厚の前記高圧縮破断ひずみ層に
対するその他の層、即ち斜交層、ストレート層、フープ
層のうちのいずれか1種、あるいは2種以上と組み合わ
せてなる層の比率は、20:1〜1:20とすることが
できる。
The high compressive rupture strain layer is any one of an oblique layer, a straight layer, and a hoop layer, or
It can be used in combination with more than one species. The ratio of the other layer having a thickness in the radial direction of the tubular body to the high compression rupture strain layer, that is, a layer formed by combining one or more of an oblique layer, a straight layer, and a hoop layer. Can be from 20: 1 to 1:20.

【0026】本発明における強化繊維プリプレグとして
は織物プリプレグ、一方向プリプレグを使用することが
でき、一方向プリプレグが好ましく用いられる。該一方
向プリプレグは強化繊維を固定する目的で横糸を疎に通
すこともできる。
As the reinforcing fiber prepreg in the present invention, a textile prepreg and a unidirectional prepreg can be used, and a unidirectional prepreg is preferably used. The unidirectional prepreg can also loosely pass weft yarns for the purpose of fixing reinforcing fibers.

【0027】本発明の管状成形体の高圧縮破断ひずみ
層、斜交層、ストレート層、フープ層各層のVfは通
常、40〜90vol%、好ましくは50〜75vol
%とすることができる。
The Vf of each of the high compression breaking strain layer, the oblique layer, the straight layer, and the hoop layer of the tubular molded article of the present invention is usually 40 to 90 vol%, preferably 50 to 75 vol%.
%.

【0028】本発明では、強化繊維プリプレグにガラス
繊維クロスを重ねて得られたものを巻き付けて管状体を
形成し、管状体の圧潰強度を増すことができる。本発明
の繊維強化複合材料製管状体はテーパを有する管状体で
もテーパを有さない軸に平行な管状体でも良い。
In the present invention, a tube obtained by laminating a glass fiber cloth on a reinforcing fiber prepreg is wound to form a tubular body, and the crushing strength of the tubular body can be increased. The tubular body made of the fiber-reinforced composite material of the present invention may be a tubular body having a taper or a tubular body having no taper and being parallel to an axis.

【0029】[0029]

【実施例】以下に実施例を示すが、本発明はこれにより
限定されるものではない。本発明における三点曲げ試験
は、支点間距離300mm、圧子径R75mm、支点径
R12.5mm、試験速度5mm/minの条件のもと
で行った。
EXAMPLES Examples will be shown below, but the present invention is not limited by these examples. The three-point bending test in the present invention was performed under the conditions of a distance between supporting points of 300 mm, an indenter diameter R of 75 mm, a supporting point diameter of 12.5 mm, and a test speed of 5 mm / min.

【0030】また、本発明における衝撃試験は、米倉製
作所製落錘型衝撃試験機(IITM−18型)を使用
し、支点間距離300mm、圧子径R75mm 支点径
R12.5mm、落錘重量766g、落下高さ1800
mm、衝突時落錘速度6.0m/secの条件のもとで
行った。
The impact test in the present invention uses a falling weight type impact tester (Model IITM-18) manufactured by Yonekura Seisakusho Co., Ltd., with a distance between supports of 300 mm, an indenter diameter of R75 mm, a fulcrum diameter of 12.5 mm, a falling weight of 766 g, Fall height 1800
mm, and the falling weight speed at the time of collision was 6.0 m / sec.

【0031】圧縮弾性率、圧縮破断ひずみは繊維強化複
合材料の圧縮試験法ASTM D3410に準拠して行
い、圧縮荷重と試験片の断面積から計算される圧縮応力
と圧縮試験片に貼り付けたひずみゲージから得られる圧
縮ひずみとから圧縮弾性率を測定した。なお、本発明に
おける圧縮弾性率の値はVf60%換算値である。ま
た、圧縮破断ひずみはコンポジットの圧縮試験における
実測値である。引張弾性率の値は、ASTM D303
9に準拠して測定して得られた値である。
The compressive modulus and the compressive breaking strain are measured in accordance with the compression test method ASTM D3410 for fiber reinforced composite materials, and the compressive stress calculated from the compressive load and the cross-sectional area of the test specimen and the strain applied to the compressive test specimen The compression modulus was measured from the compression strain obtained from the gauge. In addition, the value of the compression elastic modulus in the present invention is a Vf 60% conversion value. The compression rupture strain is an actually measured value in a composite compression test. The value of the tensile modulus is in accordance with ASTM D303.
This is a value obtained by measuring according to No. 9.

【0032】実施例1 直径が6.0mm、長さが1200mmのマンドレル
に、離型剤としてワックスを塗布した後、斜交層として
東レ(株)製P3052S−12(商品名、ポリアクリ
ロニトリル系炭素繊維T700S、引張弾性率230G
Pa、炭素繊維目付125g/m2 、エポキシ樹脂含有
量33wt%)のプリプレグを使用し、それぞれマンド
レル上を3周するようにこのプリプレグを裁断して得ら
れた正負2枚の斜交層プリプレグを、正負の斜交層プリ
プレグの炭素繊維がマンドレルの長手方向に対してそれ
ぞれ+45°、−45°で配向するように、マンドレル
の半周分に相当する距離ほど一方を他方からずらして重
ねた後、マンドレルに巻き付けた。
Example 1 A wax was applied as a release agent to a mandrel having a diameter of 6.0 mm and a length of 1200 mm, and then as an oblique layer, P3052S-12 (trade name, polyacrylonitrile-based carbon) manufactured by Toray Industries, Inc. Fiber T700S, tensile modulus 230G
Pa, carbon fiber weight of 125 g / m 2 , epoxy resin content of 33 wt%), and cutting each of the prepregs so as to make three rounds on the mandrel, to obtain two positive and negative oblique layer prepregs. After shifting one from the other by a distance corresponding to a half circumference of the mandrel so that the carbon fibers of the positive and negative oblique layer prepregs are oriented at + 45 ° and −45 ° respectively with respect to the longitudinal direction of the mandrel, Wrapped around a mandrel.

【0033】ストレート層として東レ(株)製P805
5S−12(商品名、ポリアクリロニトリル系炭素繊維
M30S、引張弾性率300GPa、炭素繊維目付12
5g/m2 、エポキシ樹脂含有量24wt%)のプリプ
レグを使用し、このプリプレグが斜交層上を4周するよ
うにこのプリプレグを裁断して得られたストレート層プ
リプレグ(1枚)を、該プリプレグの強化繊維がマンド
レルの長手方向と平行となるように斜交層の上に巻き付
けた。
As a straight layer, P805 manufactured by Toray Industries, Inc.
5S-12 (trade name, polyacrylonitrile-based carbon fiber M30S, tensile modulus 300 GPa, carbon fiber weight 12
A prepreg (5 g / m 2 , epoxy resin content 24 wt%) was used, and the prepreg was cut so that the prepreg wrapped around the oblique layer four times. The prepreg was wrapped around the oblique layer so that the reinforcing fibers were parallel to the longitudinal direction of the mandrel.

【0034】さらに高圧縮破断ひずみ層として日本グラ
ファイトファイバー(株)製E0526A−10(商品
名、ピッチ系炭素繊維XN−05、引張弾性率50GP
a、炭素繊維目付100g/m2 、エポキシ樹脂含有量
37wt%、圧縮破断ひずみ2.9%、圧縮弾性率32
GPa)のプリプレグを使用し、このプリプレグがスト
レート層上を3周するようにこのプリプレグを裁断して
得られた高圧縮破断ひずみ層プリプレグ(1枚)を、こ
のプリプレグの強化繊維がマンドレルの長手方向と平行
となるように、ストレート層の上に巻き付けた。以上の
積層(巻き付け)により得られた積層体にシュリンクテ
ープを巻き付け、130℃に加熱し脱泡硬化した後、マ
ンドレルを抜きパイプを得た。図1にマンドレルを抜き
取る前の管状体の断面図を示す。図中、1はマンドレル
の平面図を示し、2aは正の斜交層プリプレグ、2bは
負の斜交層プリプレグ、3はストレート層プリプレグ、
4は高圧縮破断ひずみ層プリプレグそれぞれの平面図を
示す。パイプの外径は9.0mmだった。表1に、得ら
れたパイプの三点曲げ物性および衝撃物性を示す。
Further, as a high compression breaking strain layer, E0526A-10 manufactured by Nippon Graphite Fiber Co., Ltd. (trade name, pitch-based carbon fiber XN-05, tensile modulus of 50 GP)
a, carbon fiber basis weight 100 g / m 2 , epoxy resin content 37 wt%, compression rupture strain 2.9%, compression elastic modulus 32
GPa) prepreg, and cutting the prepreg so that the prepreg makes three turns on the straight layer. The prepreg (one sheet) obtained from the high-compression strain layer is reinforced by the reinforcing fiber of the prepreg. It was wound on the straight layer so as to be parallel to the direction. A shrink tape was wound around the laminate obtained by the above lamination (winding), heated to 130 ° C. and deaerated and hardened, and then a mandrel was removed to obtain a pipe. FIG. 1 shows a sectional view of the tubular body before the mandrel is removed. In the figure, 1 is a plan view of a mandrel, 2a is a positive oblique layer prepreg, 2b is a negative oblique layer prepreg, 3 is a straight layer prepreg,
4 shows a plan view of each of the high compression rupture strain layer prepregs. The outer diameter of the pipe was 9.0 mm. Table 1 shows the three-point bending properties and impact properties of the obtained pipe.

【0035】表1に示すように、実施例1のパイプは優
れた三点曲げ破断荷重(曲げ破断強度のこと)、三点曲
げ破断たわみ、衝撃吸収エネルギーを有していた。本実
施例では、マンドレルに斜交層、ストレート層の順に積
層しているが、ストレート層、斜交層の順に積層しても
よい。
As shown in Table 1, the pipe of Example 1 had excellent three-point bending rupture load (bending rupture strength), three-point bending rupture, and impact absorption energy. In this embodiment, the oblique layer and the straight layer are laminated on the mandrel in this order, but the straight layer and the oblique layer may be laminated in this order.

【0036】比較例1 高圧縮破断ひずみ層として東レ(株)製P3052S−
12(商品名、ポリアクリロニトリル系炭素繊維T70
0S、引張弾性率230GPa、炭素繊維目付125g
/m2 、エポキシ樹脂含有量33wt%、圧縮破断ひず
み1.4%、圧縮弾性率130GPa)のプリプレグを
使用した以外は、実施例1と同様にパイプを成形した。
Comparative Example 1 P3052S- manufactured by Toray Industries, Inc.
12 (trade name, polyacrylonitrile-based carbon fiber T70
0S, tensile modulus 230 GPa, carbon fiber basis weight 125 g
/ M 2, an epoxy resin content of 33 wt% compression strain at break 1.4%, except for using the prepreg of the compression elastic modulus 130 GPa), and a pipe was formed in the same manner as in Example 1.

【0037】表1に示すように、比較例1のパイプは、
三点曲げ破断荷重、三点曲げ破断たわみ、衝撃吸収エネ
ルギーが低く、劣っていた。
As shown in Table 1, the pipe of Comparative Example 1 was
The three-point bending rupture load, the three-point bending rupture deflection, and the impact absorption energy were low and inferior.

【0038】比較例2 高圧縮破断ひずみ層として新日鐵化学(株)製GE−1
00(商品名、ガラス繊維強化プリプレグ、引張弾性率
73GPa、ガラス繊維目付100g/m2 、エポキシ
樹脂含有量35wt%、圧縮破断ひずみ1.3%、圧縮
弾性率44GPa)のプリプレグを使用し、このプリプ
レグがストレート層上を4周するようにこのプリプレグ
を裁断して得られた高圧縮破断ひずみ層プリプレグを使
用した以外は、実施例1と同様にパイプを成形した。表
1に示すように、比較例2のパイプは、三点曲げ破断荷
重、三点曲げ破断たわみ、衝撃吸収エネルギーが低く、
劣っていた。
Comparative Example 2 GE-1 manufactured by Nippon Steel Chemical Co., Ltd.
A prepreg having a 00 (trade name, glass fiber reinforced prepreg, tensile modulus of elasticity 73 GPa, glass fiber basis weight 100 g / m 2 , epoxy resin content 35 wt%, compression breaking strain 1.3%, compression elastic modulus 44 GPa) was used. A pipe was formed in the same manner as in Example 1, except that a high compression rupture strain layer prepreg obtained by cutting this prepreg so that the prepreg made four turns on the straight layer was used. As shown in Table 1, the pipe of Comparative Example 2 has low three-point bending load, three-point bending fracture, low impact absorption energy,
Was inferior.

【0039】実施例2 全長1200mm、細径側直径6mm、太径側直径1
3.2mmのテーパを有するマンドレルに離型剤として
ワックスを塗布した後、斜交層として東レ(株)製P3
052S−12(商品名、ポリアクリロニトリル系炭素
繊維T700S、引張弾性率230GPa、炭素繊維目
付125g/m2 、エポキシ樹脂含有量33wt%)の
プリプレグを使用し、それぞれマンドレル上を2.5周
するようにこのプリプレグを裁断して得られた2枚の正
負の斜交層プリプレグを、正負の斜交層プリプレグの炭
素繊維がマンドレルの長手方向に対してそれぞれ+45
°、−45°で配向するように、マンドレルの半周分に
相当する距離ほど一方を他方からずらして重ねた後、マ
ンドレルに巻き付けた。
Example 2 Overall length 1200 mm, small diameter 6 mm, large diameter 1
After applying wax as a release agent to a mandrel having a taper of 3.2 mm, P3 manufactured by Toray Industries, Inc. as an oblique layer.
Using a prepreg of 052S-12 (trade name, polyacrylonitrile-based carbon fiber T700S, tensile modulus 230 GPa, carbon fiber basis weight 125 g / m 2 , epoxy resin content 33 wt%), each wrap around the mandrel 2.5 times. The prepreg was cut into two positive and negative oblique layer prepregs, and the carbon fibers of the positive and negative oblique layer prepregs were each +45 with respect to the longitudinal direction of the mandrel.
One of them was shifted from the other by a distance corresponding to a half circumference of the mandrel so as to be oriented at an angle of -45 °, and then wound around the mandrel.

【0040】ストレート層として東レ(株)製P805
5S−12(商品名、ポリアクリロニトリル系炭素繊維
M30S、引張弾性率300GPa、炭素繊維目付12
5g/m2 、エポキシ樹脂含有量24wt%)のプリプ
レグを使用し、このプリプレグが斜交層上を3周するよ
うにこのプリプレグを裁断して得られたストレート層プ
リプレグ(1枚)を、該プリプレグの強化繊維がマンド
レルの長手方向とほぼ平行になるように斜交層の上に巻
き付けた。
As a straight layer, P805 manufactured by Toray Industries, Inc.
5S-12 (trade name, polyacrylonitrile-based carbon fiber M30S, tensile modulus 300 GPa, carbon fiber weight 12
A prepreg (5 g / m 2 , epoxy resin content 24 wt%) was used, and the prepreg was cut so that the prepreg wrapped around the oblique layer three times. The prepreg was wound on the oblique layer so that the reinforcing fibers were substantially parallel to the longitudinal direction of the mandrel.

【0041】さらに高圧縮破断ひずみ層として日本グラ
ファイトファイバー(株)製E1526C−10(商品
名、ピッチ系炭素繊維XN−15、引張弾性率150G
Pa、炭素繊維目付100g/m2 、エポキシ樹脂含有
量33wt%、圧縮破断ひずみ1.8%、圧縮弾性率8
5GPa)のプリプレグを使用し、このプリプレグがス
トレート層上を2周するようにこのプリプレグを裁断し
て、高圧縮破断ひずみ層プリプレグを得た。該プリプレ
グの強化繊維がマンドレルの長手方向とほぼ平行となる
ように高圧縮破断ひずみ層プリプレグ(1枚)をストレ
ート層の上に巻き付けた。
Further, as a high compression breaking strain layer, E1526C-10 manufactured by Nippon Graphite Fiber Co., Ltd. (trade name, pitch-based carbon fiber XN-15, tensile modulus of 150 G)
Pa, carbon fiber basis weight 100 g / m 2 , epoxy resin content 33 wt%, compression breaking strain 1.8%, compression modulus 8
Using a prepreg of 5 GPa), the prepreg was cut so that the prepreg would make two rounds on the straight layer to obtain a high compression breaking strain layer prepreg. The high compression breaking strain layer prepreg (one sheet) was wound on the straight layer so that the reinforcing fibers of the prepreg were substantially parallel to the longitudinal direction of the mandrel.

【0042】以上の積層により得られた積層体にシュリ
ンクテープを巻き付け、130℃に加熱し脱泡硬化した
後、マンドレルを抜きシャフトを得た。図2にマンドレ
ルを抜く前の管状体の断面図を示す。図中1はマンドレ
ルの平面図を示し、2aは正の斜交層プリプレグ、2b
は負の斜交層プリプレグ、3はストレート層プリプレ
グ、eは高圧縮破断ひずみ層プリプレグそれぞれの平面
図を示す。
A shrink tape was wound around the laminate obtained by the above-mentioned lamination, heated to 130 ° C. and deaerated and hardened, and then a mandrel was removed to obtain a shaft. FIG. 2 shows a sectional view of the tubular body before the mandrel is removed. In the figure, 1 is a plan view of a mandrel, 2a is a positive oblique layer prepreg, 2b
Represents a plan view of a negative oblique layer prepreg, 3 represents a straight layer prepreg, and e represents a plan view of a high compression fracture strain layer prepreg.

【0043】シャフトの細径側端部での外径は8.2m
m、太径側端部での外径は15.5mmだった。さらに
該シャフトを細径側端部より400mm、800mm部
分で切断し、直径が異なる長さ400mmの3種類の試
験体を得た。3種類の試験体をそれぞれシャフトからの
切り出し位置によって、細径部分、中央部分、太径部分
とした。表2に、得られたシャフトの三点曲げ物性を示
す。表2に示すように、実施例2のシャフトは、細径部
分、中央部分、太径部分のいずれにおいても優れた三点
曲げ破断荷重を有していた。
The outer diameter of the shaft at the smaller diameter end is 8.2 m.
m, the outer diameter at the large diameter side end was 15.5 mm. Further, the shaft was cut at 400 mm and 800 mm portions from the end portion on the small diameter side to obtain three types of test specimens having different diameters and a length of 400 mm. The three types of test specimens were classified into a small-diameter part, a central part, and a large-diameter part according to the cutting position from the shaft. Table 2 shows the three-point bending properties of the obtained shaft. As shown in Table 2, the shaft of Example 2 had an excellent three-point bending rupture load in any of the small diameter portion, the central portion, and the large diameter portion.

【0044】比較例3 高圧縮破断ひずみ層として東レ(株)製P8055S−
12(商品名、ポリアクリロニトリル系炭素繊維M30
S、引張弾性率300GPa、炭素繊維目付125g/
m2、エポキシ樹脂含有量 24wt%、圧縮破断ひず
み0.9%、圧縮弾性率175GPa)のプリプレグを
使用した以外は、実施例2と同様にシャフトを成形し
た。
Comparative Example 3 As a high compression breaking strain layer, P8055S- manufactured by Toray Industries, Inc.
12 (trade name, polyacrylonitrile-based carbon fiber M30
S, tensile modulus 300 GPa, carbon fiber basis weight 125 g /
A shaft was formed in the same manner as in Example 2 except that a prepreg having m2, an epoxy resin content of 24 wt%, a compressive rupture strain of 0.9%, and a compression modulus of 175 GPa) was used.

【0045】表2に示すように、比較例3のシャフト
は、細径部分、中央部分、太径部分のいずれにおいても
三点曲げ破断荷重が低く、劣っていた。
As shown in Table 2, the shaft of Comparative Example 3 was inferior in the three-point bending load at all of the small diameter portion, the central portion, and the large diameter portion, and was inferior.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】[0048]

【発明の効果】以上説明したように、本発明により優れ
た曲げ破断強度、曲げ破断たわみ、衝撃吸収エネルギー
を有する繊維強化複合材料製管状体を得ることができ
る。
As described above, according to the present invention, it is possible to obtain a tubular body made of a fiber-reinforced composite material having excellent flexural rupture strength, flexural rupture deflection and impact absorption energy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 マンドレルや各層に用いるプリプレグそれぞ
れの平面図および実施例1で製造した管状体の断面図で
ある。
FIG. 1 is a plan view of a prepreg used for a mandrel and each layer and a cross-sectional view of a tubular body manufactured in Example 1.

【図2】 マンドレルや各層に用いるプリプレグそれぞ
れの平面図および実施例2で製造した管状体の断面図で
ある。
FIG. 2 is a plan view of a prepreg used for a mandrel and each layer and a cross-sectional view of a tubular body manufactured in Example 2.

【符号の説明】[Explanation of symbols]

1:マンドレル、2a:正の斜交層プリプレグ、2b:
負の斜交層プリプレグ、3:ストレート層プリプレグ、
4:高圧縮破断ひずみ層プリプレグ。
1: Mandrel, 2a: Positive cross layer prepreg, 2b:
Negative oblique layer prepreg, 3: straight layer prepreg,
4: High compression rupture strain layer prepreg.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B29K 105:08 B29L 23:00 31:52 (72)発明者 竹村 振一 神奈川県横浜市中区千鳥町8番地 日本石 油株式会社中央研究所内 (72)発明者 早田 喜穂 神奈川県横浜市中区千鳥町8番地 日本石 油株式会社中央研究所内 (72)発明者 大野 秀幸 東京都新宿区西新宿3−5−1 日本グラ ファイトファイバー株式会社内 (72)発明者 島 美樹男 東京都新宿区西新宿3−5−1 日本グラ ファイトファイバー株式会社内 (72)発明者 荒井 豊 兵庫県姫路市広畑区富士町1番地 新日本 製鐵株式会社新素材事業部内 (72)発明者 中西 朋宏 千葉県君津市君津1番地 新日鐵化学株式 会社君津製造所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI B29K 105: 08 B29L 23:00 31:52 (72) Inventor Shinichi Takemura 8 Chidoricho, Naka-ku, Yokohama-shi, Kanagawa Nippon Oil Central Research Laboratory Co., Ltd. (72) Inventor Kiho Hayata 8 Chidori-cho, Naka-ku, Yokohama-shi, Kanagawa Nippon Oil & Oil Co., Ltd. Central Research Laboratory Co., Ltd. (72) Inventor Hideyuki Ohno 3-5-1 Nishishinjuku, Shinjuku-ku, Tokyo Japan Graphite Fiber Co., Ltd. (72) Inventor Mikio Shima 3-5-1 Nishi Shinjuku, Shinjuku-ku, Tokyo Japan Graphite Fiber Co., Ltd. (72) Inventor Yutaka Arai 1 Fujimachi, Hirohata-ku, Himeji-shi, Hyogo Nippon Steel Corporation New Materials Division (72) Inventor Tomohiro Nakanishi 1 Kimitsu, Kimitsu City, Chiba Pref.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 管状体の長手方向に対して0°〜±15
°で配向した炭素繊維を含む高圧縮破断ひずみ層を含
み、該高圧縮破断ひずみ層の炭素繊維の配向方向に対す
る圧縮破断ひずみが1〜5%かつ該炭素繊維の繊維体積
含有率を60%として換算した炭素繊維の配向方向の圧
縮弾性率が3〜120GPaであることを特徴とする繊
維強化複合材料製管状体。
1. The method according to claim 1, wherein the longitudinal direction of the tubular body is 0 ° to ± 15
° high compressive rupture strain layer containing carbon fibers oriented in °, the compressive rupture strain of the high compressive rupture strain layer in the carbon fiber orientation direction is 1 to 5% and the fiber volume content of the carbon fiber is 60%. A tubular body made of a fiber-reinforced composite material, wherein the converted compression modulus in the orientation direction of the carbon fiber is 3 to 120 GPa.
【請求項2】 前記管状体がさらに斜交層およびストレ
ート層を含んでいることを特徴とする請求項1に記載の
繊維強化複合材料製管状体。
2. The fiber-reinforced composite material tubular body according to claim 1, wherein the tubular body further includes an oblique layer and a straight layer.
JP30951797A 1997-10-24 1997-10-24 Tubular body made of fiber reinforced composite material Expired - Fee Related JP3771360B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP30951797A JP3771360B2 (en) 1997-10-24 1997-10-24 Tubular body made of fiber reinforced composite material
KR1019980044255A KR100298101B1 (en) 1997-10-24 1998-10-22 Fiber Reinforced Composite Material
CN98124563A CN1131139C (en) 1997-10-24 1998-10-23 Tubelike body made of fiber-reinforced composite material
TW087117620A TW429216B (en) 1997-10-24 1998-10-23 A tubular article made from fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30951797A JP3771360B2 (en) 1997-10-24 1997-10-24 Tubular body made of fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JPH11123782A true JPH11123782A (en) 1999-05-11
JP3771360B2 JP3771360B2 (en) 2006-04-26

Family

ID=17993966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30951797A Expired - Fee Related JP3771360B2 (en) 1997-10-24 1997-10-24 Tubular body made of fiber reinforced composite material

Country Status (4)

Country Link
JP (1) JP3771360B2 (en)
KR (1) KR100298101B1 (en)
CN (1) CN1131139C (en)
TW (1) TW429216B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003334268A (en) * 2002-03-15 2003-11-25 Sumitomo Rubber Ind Ltd Golf club shaft
JP2004017411A (en) * 2002-06-14 2004-01-22 Murata Mach Ltd Laminated structure of braiding
JP2004081230A (en) * 2002-08-22 2004-03-18 Sumitomo Rubber Ind Ltd Golf club shaft
JP2006081614A (en) * 2004-09-14 2006-03-30 Sri Sports Ltd Golf club shaft
JP2019013157A (en) * 2017-07-04 2019-01-31 株式会社シマノ fishing rod

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5479832B2 (en) * 2009-09-30 2014-04-23 株式会社シマノ Fishing reel handle assembly
CN103047486A (en) * 2011-10-17 2013-04-17 上海伟星新型建材有限公司 Double-orientation fiber-reinforced polypropylene randon copolymer three-layer composite tube
CN104006284A (en) * 2014-05-26 2014-08-27 中山市卡邦碳纤维材料制品有限公司 Carbon fiber tube
JP6292185B2 (en) * 2015-07-07 2018-03-14 株式会社豊田自動織機 Fiber laminate, method for producing fiber laminate, and fiber reinforced composite material
KR102122695B1 (en) * 2016-08-24 2020-06-12 제이엑스티지 에네루기 가부시키가이샤 Support member

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09141754A (en) * 1995-11-17 1997-06-03 Nippon Oil Co Ltd Tapered hollow shaft

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09141754A (en) * 1995-11-17 1997-06-03 Nippon Oil Co Ltd Tapered hollow shaft

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003334268A (en) * 2002-03-15 2003-11-25 Sumitomo Rubber Ind Ltd Golf club shaft
JP2004017411A (en) * 2002-06-14 2004-01-22 Murata Mach Ltd Laminated structure of braiding
JP2004081230A (en) * 2002-08-22 2004-03-18 Sumitomo Rubber Ind Ltd Golf club shaft
JP2006081614A (en) * 2004-09-14 2006-03-30 Sri Sports Ltd Golf club shaft
JP4533063B2 (en) * 2004-09-14 2010-08-25 Sriスポーツ株式会社 Golf club shaft
JP2019013157A (en) * 2017-07-04 2019-01-31 株式会社シマノ fishing rod

Also Published As

Publication number Publication date
JP3771360B2 (en) 2006-04-26
KR19990037286A (en) 1999-05-25
TW429216B (en) 2001-04-11
CN1131139C (en) 2003-12-17
KR100298101B1 (en) 2001-10-27
CN1217443A (en) 1999-05-26

Similar Documents

Publication Publication Date Title
JP3009311B2 (en) Fiber-reinforced resin coil spring and method of manufacturing the same
US6592979B1 (en) Hybrid matrix fiber composites
JPH11123782A (en) Tubular form of fiber-reinforced composite material
JP3317619B2 (en) Hollow shaft with taper
JP2003055850A (en) Composite yarn and fiber-reinforced plastic
JP3529009B2 (en) Carbon fiber reinforced composite
JPH10329247A (en) Composite material tubular member
EP0686482B1 (en) Fiber reinforced composite article having cylindrical form
JP3414082B2 (en) Fiber reinforced plastic members
JP6490413B2 (en) Fiber reinforced composite shaft
JP2007000528A (en) Shaft for golf club made of fiber-reinforced composite material
JPH07329196A (en) Synthetic resin tube reinforced by fiber
Padmanabhan et al. Crashworthiness test on hollow section structural (HSS) frame by metal fiber laminates with various geometrical shapes-Review
KR100760168B1 (en) Transport member
JPS60225740A (en) Manufacture of tubular product having internal reinforced part
JP2566705B2 (en) Unidirectional prepreg, carbon fiber reinforced resin composite material and manufacturing method thereof
JPS62162519A (en) Fiber reinforced structure and its manufacture
JPH10235767A (en) Carbon fiber reinforced plastic member
JP2002347148A (en) Tubular body made of fiber-reinforced composite material and golf club shaft constituted by using the same
JP2021094739A (en) Cylindrical body
JPH01166935A (en) Hybrid tubular structure
JP2000024151A (en) Tubular molding, shaft for golf club and rod for fishing rod
JPH0342242A (en) Lightweight composite material
JP2004066831A (en) Plate-like formed body made of carbon fiber-reinforced composite material
JPH05185541A (en) Laminated tube and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees