JP4157357B2 - Golf club shaft - Google Patents

Golf club shaft Download PDF

Info

Publication number
JP4157357B2
JP4157357B2 JP2002295436A JP2002295436A JP4157357B2 JP 4157357 B2 JP4157357 B2 JP 4157357B2 JP 2002295436 A JP2002295436 A JP 2002295436A JP 2002295436 A JP2002295436 A JP 2002295436A JP 4157357 B2 JP4157357 B2 JP 4157357B2
Authority
JP
Japan
Prior art keywords
fiber
prepreg
pitch
fibers
pan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002295436A
Other languages
Japanese (ja)
Other versions
JP2004130564A (en
Inventor
仁志 尾山
Original Assignee
Sriスポーツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sriスポーツ株式会社 filed Critical Sriスポーツ株式会社
Priority to JP2002295436A priority Critical patent/JP4157357B2/en
Publication of JP2004130564A publication Critical patent/JP2004130564A/en
Application granted granted Critical
Publication of JP4157357B2 publication Critical patent/JP4157357B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明が属する技術分野】
本発明は、繊維強化樹脂製の管状体からなるゴルフクラブシャフトに関し、詳しくは、軽量化を図りながら曲げ強度と衝撃強度を向上させるものである。
【0002】
【従来の技術】
近年、ゴルフクラブや釣竿等の軽量化が望まれており、ゴルフクラブシャフトや釣竿等に使用される繊維強化樹脂製の管状体の軽量化が進んでいる。しかし、管状体の強度を維持したまま軽量化することは非常に難しくなってきている。
【0003】
炭素繊維強化プラスチック(CERP)の衝撃強度について、第28回繊維強化樹脂製シンポジウム講演論文集等で、ピッチ系低弾性炭素繊維を強化繊維として用いた繊維強化樹脂層を積層することにより積層体の衝撃強度が向上することが紹介されている。このように、一般の炭素繊維に比べて、上記ピッチ系低弾性炭素繊維は圧縮破断歪みが大きいという特性を有しており、衝撃強度を補強する効果がある。
【0004】
上記特性を利用して、特開平9−141754号において、ゴルフクラブシャフトの先端部にピッチ系低弾性炭素繊維を用いた補強層を配置することにより、軽量で優れた強度を有するシャフトが提供されている。
【0005】
【特許文献1】
特開平9−141754号公報
【0006】
【非特許文献1】
第28回FRPシンポジウム講演論文集 第167頁〜第170頁
著者:竹村振一 早田喜穂 島美樹男 大野秀幸
【0007】
【発明が解決しようとする課題】
しかしながら、ピッチ系低弾性炭素繊維は圧縮破断歪みが大きく、繊維強化樹脂製管状体の衝撃強度を補強することはできるが、曲げ強度が低く、積層量が大きくなったり、積層構成によっては衝撃強度の補強には作用せず、逆に曲げ強度が低下してしまう問題がある。
【0008】
本発明は上記問題に鑑みてなされたものであり、ゴルフクラブシャフトに使用される繊維強化樹脂製の管状体の軽量化を図ると共に、衝撃強度及び曲げ強度を向上させることを課題としている。
【0009】
【課題を解決するための手段】
上記課題を解決するため、本発明は、強化繊維をマトリクス樹脂に含浸させたプリプレグを複数枚積層して成形している繊維強化樹脂製のゴルフクラブシャフトであって、
上記積層するプリプレグのうち、少なくとも1枚は弾性率が相違する2種類の炭素繊維を樹脂に含浸した複合プリプレグからなると共に、他のプリプレグは1種類の炭素繊維を樹脂に含浸したプリプレグからなり、
前記複合プリプレグは、弾性率が200GPa以上500GPa以下のPAN系炭素繊維と、弾性率が45GPa以上160GPa以下のピッチ系低弾性繊維とからなる2種類の炭素繊維を強化繊維として樹脂に含浸させて1枚のプリプレグとし、
上記複合プリプレグ中の上記ピッチ系低弾性繊維の重量は、上記PAN系炭素繊維と上記ピッチ系低弾性繊維とを合計した強化繊維の全体重量に対して5wt%以上50wt%以下とし、かつ、上記PAN系炭素繊維と上記ピッチ系低弾性繊維とからなる強化繊維重量を複合プリプレグ全体重量の60%以上80%以下としていることを特徴とするゴルフクラブシャフトを提供している。
【0010】
上記構成とすると、曲げ強度に優れたPAN系炭素繊維を衝撃強度に優れたピッチ系低弾性繊維とを強化繊維として用いた複合プリプレグとすることにより、ピッチ系炭素繊維の弱点を克服して、曲げ強度及び衝撃強度が共に優れた繊維強化樹脂製管状体とすることができる。
【0011】
一般的に炭素繊維は5〜10μmの繊維が一定量の束になった状態で生産され、一束の繊維本数によって、3K(3000本)、6K(6000本)、12K(12000本)、24K(24000本)等の種類があるが、上記プリプレグは、3K〜12Kの範囲の繊維を使用するのが好ましい。
3Kより少なくなると炭素繊維の生産性が低下しコスト高となってしまうためであり、また、12Kより多いと管状体としたときに、PAN系炭素繊維とピッチ系炭素繊維を複合した効果が発現せず、強度が低下してしまうためである。
上記3K〜24K等の一定量が束になった1束の炭素繊維が幅1mm〜5mm程度となるように平行に引き揃え、この状態でマトリクス樹脂に含浸してプリプレグを形成している。
【0012】
上記のように、通常使用されている炭素繊維は5〜10μmであるのに対して、PAN系炭素繊維の素線の太さが4〜6μmと細く、一方、ピッチ系低弾性繊維の太さは9〜11μmと比較的太くなっている。
よって、太いピッチ系低弾性繊維のみを並べるてマトリクス樹脂に含浸させたプリプレグでは、表面の凹凸が大きくなる。この凹凸を埋めるようにマトリクス樹脂が含浸するためプリプレグの表層に樹脂量が多くなる。よって、ピッチ系低弾性繊維を強化樹脂とするプリプレグを積層すると、層間の樹脂層が厚くなるため、層間での剪断力が劣り、衝撃力が加わった時に、この層間で剥離等の破壊が生じやすくなる。
【0013】
よって、本発明の上記複合プリプレグは、4〜6μmの上記PAN系炭素繊維の束と、9〜11μmの上記ピッチ系低弾性繊維の束とを交互に引き揃えると共に略同一厚さとして、マトリクス樹脂を含浸させてプリプレグを形成している。具体的には、例えば、上記6KのPAN系炭素繊維束と3Kのピッチ系低弾性炭素繊維とを交互に引き揃えている。
上記構成とすると、PAN系炭素繊維とピッチ系低弾性繊維を並べたときにできる凹凸をさらに小さくすることができる。その結果、プリプレグ表層のマトリクス樹脂量を減らすことができ、層間の樹脂層を薄くすることができる。これにより、層間での剪断力を高め、耐衝撃性に優れた繊維強化樹脂製の管状体とすることができる。
【0014】
また、プリプレグを積層して成形する管状体では、強化繊維としてピッチ系低弾性繊維のみを強化繊維とするプリプレグの積層数がある一定枚数を越えると、ピッチ系低弾性繊維の強度が支配的になってしまい、曲げ強度が低下する。さらに、積層する位置については、内層側に積層するにつれて、衝撃強度の補強効果が小さくなっていく。このように、ピッチ系低弾性繊維の衝撃強度の補強効果は限られた積層構成でのみ発現するため、設計上の制約を受ける問題がある。
これに対し、本発明ではPAN系炭素繊維とピッチ低弾性繊維を強化繊維として用いた複合プリプレグを積層しているため、該複合プリプレグの積層枚数や、積層位置に関係なく、どのような積層構成にしても安定して高強度が得られ、設計の自由度を増すことができる。
【0015】
上記PAN系炭素繊維の弾性率は200GPa以上500GPa以下としており、より好ましくは225GPa以上400GPa以下である。
上記200GPaより小さいと炭素繊維が水分を吸収しやすくなり好ましくなく、500GPaより大きいと炭素繊維の伸度が小さくなりすぎ、もろく破壊し易くなるためである。
また、上記ピッチ系低弾性繊維の弾性率は45GPa以上160GPa以下としており、より好ましくは50GPa以上150GPa以下である。
45GPaより小さいと製造が困難であり、市販されているものはない。また、160GPaより大きいと圧縮破断強度が小さくなり補強効果がなくなるからである。
【0016】
また、上記複合プリプレグは、上記PAN系炭素繊維と上記ピッチ系低弾性繊維の繊維方向を上記管状体の長手方向と略平行としていることが好ましい。
強化繊維は配向角度が0°のときに、曲げ強度が最も大きくなるように作用するので、上記構成とすると、曲げ強度を最大限に大きくすることができる。
【0017】
上記複合プリプレグ中のピッチ系低弾性繊維の重量は、PAN系炭素繊維と上記ピッチ系低弾性繊維とを合計した強化繊維の全体重量に対して5wt%以上50wt%以下としている。それは5wt%より少ないと、衝撃強度の補強効果が小さくなるためであり、また、50wt%より多いと、PAN系炭素繊維による曲げ強度の補強効果がなくなってピッチ系低弾性繊維の強度が支配的となり曲げ強度が低下してしまうためである。好ましくは10wt%以上35wt%以下である。
【0018】
また、上記複合プリプレグは、PAN系炭素繊維とピッチ系低弾性繊維とからなる強化繊維重量を複合プリプレグ全体重量の60%以上80%以下としている。それは、80%を越えると繊維の割合が多すぎて複合材としての物性が発現し難くなり、60%未満であると軽量化出来ないと共に、樹脂部が多くなり過ぎるため所要の剛性や強度が得られにくくなる問題が発生することに因る。
【0019】
上記複合プリプレグと、強化繊維を1種類の強化繊維、例えば4〜6μmのPAN系炭素繊維のみを用いている他のプリプレグと積層して管状体を成形する場合、上記複合プリプレグは少なくとも管状体の最外層に積層していることが好ましい。
上記構成とすると、管状体に曲げ荷重を加えた場合に最も圧縮及び引張歪みが生じる最外層をPAN系炭素繊維とピッチ系低弾性繊維を強化繊維としている複合プリプレグにより構成しているため、該複合プリプレグの効果を最も発揮することができ、曲げ強度及び衝撃強度を向上させることができる。
【0020】
本発明は、上記構成の繊維強化樹脂製の管状体からなるゴルフクラブシャフトを提供している。
上記管状体は、曲げ強度および衝撃強度を兼ね備えるため、インパクト時に発生する衝撃に十分耐え得る強度を備え、かつ、シャフトが撓る際に生じる曲げに対しても十分な強度を有するため、破損が発生しにくい。即ち、軽量でありながら、衝撃強度及び曲げ強度の高いゴルフクラブとすることができる。
【0021】
本発明のゴルフクラブシャフトは、上記PAN系炭素繊維とピッチ系低弾性繊維を強化繊維としている複合プリプレグを最外層のストレート層を構成するプリプレグとして用いることが好ましい。
また、上記複合プリプレグをヘッドと結合するシャフト先端の補強層として用いてもよい。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
図1及び図2は、本発明の実施形態のゴルフクラブシャフトを示し、シャフト1は直線状に拡径したテーパ形状としており、小径端側にヘッド2が取り付けられ、大径側にグリップ3が取り付けられている。
【0023】
シャフト1は、炭素繊維を強化繊維としマトリクス樹脂を含浸させた複数のプリプレグを用い、該プリプレグを積層して金型で加熱硬化して管状体として成形したものである。
詳しくは、図2に示すプリプレグ11〜14を芯金(図示せず)に、順次、内周側から(プリプレグ11→12→13→14)巻き付けて積層した後、ポリプロピレン(PP)あるいはポリエステル等のテープでラッピングしてオーブン中で加熱加圧して樹脂を硬化させて一体的に成形し、その後、芯金を引き抜いて、シャフト1を形成している。
【0024】
上記第一層目のプリプレグ11と第二層目のプリプレグ12はそれぞれ1種類の炭素繊維(PAN系炭素繊維)を強化繊維F11,F12を用いたプリプレグからなり、プリプレグ11の強化繊維F11をシャフト軸線に対してー45°の角度で傾斜させ、プリプレグ12の強化繊維F12はシャフト軸線に対して+45°の角度で傾斜させ、それぞれアングル層を構成している。上記プリプレグ11、12はシャフト全長に渡る長さとし、各々4回巻きしている。
【0025】
第三層目のプリプレグ13と第四層目のプリプレグ14は、強化繊維F13、F14がシャフト軸線に対して略平行にして、シャフト全長に渡る長さで各々3回巻きしている。
第三層目のプリプレグ13は強化繊維F13としてPAN系炭素繊維20とピッチ系低弾性炭素繊維統21とを用いた複合プリプレグとしている。第四層目のプリプレグ14も同様に、強化繊維F14として、PAN系炭素繊維20とピッチ系低弾性炭素繊維統21とを用いた複合プリプレグとしている。
【0026】
上記PAN系炭素繊維20は、各繊維糸の弾性率は200GPa以上500GPa以下であり、太さが4〜6μmである。このPAN系炭素繊維として6K(6000本)の糸束を用いている。一方、上記ピッチ系低弾性炭素繊維21は、各繊維糸の弾性率は45GPa以上160GPa以下であり、太さは9〜11μmである。このピッチ系低弾性炭素繊維として3K(3000本)の糸束を用いている。
【0027】
上記PAN系炭素繊維20の束20Aとピッチ系低弾性炭素繊維の束21Aとを図3に示すように、一方向に交互に引き揃え、略0.05mm〜0.2mmの同一高さとして、上下からマトリクス樹脂23を含浸させた複合プリプレグ13、14としている。
上記のように複合プリプレグは、細いPAN系炭素繊維20が表面に位置する部分では表面の凹凸SC1がピッチ系低弾性炭素繊維21が表面に位置する部分の表面凹凸SC2より小さくなり、その結果、複合プリプレグの表面の凹凸が平均して少なくなる。よって、表面の凹部に充填されるマトリクス樹脂量23が低減するため、複合プリプレグ20の表面樹脂量が低減する。
【0028】
上記PAN系炭素繊維20とピッチ系低弾性炭素繊維21とからなる強化繊維F13は複合プリプレグ13の全体重量の60%〜80%とし、ピッチ系低弾性炭素繊維21が強化繊維F13に占める割合を5%〜50%としている。複合プリプレグ14も複合プリプレグ13と同様としている。
【0029】
上記構成からなるシャフト1では、曲げ強度に優れたPAN系炭素繊維20と衝撃強度に優れたピッチ系炭素繊維21とを強化繊維とした複合プリプレグ13、14を用いているため、曲げ強度及び衝撃強度共に優れたものとなる。
よって、このシャフトを用いたゴルフクラブは軽量でありながら、曲げ強度及び衝撃強度に優れたものとなる。
【0030】
図4は変形例を示し、シャフト1のヘッド取付側の最外周面に、複合プリプレグ30を積層している。
アングル層11、12は上記実施形態と同様であり、ストレート層のプリプレグ13’、14’は複合プリプレグではなく、プリプレグ11、12と同様な一種類の強化繊維F13’、F14’からなる。
【0031】
なお、本発明は上記実施形態に限定されず、プリプレグ層の間にシャフトの全長あるいは部分的に配置してもよい。また、シャフト軸線と平行はストレート層のプリプレグのみではなく、シャフト軸線に対して繊維方向を傾斜するアングル層あるいはシャフト軸線に対して繊維方向を直角方向としたフープ層を構成するプリプレグとして用いてもよい
【0032】
以下、本発明の繊維強化樹脂製のシャフトの実施例、比較例について詳述する。
実施例及び比較例の繊維強化樹脂製の管状体は共に、内径φ6mm、外径φ9mm、長さ200mmとした。
【0033】
【表1】

Figure 0004157357
【0034】
(実施例1)
上記実施形態のシャフト1と同様の構成の図2に示すプリプレグ11〜14を用いて作製した。また、複合プリプレグ13、14では、それぞれPAN系炭素繊維の割合を80%、ピッチ系炭素繊維の割合を20%とした。
(実施例2)
実施例1に対して、複合プリプレグではPAN系炭素繊維の割合を50%、ピッチ系炭素繊維の割合を50%とした点のみを変えた。
(実施例3)
実施例に対して、複合プリプレグではPAN系炭素繊維の割合を20%、ピッチ系炭素繊維の割合を80%とした点のみを変えた。
【0035】
(比較例)
比較例のシャフトは、アングル層のプリプレグ11、12の外周に巻き付けるストレート層の2枚のプリプレグとして、複合プリプレグを用いず、アングル層のプリプレグと同様にPAN系炭素繊維のみからなるプリプレグを用いた。
【0036】
上記実施例及び比較例のシャフトについて、後述する方法により曲げ強度及び衝撃強度を測定した。測定結果を上記表1に示す。
【0037】
(曲げ強度の測定方法)
製品安全協会の定める「ゴルフクラブ用シャフトの認定基準及び基準確認方法」(通商産業大臣承認5産第2087号)の3点曲げ試験に準ずる方法でT点の曲げ強度を測定した。スパンを150mmとした。
【0038】
(衝撃強度の測定方)
(株)米倉製作所製の落錘型衝撃試験機(IITM−18)により、図5に示すように、片持ち曲げ衝撃試験を行った。
該衝撃試験は、繊維強化樹脂製管状体の一端から50mmの位置を固定し、固定端から100mmの位置に800gの重錘Wを1500mmの上方から衝突させて衝撃荷重を加えた。重錘に加速度計を取り付け、該加速度計をAD変換器を介してFFTに接続し、図6に示すように、繊維強化樹脂製管状体に加わる衝撃曲げ荷重と繊維強化樹脂製管状体の変位量を測定し、破壊が始まるまでの衝撃吸収エネルギーを計算した。
【0039】
上記表1に示すように、PAN系炭素繊維とピッチ系炭素繊維を強化繊維とした複合プリプレグを用いた実施例1〜3は、PAN系炭素繊維のみを強化繊維とした比較例と比較して衝撃強度が高いことが確認できた。
また、複合プリプレグにおいてピッチ系低炭素繊維の割合を50重量%以下とした実施例1、2のシャフトは比較例のシャフトより曲げ強度も高いことが確認できた。
一方、ピッチ系炭素繊維の割合を50重量%を越える80重量%とした実施例3は曲げ強度が実施例1、2および比較例よりも低かったため、衝撃強度と共に曲げ強度も高めるためにはピッチ系低弾性炭素繊維の割合を50重量%以下にすることが良いことも確認できた。
【0040】
【発明の効果】
以上の説明より明らかなように、本発明によれば、曲げ強度に優れたPAN系炭素繊維と衝撃強度に優れたピッチ系炭素繊維とを強化繊維した複合プリプレグを用いることにより、ゴルフクラブシャフトを曲げ強度及び衝撃強度を共に優れたとすることができる。
具体的には、太さの異なるPAN系炭素繊維とピッチ系炭素繊維を複合させることにより、凹凸が小さくなり、プリプレグ表層の樹脂を減らして、層間の樹脂層を薄くすることができる。これにより、層間でのせん断力を高め、耐衝撃性に優れた繊維強化樹脂製のゴルフクラブシャフトとすることができる。
また、複合プリプレグを用いることで、プリプレグの積層構成や積層量に関係なく、どのような積層構成にしても安定して高強度が得られるため設計の自由度を増すことができる。
【図面の簡単な説明】
【図1】 本発明の繊維強化樹脂製管状体からなるゴルフクラブシャフトを用いたゴルフクラブの概略図である。
【図2】 実施形態のゴルフクラブシャフトに用いるプリプレグの積層構成を示す図面である。
【図3】 複合プリプレグの構成を示す概略断面図である。
【図4】 変形例を示す図面である。
【図5】 衝撃強度の測定方法を示す図面である。
【図6】 シャフトに負荷された衝撃曲げ荷重とシャフトの変位との相関関係を示す図面である。
【符号の説明】
1 シャフト
2 ヘッド
3 グリップ
11,12 強化繊維が1種類のプリプレグ
13、14 複合プリプレグ
20 PAN系炭素繊維
21 ピッチ系低弾性炭素繊維
23 マトリクス樹脂
F11〜14 強化繊維[0001]
[Technical field to which the invention belongs]
The present invention relates to a golf club shaft comprising a tubular body made of fiber-reinforced resin, particularly, and improves the strength and impact bending strength while reducing the weight.
[0002]
[Prior art]
In recent years, weight reduction of golf clubs, fishing rods, and the like has been desired, and weight reduction of tubular bodies made of fiber reinforced resin used for golf club shafts, fishing rods, and the like has been progressing. However, it is very difficult to reduce the weight while maintaining the strength of the tubular body.
[0003]
Regarding the impact strength of carbon fiber reinforced plastic (CERP), the fiber reinforced resin layer using pitch-based low-elasticity carbon fiber as the reinforcing fiber was laminated at the 28th Symposium on Fiber Reinforced Resin Symposium. It is introduced that the impact strength is improved. As described above, the pitch-based low-elasticity carbon fiber has a characteristic that the compression fracture strain is large as compared with a general carbon fiber, and has an effect of reinforcing impact strength.
[0004]
By utilizing the above characteristics, Japanese Patent Application Laid-Open No. 9-141754 provides a lightweight and excellent strength shaft by disposing a reinforcing layer using pitch-based low-elasticity carbon fibers at the tip of a golf club shaft. ing.
[0005]
[Patent Document 1]
JP-A-9-141754 [0006]
[Non-Patent Document 1]
Proceedings of the 28th FRP Symposium pp. 167-170 Author: Shinichi Takemura Yoshiho Hayada Mikio Shima Hideyuki Ohno
[Problems to be solved by the invention]
However, pitch-based low-elasticity carbon fibers have a large compressive fracture strain and can reinforce the impact strength of fiber-reinforced resin tubular bodies, but the bending strength is low, the amount of lamination increases, and the impact strength depends on the lamination configuration. There is a problem that the bending strength is lowered instead of acting on the reinforcement.
[0008]
The present invention has been made in view of the above problems, with reducing the weight of the fiber-reinforced resin of the tubular body used for golf club shafts bets, it has an object to improve the impact strength and flexural strength.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is a golf club shaft made of fiber reinforced resin formed by laminating a plurality of prepregs in which reinforcing fibers are impregnated in a matrix resin,
Among the prepregs to be laminated, at least one is made of a composite prepreg in which two types of carbon fibers having different elastic moduli are impregnated with a resin, and the other prepreg is made of a prepreg in which one type of carbon fiber is impregnated with a resin,
The composite prepreg is obtained by impregnating a resin as a reinforcing fiber with two types of carbon fibers composed of a PAN-based carbon fiber having an elastic modulus of 200 GPa to 500 GPa and a pitch-based low elastic fiber having an elastic modulus of 45 GPa to 160 GPa. A sheet of prepreg,
The weight of the pitch-based low elastic fiber in the composite prepreg is 5 wt% or more and 50 wt% or less with respect to the total weight of the reinforcing fiber obtained by adding the PAN-based carbon fiber and the pitch-based low elastic fiber, and There is provided a golf club shaft characterized in that the weight of reinforcing fiber composed of PAN-based carbon fiber and the pitch-based low-elasticity fiber is 60% or more and 80% or less of the total weight of the composite prepreg .
[0010]
With the above configuration, the PAN-based carbon fiber excellent in bending strength is made into a composite prepreg using a pitch-based low elastic fiber excellent in impact strength as a reinforcing fiber, thereby overcoming the weaknesses of the pitch-based carbon fiber, It can be set as the fiber reinforced resin tubular body which was excellent in both bending strength and impact strength.
[0011]
Generally, carbon fibers are produced in a state where 5 to 10 μm fibers are bundled in a certain amount. Depending on the number of fibers in one bundle, 3K (3000), 6K (6000), 12K (12000), 24K Although there are types such as (24,000), it is preferable that the prepreg uses fibers in the range of 3K to 12K.
If it is less than 3K, the productivity of the carbon fiber is reduced and the cost is increased. If it is more than 12K, the effect of combining the PAN-based carbon fiber and the pitch-based carbon fiber is manifested when a tubular body is formed. This is because the strength is reduced.
A bundle of carbon fibers of a certain amount such as 3K to 24K is bundled in parallel so as to have a width of about 1 mm to 5 mm, and in this state, the matrix resin is impregnated to form a prepreg.
[0012]
As described above, while carbon fibers that are usually used are 5 to 10 μm, the thickness of the PAN-based carbon fibers is as thin as 4 to 6 μm, while the pitch-based low-elasticity fibers are thin. Is relatively thick at 9-11 μm.
Therefore, in the prepreg in which only the thick pitch-based low-elasticity fibers are arranged and impregnated in the matrix resin, the surface unevenness is increased. Since the matrix resin is impregnated so as to fill the unevenness, the amount of resin increases in the surface layer of the prepreg. Therefore, when a prepreg made of pitch-based low-elasticity fibers is used as a reinforced resin, the interlayer resin layer becomes thick, so the shearing force between layers is inferior, and when impact force is applied, breakage such as peeling occurs between the layers. It becomes easy.
[0013]
Therefore, the composite prepreg of the present invention is a matrix resin in which a bundle of 4 to 6 μm of the PAN-based carbon fiber and a bundle of 9 to 11 μm of the pitch-based low-elasticity fiber are alternately arranged and have substantially the same thickness. Is impregnated to form a prepreg. Specifically, for example, the 6K PAN-based carbon fiber bundle and the 3K pitch-based low-elasticity carbon fiber are alternately arranged.
If it is the said structure, the unevenness | corrugation formed when a PAN type | system | group carbon fiber and a pitch-type low elastic fiber are arranged can be made still smaller. As a result, the amount of the matrix resin on the prepreg surface layer can be reduced, and the resin layer between the layers can be thinned. Thereby, the shearing force between layers can be raised and it can be set as the tubular body made from fiber reinforced resin excellent in impact resistance.
[0014]
In addition, in a tubular body formed by laminating prepregs, the strength of pitch-based low elastic fibers is dominant when the number of laminated prepregs using only pitch-based low elastic fibers as reinforcing fibers exceeds a certain number. As a result, the bending strength decreases. Furthermore, as for the position to be laminated, the effect of reinforcing the impact strength becomes smaller as the layers are laminated on the inner layer side. As described above, since the effect of reinforcing the impact strength of the pitch-based low-elasticity fiber is manifested only in a limited laminated structure, there is a problem that the design is restricted.
On the other hand, in the present invention, since a composite prepreg using PAN-based carbon fibers and pitch low-elasticity fibers as reinforcing fibers is laminated, regardless of the number of laminated composite prepregs and the lamination position, any lamination configuration Even so, high strength can be stably obtained, and the degree of freedom in design can be increased.
[0015]
The elastic modulus of the PAN-based carbon fiber is 200 GPa or more and 500 GPa or less, and more preferably 225 GPa or more and 400 GPa or less.
If it is less than 200 GPa, the carbon fiber tends to absorb moisture, which is not preferable, and if it is more than 500 GPa, the elongation of the carbon fiber becomes too small and brittle.
The elastic modulus of the pitch-based low elastic fiber is 45 GPa or more and 160 GPa or less, and more preferably 50 GPa or more and 150 GPa or less.
If it is less than 45 GPa, the production is difficult, and there is no commercially available product. On the other hand, if it is higher than 160 GPa, the compressive breaking strength is reduced and the reinforcing effect is lost.
[0016]
In the composite prepreg, the fiber directions of the PAN-based carbon fiber and the pitch-based low elastic fiber are preferably substantially parallel to the longitudinal direction of the tubular body.
Since the reinforcing fiber acts to maximize the bending strength when the orientation angle is 0 °, the above configuration can maximize the bending strength.
[0017]
The weight of the pitch-based low elastic fiber in the composite prepreg is set to 5 wt% or more and 50 wt% or less with respect to the total weight of the reinforced fiber obtained by adding the PAN-based carbon fiber and the pitch-based low elastic fiber. This is because if the amount is less than 5 wt%, the impact strength reinforcing effect is reduced, and if it exceeds 50 wt%, the bending strength reinforcing effect by the PAN-based carbon fiber is lost and the strength of the pitch-based low elastic fiber is dominant. This is because the bending strength is lowered. Preferably they are 10 wt% or more and 35 wt% or less.
[0018]
Further, the composite prepreg, that has a reinforcing fiber weight consisting of PAN-based carbon fiber and pitch based low elastic fibers and 80% or less 60% of the total composite prepreg weight. If it exceeds 80%, the proportion of fibers will be too high, and it will be difficult to develop physical properties as a composite material. If it is less than 60%, it will not be possible to reduce the weight, and the resin part will increase so much that the required rigidity and strength will be achieved. This is due to the occurrence of problems that are difficult to obtain.
[0019]
When a tubular body is formed by laminating the composite prepreg and the reinforcing fiber with another prepreg using only one type of reinforcing fiber, for example, 4 to 6 μm PAN-based carbon fiber, the composite prepreg is at least a tubular body. The outermost layer is preferably laminated.
With the above configuration, the outermost layer where compression and tensile strain occurs most when a bending load is applied to the tubular body is composed of a composite prepreg having PAN-based carbon fibers and pitch-based low-elasticity fibers as reinforcing fibers. The effect of the composite prepreg can be exhibited most, and the bending strength and impact strength can be improved.
[0020]
The present invention provides a golf club shaft comprising a tubular body made of fiber reinforced resin having the above-described configuration.
Since the tubular body has both bending strength and impact strength, the tubular body has sufficient strength to withstand the impact generated at the time of impact, and has sufficient strength against bending that occurs when the shaft bends. Hard to occur. That is, a golf club having high impact strength and bending strength can be obtained while being lightweight.
[0021]
Golf club shaft of the present invention, it is preferable to use a composite prepreg that the reinforcing fibers of the PAN-based carbon fiber and pitch based low elastic fibers as a prepreg constituting the straight layer of the outermost layer.
Further, the composite prepreg may be used as a reinforcing layer at the tip of the shaft that is coupled to the head.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 and 2 show a golf club shaft according to an embodiment of the present invention. The shaft 1 has a taper shape with a linearly expanded diameter, a head 2 is attached to a small diameter end side, and a grip 3 is provided on a large diameter side. It is attached.
[0023]
The shaft 1 is formed by using a plurality of prepregs in which carbon fibers are reinforced fibers and impregnated with a matrix resin, and the prepregs are laminated and heat-cured in a mold to form a tubular body.
Specifically, after the prepregs 11 to 14 shown in FIG. 2 are wound around a metal core (not shown) sequentially (prepreg 11 → 12 → 13 → 14) and laminated, polypropylene (PP), polyester, or the like The tape 1 is wrapped and heated and pressed in an oven to cure the resin and integrally mold it. Thereafter, the core bar is pulled out to form the shaft 1.
[0024]
The prepreg 11 of the first layer and the prepreg 12 of the second layer are each made of a prepreg using one type of carbon fiber (PAN-based carbon fiber) using the reinforcing fibers F11 and F12, and the reinforcing fiber F11 of the prepreg 11 is the shaft. The reinforcing fiber F12 of the prepreg 12 is inclined at an angle of −45 ° with respect to the axis, and is inclined at an angle of + 45 ° with respect to the shaft axis, thereby constituting an angle layer. The prepregs 11 and 12 have a length over the entire length of the shaft, and are each wound four times.
[0025]
The prepreg 13 of the third layer and the prepreg 14 of the fourth layer are wound three times each with a length over the entire length of the shaft such that the reinforcing fibers F13 and F14 are substantially parallel to the shaft axis.
The prepreg 13 in the third layer is a composite prepreg using PAN-based carbon fibers 20 and pitch-based low-elasticity carbon fiber groups 21 as the reinforcing fibers F13. Similarly, the prepreg 14 in the fourth layer is a composite prepreg using PAN-based carbon fibers 20 and pitch-based low-elasticity carbon fiber groups 21 as the reinforcing fibers F14.
[0026]
The PAN-based carbon fiber 20 has an elastic modulus of each fiber yarn of 200 GPa to 500 GPa and a thickness of 4 to 6 μm. A 6K (6000) yarn bundle is used as the PAN-based carbon fiber. On the other hand, the pitch-based low-elasticity carbon fiber 21 has an elastic modulus of each fiber yarn of 45 GPa or more and 160 GPa or less, and a thickness of 9 to 11 μm. As this pitch-based low-elasticity carbon fiber, a 3K (3000) yarn bundle is used.
[0027]
As shown in FIG. 3, the bundle 20A of the PAN-based carbon fibers 20 and the bundle 21A of the pitch-based low-elasticity carbon fibers are alternately arranged in one direction so as to have the same height of about 0.05 mm to 0.2 mm. The composite prepregs 13 and 14 impregnated with the matrix resin 23 from above and below are used.
As described above, in the composite prepreg, in the portion where the thin PAN-based carbon fiber 20 is located on the surface, the surface unevenness SC1 is smaller than the surface unevenness SC2 in the portion where the pitch-based low elastic carbon fiber 21 is located on the surface. The unevenness on the surface of the composite prepreg is reduced on average. Accordingly, the amount of the matrix resin 23 filled in the concave portions on the surface is reduced, so that the amount of the surface resin of the composite prepreg 20 is reduced.
[0028]
The reinforcing fiber F13 composed of the PAN-based carbon fiber 20 and the pitch-based low-elasticity carbon fiber 21 is 60% to 80% of the total weight of the composite prepreg 13, and the proportion of the pitch-based low-elasticity carbon fiber 21 in the reinforcing fiber F13 is 5% to 50%. The composite prepreg 14 is the same as the composite prepreg 13.
[0029]
In the shaft 1 having the above-described configuration, the composite prepregs 13 and 14 in which the PAN-based carbon fiber 20 having excellent bending strength and the pitch-based carbon fiber 21 having excellent impact strength are used as reinforcing fibers are used. The strength is excellent.
Therefore, a golf club using this shaft is lightweight and has excellent bending strength and impact strength.
[0030]
FIG. 4 shows a modification, in which a composite prepreg 30 is laminated on the outermost peripheral surface of the shaft 1 on the head mounting side.
The angle layers 11 and 12 are the same as in the above embodiment, and the prepregs 13 'and 14' of the straight layer are not composite prepregs but are made of one type of reinforcing fibers F13 'and F14' similar to the prepregs 11 and 12.
[0031]
In addition, this invention is not limited to the said embodiment, You may arrange | position the full length or part of a shaft between prepreg layers. The shaft axis parallel to the shaft axis may be used not only as a prepreg of a straight layer but also as an angle layer that inclines the fiber direction with respect to the shaft axis or a prepreg that constitutes a hoop layer with the fiber direction perpendicular to the shaft axis. Good .
[0032]
Hereinafter, examples of the fiber-reinforced resin shaft of the present invention and comparative examples will be described in detail.
The tubular bodies made of fiber reinforced resin of the examples and comparative examples all had an inner diameter of 6 mm, an outer diameter of 9 mm, and a length of 200 mm.
[0033]
[Table 1]
Figure 0004157357
[0034]
(Example 1)
It produced using the prepreg 11-14 shown in FIG. 2 of the structure similar to the shaft 1 of the said embodiment. In the composite prepregs 13 and 14, the ratio of the PAN-based carbon fibers was 80%, and the ratio of the pitch-based carbon fibers was 20%.
(Example 2)
Compared to Example 1, the composite prepreg was changed only in that the ratio of the PAN-based carbon fiber was 50% and the ratio of the pitch-based carbon fiber was 50%.
(Example 3)
In contrast to the examples, the composite prepreg was changed only in that the ratio of PAN-based carbon fibers was 20% and the ratio of pitch-based carbon fibers was 80%.
[0035]
(Comparative example)
For the shaft of the comparative example, as the two prepregs of the straight layer wound around the outer periphery of the prepregs 11 and 12 of the angle layer, a prepreg made of only a PAN-based carbon fiber was used as in the prepreg of the angle layer without using a composite prepreg. .
[0036]
About the shaft of the said Example and comparative example, bending strength and impact strength were measured by the method mentioned later. The measurement results are shown in Table 1 above.
[0037]
(Measurement method of bending strength)
The bending strength at the T point was measured by a method in accordance with the three-point bending test of “Golf Club Shaft Certification Criteria and Standard Confirmation Method” (5th No. 2087 approved by the Minister of International Trade and Industry) established by the Product Safety Association. The span was 150 mm.
[0038]
(How to measure impact strength)
As shown in FIG. 5, a cantilever bending impact test was performed using a falling weight impact tester (IITM-18) manufactured by Yonekura Seisakusho.
In the impact test, a position 50 mm from one end of the fiber reinforced resin tubular body was fixed, and an impact load was applied by colliding an 800 g weight W from above 1500 mm at a position 100 mm from the fixed end. An accelerometer is attached to the weight, and the accelerometer is connected to the FFT via an AD converter. As shown in FIG. 6, the impact bending load applied to the fiber reinforced resin tubular body and the displacement of the fiber reinforced resin tubular body The quantity was measured, and the impact absorption energy until fracture started was calculated.
[0039]
As shown in Table 1 above, Examples 1 to 3 using composite prepregs using PAN-based carbon fibers and pitch-based carbon fibers as reinforcing fibers are compared with Comparative Examples using only PAN-based carbon fibers as reinforcing fibers. It was confirmed that the impact strength was high.
In addition, it was confirmed that the shafts of Examples 1 and 2 in which the proportion of the pitch-based low carbon fiber in the composite prepreg was 50% by weight or less had higher bending strength than the shaft of the comparative example.
On the other hand, in Example 3 in which the proportion of pitch-based carbon fibers was 80% by weight exceeding 50% by weight, the bending strength was lower than those in Examples 1 and 2 and the comparative example. It was also confirmed that the proportion of the low-elasticity carbon fiber was preferably 50% by weight or less.
[0040]
【The invention's effect】
As apparent from the above description, according to the present invention, by using a PAN-based carbon fibers having excellent flexural strength and a good pitch-based carbon fiber impact strength composite prepreg reinforced fibers, golf club shafts DOO the flexural strength and impact strength can be a good together.
Specifically, by combining PAN-based carbon fibers and pitch-based carbon fibers having different thicknesses, the unevenness can be reduced, the resin on the prepreg surface layer can be reduced, and the resin layer between the layers can be made thinner. Thereby, the shearing force between layers can be increased and a golf club shaft made of a fiber reinforced resin excellent in impact resistance can be obtained.
In addition, by using a composite prepreg, high strength can be stably obtained regardless of the laminated configuration and the amount of the prepreg, so that the degree of freedom in design can be increased.
[Brief description of the drawings]
FIG. 1 is a schematic view of a golf club using a golf club shaft made of a fiber-reinforced resin tubular body of the present invention.
FIG. 2 is a view showing a laminated structure of prepregs used in the golf club shaft of the embodiment.
FIG. 3 is a schematic cross-sectional view showing a configuration of a composite prepreg.
FIG. 4 is a drawing showing a modification.
FIG. 5 is a drawing showing a method for measuring impact strength.
FIG. 6 is a drawing showing the correlation between the impact bending load applied to the shaft and the displacement of the shaft.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Shaft 2 Head 3 Grip 11, 12 Prepreg 13 and 14 with one type of reinforcing fiber Composite prepreg 20 PAN-based carbon fiber 21 Pitch-based low elastic carbon fiber 23 Matrix resin F11-14 Reinforcing fiber

Claims (4)

強化繊維をマトリクス樹脂に含浸させたプリプレグを複数枚積層して成形している繊維強化樹脂製のゴルフクラブシャフトであって、
上記積層するプリプレグのうち、少なくとも1枚は弾性率が相違する2種類の炭素繊維を樹脂に含浸した複合プリプレグからなると共に、他のプリプレグは1種類の炭素繊維を樹脂に含浸したプリプレグからなり、
前記複合プリプレグは、弾性率が200GPa以上500GPa以下のPAN系炭素繊維と、弾性率が45GPa以上160GPa以下のピッチ系低弾性繊維とからなる2種類の炭素繊維を強化繊維として樹脂に含浸させて1枚のプリプレグとし、
上記複合プリプレグ中の上記ピッチ系低弾性繊維の重量は、上記PAN系炭素繊維と上記ピッチ系低弾性繊維とを合計した強化繊維の全体重量に対して5wt%以上50wt%以下とし、かつ、上記PAN系炭素繊維と上記ピッチ系低弾性繊維とからなる強化繊維重量を複合プリプレグ全体重量の60%以上80%以下としていることを特徴とするゴルフクラブシャフト
Reinforcing fibers a fiber-reinforced resin golf club shaft which is molded by laminating a plurality of prepreg obtained by impregnating a matrix resin,
Among the prepregs to be laminated, at least one is made of a composite prepreg in which two types of carbon fibers having different elastic moduli are impregnated with a resin, and the other prepreg is made of a prepreg in which one type of carbon fiber is impregnated with a resin,
The composite prepreg is obtained by impregnating a resin as a reinforcing fiber with two types of carbon fibers composed of a PAN-based carbon fiber having an elastic modulus of 200 GPa to 500 GPa and a pitch-based low elastic fiber having an elastic modulus of 45 GPa to 160 GPa. A sheet of prepreg,
The weight of the pitch-based low elastic fiber in the composite prepreg is 5 wt% or more and 50 wt% or less with respect to the total weight of the reinforcing fiber obtained by adding the PAN-based carbon fiber and the pitch-based low elastic fiber, and A golf club shaft characterized in that the weight of reinforcing fibers composed of PAN-based carbon fibers and the pitch-based low-elasticity fibers is 60% or more and 80% or less of the total weight of the composite prepreg .
上記複合プリプレグは、4〜6μmの上記PAN系炭素繊維の束と、9〜11μmの上記ピッチ系低弾性繊維の束とを交互に引き揃えると共に略同一厚さとしている請求項1に記載のゴルフクラブシャフト2. The golf according to claim 1, wherein the composite prepreg includes a bundle of 4 to 6 μm of the PAN-based carbon fiber and a bundle of 9 to 11 μm of the pitch-based low-elasticity fiber which are alternately arranged and have substantially the same thickness. Club shaft . 上記複合プリプレグは、上記PAN系炭素繊維と上記ピッチ系低弾性繊維の繊維方向をシャフトの長手方向と略平行としている請求項1又は請求項2に記載のゴルフクラブシャフト。The composite prepreg, the PAN-based carbon fiber and the pitch-based golf club shaft according to claim 1 or claim 2 fiber directions of low elastic fibers have a longitudinal direction substantially parallel to the shaft. 上記複合プリプレグは、上記強化繊維として1種類の炭素繊維を用いている他のプリプレグの最外層に積層している請求項1乃至請求項3のいずれか1項に記載のゴルフクラブシャフト。 4. The golf club shaft according to claim 1 , wherein the composite prepreg is laminated on an outermost layer of another prepreg using one type of carbon fiber as the reinforcing fiber . 5.
JP2002295436A 2002-10-08 2002-10-08 Golf club shaft Expired - Fee Related JP4157357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002295436A JP4157357B2 (en) 2002-10-08 2002-10-08 Golf club shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002295436A JP4157357B2 (en) 2002-10-08 2002-10-08 Golf club shaft

Publications (2)

Publication Number Publication Date
JP2004130564A JP2004130564A (en) 2004-04-30
JP4157357B2 true JP4157357B2 (en) 2008-10-01

Family

ID=32285696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002295436A Expired - Fee Related JP4157357B2 (en) 2002-10-08 2002-10-08 Golf club shaft

Country Status (1)

Country Link
JP (1) JP4157357B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9539479B2 (en) 2012-10-10 2017-01-10 Dunlop Sports Co. Ltd. Golf club shaft
US9566485B2 (en) 2012-10-17 2017-02-14 Dunlop Sports Co. Ltd. Golf club shaft

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7862448B2 (en) 2006-01-11 2011-01-04 Right Planning Ltd. Sports equipment
JP2018072110A (en) * 2016-10-27 2018-05-10 株式会社島津製作所 Portable magnetic detector
JP7187418B2 (en) * 2019-10-01 2022-12-12 グローブライド株式会社 Rod body and fishing rod having rod body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9539479B2 (en) 2012-10-10 2017-01-10 Dunlop Sports Co. Ltd. Golf club shaft
US9993705B2 (en) 2012-10-10 2018-06-12 Dunlop Sports Co., Ltd. Golf club shaft
US9566485B2 (en) 2012-10-17 2017-02-14 Dunlop Sports Co. Ltd. Golf club shaft

Also Published As

Publication number Publication date
JP2004130564A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
US6273830B1 (en) Tapered hollow shaft
KR101557615B1 (en) Golf club shaft
JP3714791B2 (en) Lightweight golf club shaft
JP4157357B2 (en) Golf club shaft
JP3529009B2 (en) Carbon fiber reinforced composite
JP2005270515A (en) Tubular body made of fiber reinforced composite material
JP3771360B2 (en) Tubular body made of fiber reinforced composite material
US6926617B2 (en) Golf club shaft
JP2008154866A (en) Golf club shaft
JPH07144371A (en) Carbon fiber reinforced resin composite material having high damping capacity
JP4249998B2 (en) Golf club shaft
JP2554821B2 (en) Carbon fiber reinforced resin composite material and method for producing the same
JP2007000528A (en) Shaft for golf club made of fiber-reinforced composite material
JP2004057673A (en) Golf club shaft
CA2750108C (en) Hockey stick
JPH09327536A (en) Shaft for lightweight golf club and its production
JP2007030793A (en) Arm-shaped stress transmitting member
KR100361546B1 (en) Method for shaft produce of golf club
JP3715386B2 (en) Manufacturing method of ski stock shaft
JP2002347148A (en) Tubular body made of fiber-reinforced composite material and golf club shaft constituted by using the same
JP2566705B2 (en) Unidirectional prepreg, carbon fiber reinforced resin composite material and manufacturing method thereof
JPH09164600A (en) Tapered hollow shaft
JP2007117730A (en) Golf shaft
JPH0939125A (en) Tubular body of fiber reinforced plastic
JP2002065904A (en) Racket frame

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050603

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees