JPH04134887A - Superconducting device and manufacture thereof - Google Patents

Superconducting device and manufacture thereof

Info

Publication number
JPH04134887A
JPH04134887A JP2257861A JP25786190A JPH04134887A JP H04134887 A JPH04134887 A JP H04134887A JP 2257861 A JP2257861 A JP 2257861A JP 25786190 A JP25786190 A JP 25786190A JP H04134887 A JPH04134887 A JP H04134887A
Authority
JP
Japan
Prior art keywords
superconducting
oxide
channel
oxygen
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2257861A
Other languages
Japanese (ja)
Other versions
JP2641974B2 (en
Inventor
Takao Nakamura
孝夫 中村
Hiroshi Inada
博史 稲田
Michitomo Iiyama
飯山 道朝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2257861A priority Critical patent/JP2641974B2/en
Priority to EP91402594A priority patent/EP0478464B1/en
Priority to DE69127418T priority patent/DE69127418T2/en
Priority to CA002052380A priority patent/CA2052380C/en
Publication of JPH04134887A publication Critical patent/JPH04134887A/en
Priority to US08/652,846 priority patent/US5717222A/en
Application granted granted Critical
Publication of JP2641974B2 publication Critical patent/JP2641974B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To make it possible to eliminate the need for a fine processing technology and prepare a high performance device which uses an oxide superconductor by controlling a superconducting current flowing in a superconducting circuit with gate voltage. CONSTITUTION:A gate electrode 4 is installed to a superconducting device in order to control a superconducting channel 10 by an oxide superconductor, a source electrode 2 which passes electric current thereto, a drain electrode 3, and electric current flowing in the superconducting channel. The main current flows in the superconductor. The channel 10 is turned on and off with voltage applied to the electrode 4, which calls for a superconducting channel with an extremely thin thickness. The thickness is arranged to be sufficient for a superconducting source region and a superconducting drain region. The oxide thin film is heat-treated in an oxygen atmosphere so as to diffuse oxygen from the surface, thereby forming the channel 10. The oxide superconductor may lose its superconductivity due to the number of oxygen in the crystal. Therefore, oxygen ions are implanted into a part which forms a superconducting region or the conductor is heat-treated in the oxygen atmosphere so as to diffuse the oxygen, thereby producing the superconductor.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超電導素子およびその作製方法に関する。よ
り詳細には、新規な構成の超電導素子およびその作製方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a superconducting element and a method for manufacturing the same. More specifically, the present invention relates to a superconducting element with a novel configuration and a method for manufacturing the same.

従来の技術 超電導を利用した代表的な素子に、ジョセフソン素子が
ある。ジョセフソン素子は、一対の超電導体をトンネル
障壁を介して結合した構成であり、高速スイッチング動
作が可能である。しかしながら、ジョセフソン素子は2
端子の素子であり、論理回路を実現するためには複雑な
回路構成になってしまう。
A Josephson device is a typical device using conventional technology superconductivity. A Josephson device has a configuration in which a pair of superconductors are coupled via a tunnel barrier, and is capable of high-speed switching operation. However, the Josephson element is 2
It is a terminal element and requires a complicated circuit configuration to realize a logic circuit.

一方、超電導を利用した3端子素子として;ま、超電導
ベーストランジスタ、超電導FET等がある。第3図に
、超電導ペーストランンスタの概念図を示す。第3図の
超電導ベーストランジスタは、超電導体または常電導体
で構成されたエミッタ21、絶縁体で構成されたトンネ
ル障壁22、超電導体で構成されたベース23、半導体
アイソレータ24および常電導体で構成されたコレクタ
25を積層した構成になっている。この超電導ベースト
ランジスタは、トンネル障壁22を通過した高速電子を
利用した低電力消費で高速動作を行う素子である。
On the other hand, as three-terminal elements using superconductivity, there are superconducting base transistors, superconducting FETs, etc. FIG. 3 shows a conceptual diagram of a superconducting paste transistor. The superconducting base transistor shown in FIG. 3 is composed of an emitter 21 made of a superconductor or a normal conductor, a tunnel barrier 22 made of an insulator, a base 23 made of a superconductor, a semiconductor isolator 24, and a normal conductor. The collector 25 has a structure in which the collectors 25 are stacked. This superconducting base transistor is an element that operates at high speed with low power consumption using high speed electrons that have passed through the tunnel barrier 22.

第4図に、超電導FETの概念図を示す。第4図の超電
導FETは、超電導体で構成されている超電導ソース電
極41および超電導ドレイン電極42が、半導体層43
上に互いに近接して配置されている。超電導ソース電極
41および超電導ドレイン電極42の間の部分の半導体
層43は、下側が大きく削られ厚さが薄くなってし)る
。また、半導体層43の下側表面にはゲート絶縁膜46
が形成され、ゲート絶縁膜46上にゲート電極44が設
け・みれている。
FIG. 4 shows a conceptual diagram of a superconducting FET. In the superconducting FET of FIG. 4, a superconducting source electrode 41 and a superconducting drain electrode 42 made of a superconductor are connected to a semiconductor layer 43
are placed close to each other on top. The lower part of the semiconductor layer 43 between the superconducting source electrode 41 and the superconducting drain electrode 42 is largely shaved off and its thickness is reduced. Further, a gate insulating film 46 is formed on the lower surface of the semiconductor layer 43.
is formed, and a gate electrode 44 is provided and visible on the gate insulating film 46.

超電導FETは、近接効果て超電導ソース電極41およ
び超電導ドレイン電極42間の半導体層43を流れる超
電導電流を、ゲート電圧で制御する低電力消費で高速動
作を行う素子である。
A superconducting FET is an element that operates at high speed with low power consumption and controls superconducting current flowing through a semiconductor layer 43 between a superconducting source electrode 41 and a superconducting drain electrode 42 by a gate voltage due to the proximity effect.

さらに、ソース電極、ドレイン電極間に超電導体でチャ
ネルを形成し、この超電導チャネルを流れる電流をゲー
ト電極に印加する電圧で制御する3端子の超電導素子も
発表されている。
Furthermore, a three-terminal superconducting element has been announced in which a channel is formed between a source electrode and a drain electrode using a superconductor, and the current flowing through this superconducting channel is controlled by a voltage applied to a gate electrode.

発明が解決しようとする課題 上記の超電導ベーストランジスタおよび超電導FETは
、いずれも半導体層と超電導体層とが積層された部分を
有する。ところが、近年研究が進んでいる酸化物超電導
体を使用して、半導体層と超電導体層との積層構造を作
製することは困難である。また、この構造が作製できて
も半導体層と超電導体層の間の界面の制御が難しく、素
子として満足な動作をしなかった。
Problems to be Solved by the Invention The above-described superconducting base transistor and superconducting FET both have a portion in which a semiconductor layer and a superconductor layer are laminated. However, it is difficult to fabricate a stacked structure of a semiconductor layer and a superconductor layer using oxide superconductors, which have been studied in recent years. Moreover, even if this structure could be fabricated, it was difficult to control the interface between the semiconductor layer and the superconductor layer, and the device did not operate satisfactorily.

また、超電導FETは、近接効果を利用するため、超電
導ソース電極41および超電導ドレイン電極42を、そ
れぞれを構成する超電導体のコヒーレンス長の数倍程度
以内に近接させて作製しなければならない。特に酸化物
超電導体は、コヒーレンス長が短し1ので、酸化物超電
導体を使用した場合には、超電導ソース電極41および
超電導ドレイン電極42間の距離は、数lQnm以下に
しなければならない。このような微細加工は非常に困難
であり、従来は酸化物超電導体を使用した超電導FET
を再現性よく作製できなかった。
Furthermore, in order to utilize the proximity effect, the superconducting FET must be manufactured so that the superconducting source electrode 41 and the superconducting drain electrode 42 are located close to each other within several times the coherence length of the superconductor that constitutes each. In particular, an oxide superconductor has a short coherence length of 1, so when an oxide superconductor is used, the distance between the superconducting source electrode 41 and the superconducting drain electrode 42 must be several lQnm or less. Such microfabrication is extremely difficult, and conventionally superconducting FETs using oxide superconductors
could not be produced with good reproducibility.

さらに、従来の超電導チャネルを有する超電導素子は、
変調動作は確認されたが、キャリア密度が高いため、完
全なオン/オフ動作ができなかった。酸化物超電導体は
、キャリア密度が低いので、超電導チャネルに使用する
ことにより、完全なオン/オフ動作を行う上記の素子の
実現の可能性が期待されている。しかしながら、超電導
チャネルを5nm程度の厚さにしなければならず、その
ような構成を実現することは困難であった。
Furthermore, superconducting devices with conventional superconducting channels are
Although modulation operation was confirmed, complete on/off operation was not possible due to the high carrier density. Since oxide superconductors have a low carrier density, it is expected that by using them for superconducting channels, it will be possible to realize the above-mentioned devices that perform perfect on/off operation. However, the thickness of the superconducting channel must be approximately 5 nm, making it difficult to realize such a configuration.

そこで本発明の目的は、上記従来技術の問題点を解決し
た、新規な構成の超電導素子およびその作製方法を提供
することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a superconducting element having a novel configuration and a method for manufacturing the same, which solves the problems of the prior art described above.

課題を解決するための手段 本発明に従うと、酸化物超電導体で形成された超電導チ
ャネルと、該超電導チャネルの両側に配置され、前記超
電導チャネルを構成する酸化物超電導体で構成された超
電導ソース領域および超電導ドレイン領域と、前記超電
導ソース領域および前記超電導ドレイン領域上に配置さ
れ、超電導チャネルに電流を流すソース電極およびドレ
イン電極と、前記超電導チャネル上に絶縁層を介して配
置されて該超電導チャネルに流れる電流を制御するゲー
ト電極を具備する超電導素子において、前記超電導チャ
ネルの下方に前記酸化物超電導薄膜を構成する酸化物超
電導体と同じ構成元素を有し、前記酸化物超電導体より
も酸素量が少ない酸化物による絶縁領域を具備すること
を特徴とする超電導素子が提供される。
Means for Solving the Problems According to the present invention, there is provided a superconducting channel formed of an oxide superconductor, and a superconducting source region disposed on both sides of the superconducting channel and composed of the oxide superconductor constituting the superconducting channel. and a superconducting drain region, a source electrode and a drain electrode that are arranged on the superconducting source region and the superconducting drain region and allow current to flow through the superconducting channel, and a source electrode and a drain electrode that are arranged on the superconducting channel with an insulating layer interposed therebetween and that flow into the superconducting channel. In a superconducting element comprising a gate electrode that controls a flowing current, the superconducting channel has the same constituent elements as the oxide superconductor constituting the oxide superconducting thin film below the superconducting channel, and has a higher oxygen content than the oxide superconductor. SUMMARY OF THE INVENTION A superconducting device is provided that includes an insulating region with a reduced amount of oxide.

また、本発明では、上記の超電導素子を作製する方法と
して、前記酸化物超電導体と同じ構成元素を有し、前記
酸化物超電導体よりも酸素量が少ない酸化物の薄膜を成
膜し、該酸化物薄膜上に前記ゲート電極を形成した後、
酸素イオ、ンを注入して前記超電導ソース領域および前
記超電導ドレイン領域を形成する工程および前記酸化物
薄膜を酸素雰囲気中で熱処理して酸素を拡散させて前記
ゲート電極の下方に超電導チャネルを形成する工程を含
むことを特徴とする超電導素子の作製方法が提供される
Further, in the present invention, as a method for producing the above-mentioned superconducting element, a thin film of an oxide having the same constituent elements as the oxide superconductor and a lower amount of oxygen than the oxide superconductor is formed; After forming the gate electrode on the oxide thin film,
forming the superconducting source region and the superconducting drain region by implanting oxygen ions, ions, and heat-treating the oxide thin film in an oxygen atmosphere to diffuse oxygen and form a superconducting channel below the gate electrode; A method for manufacturing a superconducting element is provided, the method comprising the steps of:

作用 本発明の超電導素子は、酸化物超電導体による超電導チ
ャネルと、超電導チャネルに電流を流すソース電極およ
びドレイン電極と、超電導チャネルを流れる電流を制御
するゲート電極とを具備する。本発明の超電導素子では
、各電極は必ずしも超電導電極である必要がない。
Function The superconducting element of the present invention includes a superconducting channel made of an oxide superconductor, a source electrode and a drain electrode that allow current to flow through the superconducting channel, and a gate electrode that controls the current flowing through the superconducting channel. In the superconducting element of the present invention, each electrode does not necessarily have to be a superconducting electrode.

また、従来の超電導FETが、超電導近接効果を利用し
て半導体中に超電導電流を流すのに対し、本発明の超電
導素子では、主電流は超電導体中を流れる。従って、従
来の超電導FETを作製するときに必要な微細加工技術
の制限が緩和される。
Further, while conventional superconducting FETs use the superconducting proximity effect to cause a superconducting current to flow through the semiconductor, in the superconducting element of the present invention, the main current flows through the superconductor. Therefore, restrictions on microfabrication techniques required when manufacturing conventional superconducting FETs are relaxed.

超電導チャネルは、ゲート電極に印加された電圧で開閉
させるた約に、ゲート電極により発生される電界の方向
で、厚さが5nm程度でなければならない。本発明の主
眼は、このような極薄の超電導チャネルを実現すること
にある。
The superconducting channel must be approximately 5 nm thick in the direction of the electric field generated by the gate electrode in order to be opened and closed by the voltage applied to the gate electrode. The main focus of the present invention is to realize such an ultra-thin superconducting channel.

本発明の方法では、最初に約300nm程度の厚さの酸
化物超電導体と同じ構成元素を有し、酸化物超電導体よ
りも酸素量が少ない酸化物の薄膜を成膜する。この酸化
物薄膜は基板上に形成することが好ましく、厚さは、超
電導ソース領域および超電導ドレイン領域に十分な厚さ
とする。
In the method of the present invention, first, a thin film of an oxide having a thickness of approximately 300 nm and having the same constituent elements as the oxide superconductor and a lower amount of oxygen than the oxide superconductor is formed. This thin oxide film is preferably formed on the substrate and has a thickness sufficient to cover the superconducting source and drain regions.

この酸化物薄膜に酸素イオンを注入して、超電導ソース
領域および超電導ドレイン領域を形成する。また、この
酸化物薄膜を酸素雰囲気中で熱処理し、表面から酸素を
拡散させて超電導チャネルを形成する。酸化物超電導体
は、結晶中の酸素原子の数が不安定であり、熱処理等に
より変化させることが可能である。また、酸化物超電導
体は、結晶中の酸素数によりその特性が変化しやすく、
特に酸素数が適正な値より小さい場合には、臨界温度が
大幅に低下したり、超電導性を失う。
Oxygen ions are implanted into this oxide thin film to form a superconducting source region and a superconducting drain region. Further, this oxide thin film is heat-treated in an oxygen atmosphere to diffuse oxygen from the surface and form a superconducting channel. The number of oxygen atoms in the crystal of an oxide superconductor is unstable and can be changed by heat treatment or the like. In addition, the properties of oxide superconductors tend to change depending on the number of oxygen in the crystal.
In particular, if the number of oxygen is lower than the appropriate value, the critical temperature will drop significantly or the superconductivity will be lost.

従って、本発明の方法では、結晶中の酸素数が小さい酸
化物超電導体、実際には、酸化物超電導体と同じ構成元
素を有し、前記酸化物超電導体よりも酸素量が少ない酸
化物の薄膜を形成し、この薄膜の超電導領域となる部分
に酸素イオンを注入したり、酸素雰囲気中で熱処理して
酸素を拡散させて超電導体とする。酸素イオンの加速電
圧や酸素分圧、処理温度、処理時間等を加減することに
より、形成する酸化物超電導体を任意の厚さにすること
が可能である。また、酸化物超電導体は結晶のC軸と垂
直な方向に酸素が動きやすいので、酸化物薄膜の酸素を
拡散する部分に結晶のC軸に平行な溝を形成し、熱処理
することも好ましい。
Therefore, in the method of the present invention, an oxide superconductor having a small number of oxygen in the crystal, in fact, an oxide having the same constituent elements as the oxide superconductor and a lower amount of oxygen than the oxide superconductor. A thin film is formed, and oxygen ions are implanted into a portion of the thin film that will become a superconducting region, or heat treatment is performed in an oxygen atmosphere to diffuse oxygen and form a superconductor. By adjusting the oxygen ion acceleration voltage, oxygen partial pressure, treatment temperature, treatment time, etc., it is possible to form an oxide superconductor to have an arbitrary thickness. Further, since oxygen tends to move in the direction perpendicular to the C-axis of the crystal in an oxide superconductor, it is also preferable to form grooves parallel to the C-axis of the crystal in the portion of the oxide thin film where oxygen is diffused, and then heat-treat the groove.

本発明の超電導素子では、超電導ソース領域および超電
導ドレイン領域の厚さは約200nm 、超電導チャネ
ルの厚さは約5nmにしなければならない。
In the superconducting device of the present invention, the thickness of the superconducting source region and the superconducting drain region should be about 200 nm, and the thickness of the superconducting channel should be about 5 nm.

従って、本発明の方法では、上記の酸化物薄膜を約20
0 nmの厚さに形成し、超電導ソース領域および超電
導ドレイン領域とする部分には酸素を注入する。また、
超電導チャネルの部分は5nmと非常に薄いので、熱処
理により酸素を拡散させて超電導体とする。
Therefore, in the method of the present invention, the above oxide thin film is
It is formed to a thickness of 0 nm, and oxygen is implanted into the portions that will become the superconducting source region and the superconducting drain region. Also,
Since the superconducting channel portion is extremely thin at 5 nm, oxygen is diffused through heat treatment to make it a superconductor.

本発明の超電導素子はMgO1SrTi○3、[:dN
dA104等の酸化物単結晶基板上に作製されているこ
とが好ましい。これらの基板上には、配向性の高い結晶
からなる上記の酸化物薄膜を成長させることが可能であ
るので好ましい。また、表面にMgA]、04、BaT
iO3等が被覆されているSi基板を使用することも好
ましい。
The superconducting element of the present invention is MgO1SrTi○3, [:dN
Preferably, it is manufactured on an oxide single crystal substrate such as dA104. These substrates are preferable because it is possible to grow the above-mentioned oxide thin film made of highly oriented crystals. In addition, MgA], 04, BaT on the surface
It is also preferable to use a Si substrate coated with iO3 or the like.

本発明の超電導素子には、Y−Ba−Cu−0系酸化物
超電導体、Bi −3r−Ca−Cu−○系酸化物超電
導体、TI −Ba−Ca−Cu −0系酸化物超電導
体等任意の酸化物超電導体を使用することができる。
The superconducting element of the present invention includes a Y-Ba-Cu-0 based oxide superconductor, a Bi-3r-Ca-Cu-○ based oxide superconductor, and a TI-Ba-Ca-Cu-0 based oxide superconductor. Any oxide superconductor can be used.

以下、本発明を実施例により、さらに詳しく説明するが
、以下の開示は本発明の単なる実施例に過ぎず、本発明
の技術的範囲をなんら制限するものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the following disclosure is merely an example of the present invention and does not limit the technical scope of the present invention in any way.

実施例 第1図に、本発明の超電導素子の断面図を示す。Example FIG. 1 shows a cross-sectional view of the superconducting element of the present invention.

第1図の超電導素子は、基板5上に成膜された酸化物超
電導体と同じ構成元素を有し、酸化物超電導体よりも酸
素量が少ない絶縁体酸化物の薄膜11中に形成された超
電導チャネル10、超電導ソース領域12および超電導
ドレイン領域13を有する。超電導チャネル10の下側
には絶縁領域50があり、超電導チャネル10の厚さは
約5nmである。
The superconducting element shown in FIG. 1 is formed in a thin film 11 of an insulating oxide that has the same constituent elements as the oxide superconductor deposited on the substrate 5 and has a lower oxygen content than the oxide superconductor. It has a superconducting channel 10, a superconducting source region 12, and a superconducting drain region 13. There is an insulating region 50 on the underside of the superconducting channel 10, and the thickness of the superconducting channel 10 is approximately 5 nm.

超電導チャネル10の上にはSiN等の絶縁層6を介し
てゲート電極4が形成されている。超電導チャネル10
の両側の部分には、厚さ約200nmの超電導ソース領
域12および超電導ドレイン領域13が形成されている
。超電導ソース領域12および超電導ドレイン領域13
の上には、それぞれソー スミ極2およびドレイン電極
3が設けられている。ソース電極2、ドレイン電極3お
よびゲート電極4は、いずれもAuまたはTi、 W等
の高融点金属、またはこれらのシリサイドで形成されて
し)る。
A gate electrode 4 is formed on the superconducting channel 10 via an insulating layer 6 such as SiN. Superconducting channel 10
A superconducting source region 12 and a superconducting drain region 13 having a thickness of about 200 nm are formed on both sides of the superconducting region. Superconducting source region 12 and superconducting drain region 13
A source electrode 2 and a drain electrode 3 are respectively provided on the top. The source electrode 2, the drain electrode 3, and the gate electrode 4 are all made of Au, a high melting point metal such as Ti, or W, or a silicide thereof.

第2図を参照して、本発明の超電導素子を本発明の方法
で作製する手順を説明する。まず、第2図(a)に示す
ような基板5の表面に第2図b)に示すよう約200n
m程度のY、Ba2Cu307−、酸化物薄膜11をオ
ファクシススバッタリング法で形成する。
Referring to FIG. 2, the procedure for manufacturing the superconducting element of the present invention using the method of the present invention will be described. First, about 200 nm was applied to the surface of the substrate 5 as shown in FIG. 2(a), as shown in FIG. 2(b).
A Y, Ba2Cu307-, oxide thin film 11 having a thickness of about m is formed by an oxidation sputtering method.

Y 1 B a 2 CL120 ? −Y酸化物は、
Y1Ba2Cu30i−X酸化物超電導体と比較すると
、y>xで低温で絶縁性を示す。オファクシススバッタ
リング法で酸化物薄膜11を形成する場合の成膜条件を
以下に示す。
Y 1 B a 2 CL120? -Y oxide is
Compared to Y1Ba2Cu30i-X oxide superconductor, it exhibits insulating properties at low temperatures when y>x. The film-forming conditions for forming the oxide thin film 11 by the off-axis sputtering method are shown below.

スパッタリングガス   Ar  :90%o2 :1
0% 圧    力          10  Pa基板温
度  700℃ 基板5としては、Mg0(100)基板、5rTt03
(100)基板、CdNdA10.(001)等の絶縁
体基板、または表面に絶縁膜を有する81等の半導体基
板が好ましい。二の81基板の表面にはMgAl2O4
、BaTiO3等をスパッタリング法で積層されている
ことが好ましい。
Sputtering gas Ar: 90% O2: 1
0% Pressure 10 Pa Substrate temperature 700°C As the substrate 5, Mg0 (100) substrate, 5rTt03
(100) Substrate, CdNdA10. An insulating substrate such as (001) or a semiconductor substrate such as 81 having an insulating film on the surface is preferable. The surface of the second 81 substrate is MgAl2O4.
, BaTiO3, etc. are preferably laminated by a sputtering method.

酸化物超電導体としては、Y−Ba−Cu−0系酸化物
超電導体の他Bi −3r −Ca−Cu −0系酸化
物超電導体、Tl−Ba−ロa=cu−0系酸化物超電
導体が好ましく、C軸配向の薄膜とすることが好ましい
Examples of oxide superconductors include Y-Ba-Cu-0-based oxide superconductors, Bi-3r-Ca-Cu-0-based oxide superconductors, and Tl-Ba-Roa=cu-0-based oxide superconductors. A thin film with C-axis orientation is preferred.

これは、C軸配向の酸化物超電導薄膜は、基板と平行な
方向の臨界電流密度が大きいからである。
This is because the C-axis oriented oxide superconducting thin film has a large critical current density in the direction parallel to the substrate.

次に、第2図(C)に示すよう酸化物薄膜11上にSi
N等の絶縁膜16を形成する。絶縁膜16の厚さは約1
0nm以上のトンネル電流が無視できる厚さにする。
Next, as shown in FIG. 2(C), Si is placed on the oxide thin film 11.
An insulating film 16 made of N or the like is formed. The thickness of the insulating film 16 is approximately 1
The thickness should be such that tunnel current of 0 nm or more can be ignored.

また、絶縁膜16は、酸化物超電導薄膜との界面で大き
な準位を作らない絶縁体を用いることが好ましく、機械
的応力の減少の点から、酸化物超電導体と組成の近い絶
縁膜を連続形成することも好ましい。
In addition, it is preferable to use an insulator that does not create a large level at the interface with the oxide superconducting thin film for the insulating film 16, and from the viewpoint of reducing mechanical stress, an insulating film having a composition similar to that of the oxide superconductor is used continuously. It is also preferable to form.

絶縁膜16上に第2図(d)に示すようゲート電極用の
金属膜17を積層する。上述のようにこの金属膜17は
、AuまたはT1、W等の高融点金属、またはこれらの
シリサイドで形成する。金属膜17上に第2図(e)に
示すようフォトレジスト膜91.92.93でゲート電
極のパターンを形成する。金属膜17および絶縁膜16
をエツチングし、第2図(f)に示すようゲート電極4
および絶縁層6を形成する。絶縁膜16をエツチングす
る場合には、必要に応じてサイドエッチを促進し、絶縁
層6の長さを減少させる。
A metal film 17 for a gate electrode is laminated on the insulating film 16 as shown in FIG. 2(d). As described above, this metal film 17 is formed of Au, a high melting point metal such as T1, W, etc., or a silicide thereof. A gate electrode pattern is formed on the metal film 17 using photoresist films 91, 92, and 93 as shown in FIG. 2(e). Metal film 17 and insulating film 16
The gate electrode 4 is etched as shown in FIG. 2(f).
and an insulating layer 6 is formed. When etching the insulating film 16, side etching is promoted as necessary to reduce the length of the insulating layer 6.

ゲート電極4および絶縁層6を形成したら、第2図〔区
に示すようArイオンミリング等で異方性エツチングを
行い、酸化物薄膜11の露出している部分に深さ5〜l
Qnmの溝14.15を形成する。ゲート電極4および
絶縁層6以外の金属膜および絶縁膜を除去し、第2図(
社)に示すよう酸化物薄膜11に酸素イオンを注入し、
超電導ソース領域12および超電導ドレイン領域13を
形成する。酸素イオンの注入条件を以下に示す。
After forming the gate electrode 4 and the insulating layer 6, anisotropic etching is performed using Ar ion milling or the like as shown in FIG.
Grooves 14 and 15 of Qnm are formed. The metal films and insulating films other than the gate electrode 4 and the insulating layer 6 are removed, and the structure shown in FIG.
Oxygen ions are implanted into the oxide thin film 11 as shown in
A superconducting source region 12 and a superconducting drain region 13 are formed. The oxygen ion implantation conditions are shown below.

加速電圧    40kV 注入量(ドーズ量)1×10′5〜1×1016個/ 
crl超電導ソース領域12および超電導ドレイン領域
13を形成したら、第2図(1)に示すようゲート電極
4と同様の材料を用いて、超電導ソース領域12および
超電導ドレイン領域13それぞれの上にソース電極2お
よびドレイン電極3を形成する。フォトレジスト膜92
上にもソース電極2、ドレイン電極3と同じ材料の膜1
7が形成されるが、フォトレジスト膜92と同時に除去
する。
Acceleration voltage 40kV Injection amount (dose) 1 x 10'5 ~ 1 x 1016 pieces/
After forming the CRL superconducting source region 12 and the superconducting drain region 13, as shown in FIG. and a drain electrode 3 is formed. Photoresist film 92
A film 1 made of the same material as the source electrode 2 and drain electrode 3 is also formed on the top.
7 is formed, but it is removed at the same time as the photoresist film 92.

そして、最後に熱処理を行って、ソース電極2、ドレイ
ン電極3と絶縁膜6との隙間から酸素を酸化物薄膜内部
に拡散させて第2図(j)に示すよう超電導チャネル1
0を形成する。熱処理条件を以下に示す。
Finally, heat treatment is performed to diffuse oxygen into the oxide thin film through the gaps between the source electrode 2, drain electrode 3, and insulating film 6, thereby forming the superconducting channel 1 as shown in FIG. 2(j).
form 0. The heat treatment conditions are shown below.

基板温度   350℃ 酸素分圧 lX10’Pa 保持時間   1 時間 超電導チャネル10の下側は絶縁領域50となる。Substrate temperature 350℃ Oxygen partial pressure lX10’Pa Holding time 1 hour The underside of the superconducting channel 10 becomes an insulating region 50.

本発明の超電導素子を本発明の方法で作製すると、超電
導FETを作製する場合に要求される微細加工技術の制
限が緩和される。また、表面が平坦にできるので、後に
必要に応じ配線を形成することが容易になる。従って、
作製が容易であり、素子の性能も安定しており、再現性
もよい。
When the superconducting element of the present invention is manufactured by the method of the present invention, restrictions on microfabrication techniques required when manufacturing a superconducting FET are relaxed. Furthermore, since the surface can be made flat, it becomes easier to form wiring later as required. Therefore,
It is easy to manufacture, has stable device performance, and has good reproducibility.

発明の詳細 な説明したように、本発明の超電導素子は、超電導チャ
ネル中を流れる超電導電流をゲート電圧で制御する構成
となっている。従って、従来の超電導FETのように、
超電導近接効果を利用していないので微細加工技術が不
要である。また、超電導体と半導体を積層する必要もな
いので、酸化物超電導体を使用して高性能な素子が作製
できる。
As described in detail, the superconducting element of the present invention has a configuration in which the superconducting current flowing in the superconducting channel is controlled by the gate voltage. Therefore, like the conventional superconducting FET,
Since it does not utilize the superconducting proximity effect, microfabrication technology is not required. Furthermore, since there is no need to stack a superconductor and a semiconductor, high-performance devices can be manufactured using oxide superconductors.

本発明により、超電導技術の電子デバイスへの応用がさ
らに促進される。
The present invention further promotes the application of superconducting technology to electronic devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の超電導素子の概略図であり、第2図
は、本発明の方法により本発明の超電導素子を作製する
場合の工程を示す概略図であり、第3図は、超電導ベー
ストランジスタの概略図であり、 第4図は、超電導FETの概略図である。 ニ主な参照番号し 2・・・ソース電極、 3・・・ドレイン電極、 4・・・ゲート電極、 5・・・基板
FIG. 1 is a schematic diagram of the superconducting device of the present invention, FIG. 2 is a schematic diagram showing the steps for producing the superconducting device of the present invention by the method of the present invention, and FIG. 3 is a schematic diagram of the superconducting device of the present invention. FIG. 4 is a schematic diagram of a base transistor; FIG. 4 is a schematic diagram of a superconducting FET. Main reference numbers: 2...source electrode, 3...drain electrode, 4...gate electrode, 5...substrate

Claims (2)

【特許請求の範囲】[Claims] (1)酸化物超電導体で形成された超電導チャネルと、
該超電導チャネルの両側に配置され、前記超電導チャネ
ルを構成する酸化物超電導体で構成された超電導ソース
領域および超電導ドレイン領域と、前記超電導ソース領
域および前記超電導ドレイン領域上に配置され、超電導
チャネルに電流を流すソース電極およびドレイン電極と
、前記超電導チャネル上に絶縁層を介して配置されて該
超電導チャネルに流れる電流を制御するゲート電極を具
備する超電導素子において、前記超電導チャネルの下方
に前記酸化物超電導薄膜を構成する酸化物超電導体と同
じ構成元素を有し、前記酸化物超電導体よりも酸素量が
少ない酸化物による絶縁領域を具備することを特徴とす
る超電導素子。
(1) A superconducting channel formed of an oxide superconductor,
A superconducting source region and a superconducting drain region, which are arranged on both sides of the superconducting channel and are made of an oxide superconductor constituting the superconducting channel, and which are arranged on the superconducting source region and the superconducting drain region, and which supply current to the superconducting channel. A superconducting element comprising a source electrode and a drain electrode through which current flows, and a gate electrode disposed over the superconducting channel via an insulating layer to control the current flowing through the superconducting channel, wherein the oxide superconducting 1. A superconducting element comprising an insulating region made of an oxide that has the same constituent elements as an oxide superconductor constituting a thin film and has a lower oxygen content than the oxide superconductor.
(2)請求項1に記載の超電導素子を作製する方法にお
いて、前記酸化物超電導体と同じ構成元素を有し、前記
酸化物超電導体よりも酸素量が少ない酸化物の薄膜を成
膜し、該酸化物薄膜上に前記ゲート電極を形成した後、
酸素イオンを注入して前記超電導ソース領域および前記
超電導ドレイン領域を形成する工程および前記酸化物薄
膜を酸素雰囲気中で熱処理して酸素を拡散させて前記ゲ
ート電極の下方に超電導チャネルを形成する工程を含む
ことを特徴とする超電導素子の作製方法。
(2) In the method for producing a superconducting element according to claim 1, a thin film of an oxide having the same constituent elements as the oxide superconductor and a lower amount of oxygen than the oxide superconductor is formed, After forming the gate electrode on the oxide thin film,
a step of implanting oxygen ions to form the superconducting source region and the superconducting drain region; and a step of heat-treating the oxide thin film in an oxygen atmosphere to diffuse oxygen to form a superconducting channel below the gate electrode. A method for producing a superconducting element, comprising:
JP2257861A 1990-09-27 1990-09-27 Superconducting element and fabrication method Expired - Lifetime JP2641974B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2257861A JP2641974B2 (en) 1990-09-27 1990-09-27 Superconducting element and fabrication method
EP91402594A EP0478464B1 (en) 1990-09-27 1991-09-27 Method for manufacturing a superconducting device having an extremely thin superconducting channel formed of oxide superconductor material
DE69127418T DE69127418T2 (en) 1990-09-27 1991-09-27 Manufacturing process of a superconducting component with an extremely thin superconducting channel made of superconducting oxide material
CA002052380A CA2052380C (en) 1990-09-27 1991-09-27 Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material and method for manufacturing the same
US08/652,846 US5717222A (en) 1990-09-27 1996-05-23 Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2257861A JP2641974B2 (en) 1990-09-27 1990-09-27 Superconducting element and fabrication method

Publications (2)

Publication Number Publication Date
JPH04134887A true JPH04134887A (en) 1992-05-08
JP2641974B2 JP2641974B2 (en) 1997-08-20

Family

ID=17312193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2257861A Expired - Lifetime JP2641974B2 (en) 1990-09-27 1990-09-27 Superconducting element and fabrication method

Country Status (1)

Country Link
JP (1) JP2641974B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281481A (en) * 1987-05-13 1988-11-17 Hitachi Ltd Superconducting switching element
JPS6428876A (en) * 1987-07-23 1989-01-31 Matsushita Electric Ind Co Ltd Manufacture of superconducting 3-terminal element
JPS6465886A (en) * 1987-09-07 1989-03-13 Sumitomo Electric Industries Manufacture of high-tenperature superconducting device
JPH01170080A (en) * 1987-12-25 1989-07-05 Furukawa Electric Co Ltd:The Superconducting fet element
JPH0272685A (en) * 1988-09-07 1990-03-12 Fujitsu Ltd Method for forming weakly coupled superconductor part
JPH02234479A (en) * 1989-03-07 1990-09-17 Nec Corp Superconducting device and manufacture thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281481A (en) * 1987-05-13 1988-11-17 Hitachi Ltd Superconducting switching element
JPS6428876A (en) * 1987-07-23 1989-01-31 Matsushita Electric Ind Co Ltd Manufacture of superconducting 3-terminal element
JPS6465886A (en) * 1987-09-07 1989-03-13 Sumitomo Electric Industries Manufacture of high-tenperature superconducting device
JPH01170080A (en) * 1987-12-25 1989-07-05 Furukawa Electric Co Ltd:The Superconducting fet element
JPH0272685A (en) * 1988-09-07 1990-03-12 Fujitsu Ltd Method for forming weakly coupled superconductor part
JPH02234479A (en) * 1989-03-07 1990-09-17 Nec Corp Superconducting device and manufacture thereof

Also Published As

Publication number Publication date
JP2641974B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
JPS61206279A (en) Superconductive element
US5717222A (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material and method for manufacturing the same
JPH04134887A (en) Superconducting device and manufacture thereof
JP2641973B2 (en) Superconducting element and manufacturing method thereof
JP2641977B2 (en) Superconducting element fabrication method
JP2641978B2 (en) Superconducting element and fabrication method
JP2641971B2 (en) Superconducting element and fabrication method
JP2667289B2 (en) Superconducting element and fabrication method
JP2691065B2 (en) Superconducting element and fabrication method
JP2641970B2 (en) Superconducting element and fabrication method
JP2599498B2 (en) Superconducting element and fabrication method
JPS63258083A (en) Manufacture of superconductive material
JP2641966B2 (en) Superconducting element and fabrication method
JP2599500B2 (en) Superconducting element and fabrication method
JP2641976B2 (en) Superconducting element and fabrication method
JP2641975B2 (en) Superconducting element and fabrication method
JP2597745B2 (en) Superconducting element and fabrication method
JP2656853B2 (en) Superconducting element and fabrication method
JP2597747B2 (en) Superconducting element and fabrication method
JP2738144B2 (en) Superconducting element and fabrication method
JP2647251B2 (en) Superconducting element and fabrication method
JPH0537036A (en) Superconductive device and manufacture thereof
JPH04127587A (en) Manufacture of superconductive element
JPH04167572A (en) Superconductive element and manufacture thereof
JPH04163975A (en) Superconducting element and manufacture thereof