JPH04134865A - Solid-state image sensing element - Google Patents

Solid-state image sensing element

Info

Publication number
JPH04134865A
JPH04134865A JP2257783A JP25778390A JPH04134865A JP H04134865 A JPH04134865 A JP H04134865A JP 2257783 A JP2257783 A JP 2257783A JP 25778390 A JP25778390 A JP 25778390A JP H04134865 A JPH04134865 A JP H04134865A
Authority
JP
Japan
Prior art keywords
wiring layer
layer
electrode
buffer amplifier
floating diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2257783A
Other languages
Japanese (ja)
Inventor
Keiko Kawabata
啓子 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2257783A priority Critical patent/JPH04134865A/en
Publication of JPH04134865A publication Critical patent/JPH04134865A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To eliminate a capacity of a wiring layer with a semiconductor substrate almost entirely by providing an electrode wiring layer connected to an output end of a buffer amplifier on a semiconductor substrate and by providing a wiring layer for connecting a stray diffusion layer and an input end of a buffer amplifier through an insulating film on an electrode Wiring layer. CONSTITUTION:An output wiring layer 11 is formed of a second layer aluminum film. A second layer Al electrode 26 is provided through an insulating film in an upper part of an Al wiring layer 13 in addition to an electrode wiring layer 21 of a first layer polysilicon film which is connected to the output wiring layer 11 through the contact hole 24. The second layer Al electrode 26 is connected to a source region 17 in a contact hole 25, and at the same time, it is continued to an output wiring layer 11. A capacity of a wiring part which connects a stray diffusion layer 8 and a driving transistor gate electrode 16 is further reduced. It is constituted of an MOS type source follower type buffer amplifier; the more a gain of the buffer amplifier approaches one, the more it affects.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、固体撮像素子に関し、特に電荷検出部の構造
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid-state image sensor, and particularly to the structure of a charge detection section.

〔従来の技術〕[Conventional technology]

電荷転送型の固体撮像素子において、出力の電荷検出部
はS/N 、リニアリティー等の点から、浮遊拡散層を
用いた増幅器が一般的である。第3図(b)は電荷検出
部の一例を示す断面図であり、水平CCDを転送されて
きた信号電荷は、最終段の転送電極5、出力ゲート電極
6下を通って浮遊拡散層8に流入して電圧に変換され、
駆動トランジスタ9、負荷トランジスタ10を有するソ
ースホロワ増幅器〈バッファ増幅器)で検出される。
In a charge transfer type solid-state image sensor, the output charge detection section is generally an amplifier using a floating diffusion layer from the viewpoint of S/N ratio, linearity, etc. FIG. 3(b) is a cross-sectional view showing an example of a charge detection section, in which the signal charge transferred through the horizontal CCD passes under the final stage transfer electrode 5 and output gate electrode 6, and enters the floating diffusion layer 8. flows in and is converted into voltage,
It is detected by a source follower amplifier (buffer amplifier) having a drive transistor 9 and a load transistor 10.

第3図(a)は電荷検出部の平面図である。第3図(b
)は第3図(a、 )のX−X線断面図である。8は浮
遊拡散層、16はソースホロワ増幅器の駆動トランジス
タ9のゲート電極、13は浮遊拡散層8と駆動トランジ
スタのゲート電極9を接続るAρ配線層、15はドレイ
ン電圧端子VDDに接続されているトレイン領域、17
は負荷トランジスタ10に接続されているソース領域で
、この部分が出力電圧を与える。
FIG. 3(a) is a plan view of the charge detection section. Figure 3 (b
) is a sectional view taken along the line X-X of FIG. 3(a, ). 8 is a floating diffusion layer, 16 is a gate electrode of the drive transistor 9 of the source follower amplifier, 13 is an Aρ wiring layer connecting the floating diffusion layer 8 and the gate electrode 9 of the drive transistor, and 15 is a train connected to the drain voltage terminal VDD. area, 17
is a source region connected to the load transistor 10, and this portion provides the output voltage.

電荷積比は浮遊拡散層8に転送される電荷量Qの変化に
応じ、Q =CFJ″×■なる関係式に基づき、浮遊拡
散層8、リセットゲート電極7、リセットドレイン8に
よって形成されるリセットトランジスタのリセット動作
により、設定されたフィールドスルー電位から■の電位
変化として行われる。ここで、CFJ’は、浮遊拡散層
8の容量CF。
The charge product ratio is calculated according to the change in the amount of charge Q transferred to the floating diffusion layer 8, based on the relational expression Q = CFJ''×■. Due to the reset operation of the transistor, the potential changes from the set field-through potential to ■.Here, CFJ' is the capacitance CF of the floating diffusion layer 8.

の他にリセットゲート電極7との間の容量Ca水平出力
ゲート電極6との間の容量Cb、浮遊拡散層8と駆動ト
ランジスタのゲート電極16とを接続するA、R配線層
13が半導体基板との間に持つ容量Cc、駆動トランジ
スタのゲート電極16が半導体基板との間に持つ容量C
d、駆動トランジスタのゲート電極16が、そのソース
領域15との間に持つ容量Ce、駆動トランジスタのゲ
ート電極16が、そのソース領域16との間に持つ容量
Cfなとの寄生容量の和として表現できる。
In addition, the capacitance Ca between the reset gate electrode 7, the capacitance Cb between the horizontal output gate electrode 6, and the A and R wiring layers 13 connecting the floating diffusion layer 8 and the gate electrode 16 of the drive transistor are connected to the semiconductor substrate. Capacitance Cc between the drive transistor gate electrode 16 and the semiconductor substrate
d, the capacitance Ce that the gate electrode 16 of the drive transistor has with its source region 15, and the capacitance Cf that the gate electrode 16 of the drive transistor has with its source region 16, expressed as the sum of the parasitic capacitances. can.

従って信号電荷は、浮遊拡散層8に付随する容量CFJ
″が小さいほど電圧変換効率は大きく、素子の感度が向
上することになる。従来これらの寄生容量をなるべく小
さくするため、Ca、Cbについては、浮遊拡散層自体
の面積の縮小、Cc。
Therefore, the signal charge is the capacitance CFJ attached to the floating diffusion layer 8.
The smaller `` is, the higher the voltage conversion efficiency is, and the sensitivity of the element is improved. Conventionally, in order to reduce these parasitic capacitances as much as possible, for Ca and Cb, the area of the floating diffusion layer itself is reduced, and Cc.

Cdについては、浮遊拡散層8と駆動トランジスタのゲ
ート電極16を接続するAI2配線層13や、駆動トラ
ンジスタのゲート電極16を短くしたり、細らせるなど
の対策がとられてきた。
Regarding Cd, measures have been taken to shorten or thin the AI2 wiring layer 13 that connects the floating diffusion layer 8 and the gate electrode 16 of the drive transistor, and the gate electrode 16 of the drive transistor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、この従来の電荷検出部の浮遊拡散層と駆動トラ
ンジスタのゲート電極とを接続するA(配線層は、レイ
アウト上極端に短い配線は不可能であり、改善する上で
大きな障害となるという問題点があった。
However, due to the layout, extremely short wiring is impossible for the A (wiring layer) that connects the floating diffusion layer of the conventional charge detection unit and the gate electrode of the drive transistor, which poses a major obstacle to improvement. There was a point.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、電荷転送部と、前記電荷転送部から信号電荷
を受取る浮遊拡散層と、前記浮遊拡散層の電位を検出す
るバッファ増幅器とが半導体基板に集積されている固体
撮像素子において、前記バッファ増幅器の出力端に接続
された電極配線層が前記半導体基板上に設けられ、前記
電極配線層上に絶縁膜を介して前記浮遊拡散層と前記バ
ッファ増幅器の入力端とを接続する配線層が設けられて
いるというものである。
The present invention provides a solid-state imaging device in which a charge transfer section, a floating diffusion layer that receives signal charges from the charge transfer section, and a buffer amplifier that detects a potential of the floating diffusion layer are integrated on a semiconductor substrate. An electrode wiring layer connected to an output end of the amplifier is provided on the semiconductor substrate, and a wiring layer connecting the floating diffusion layer and the input end of the buffer amplifier is provided on the electrode wiring layer via an insulating film. It is said that it is being carried out.

〔実施例〕〔Example〕

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

第1図(a)は本発明の第1の実施例を示す平面図、第
1図(b)は第1図(a>のY−Y線断面図である。
FIG. 1(a) is a plan view showing a first embodiment of the present invention, and FIG. 1(b) is a sectional view taken along the line Y--Y in FIG. 1(a).

従来例との相違について説明する。Differences from the conventional example will be explained.

浮遊拡散層8とコンタクト穴18−1で接続され、バッ
ファ増幅器の駆動トランジスタのゲート電[16(第2
層ポリシリコン膜)とコンタクト穴19で接続されたA
ffl配線層13の下に厚さ200nmの絶縁膜22(
酸化シリコンM)を介して電極配線層21く第1層ポリ
シリコン膜)が設けられている。電極配線層21はコン
タクト穴23で出力配線層11(Af膜)と接続されて
いる。
It is connected to the floating diffusion layer 8 through the contact hole 18-1, and is connected to the gate voltage [16 (second
A connected to the contact hole 19 (layer polysilicon film)
An insulating film 22 (with a thickness of 200 nm) is formed under the ffl wiring layer 13 (
An electrode wiring layer 21 (first layer polysilicon film) is provided via a silicon oxide layer (M). The electrode wiring layer 21 is connected to the output wiring layer 11 (Af film) through a contact hole 23.

電極配線層21の電位はAρ配線層13の電位につれて
変化するので、電位差の変化は殆どな(、AJ配線層1
3が半導体基板との間などに持っていた寄生容量を減ら
すことができる。
Since the potential of the electrode wiring layer 21 changes with the potential of the Aρ wiring layer 13, there is almost no change in potential difference (, AJ wiring layer 1
The parasitic capacitance that No. 3 had between it and the semiconductor substrate can be reduced.

第2図は本発明の第2の実施例の電荷検出部の平面図で
ある。
FIG. 2 is a plan view of a charge detection section according to a second embodiment of the present invention.

この実施例においては、出力配線層11を第2層アルミ
ニウム膜で形成し、この出力配線層11とコンタクト穴
24で接続された第1層ポリシリコン膜の電極配線層2
1に加えて、さらにAf配線層13(本実施例では第1
層アルミニウム膜)の上部に図示しない絶縁膜を介して
第2層AJ電極24が設けられている。第2層Aβ電極
24はコンタクト穴25においてソース領域25と接続
されると同時に出力配線層11に連続している。
In this embodiment, an output wiring layer 11 is formed of a second layer aluminum film, and an electrode wiring layer 2 of a first layer polysilicon film is connected to this output wiring layer 11 through a contact hole 24.
1, an additional Af wiring layer 13 (in this example, the first
A second layer AJ electrode 24 is provided on top of the aluminum layer (aluminum film) via an insulating film (not shown). The second layer Aβ electrode 24 is connected to the source region 25 through the contact hole 25 and is continuous with the output wiring layer 11 .

浮遊拡散層8と駆動トランジスタゲート電極16を接続
する配線部の容量を更に減らすことができる0以上の実
施例はMO3型ソースホロワタイプのバッファ増幅器に
より構成したが、バイポーラ型の増幅器等によっても、
構成可能であることはいうまでもなくバッファ増幅器の
利得が1に近いほど効果が大きい。
Although the above embodiments, which can further reduce the capacitance of the wiring connecting the floating diffusion layer 8 and the drive transistor gate electrode 16, are constructed using an MO3 source follower type buffer amplifier, it is also possible to use a bipolar amplifier or the like. ,
It goes without saying that it is configurable, and the closer the gain of the buffer amplifier is to 1, the greater the effect.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、浮遊拡散層とバッファ増
幅器の入力端を接続する配線層に絶縁膜を介して、バッ
ファ増幅器の出力電位を与える電極配線層を配置するこ
とにより、この配線層が半導体基板との間にもつ容量を
殆どなくすことにより、浮遊拡散層の総容量を小さくす
ることができ、電圧への変換効率を大きくできる。また
同出力部のS/Nはリセットノイズが支配的であるため
、後段の信号処理(相関2重サンプリング等)により、
これを除去できるため感度の増加につながるという効果
を有する。
As explained above, the present invention provides an electrode wiring layer that provides the output potential of the buffer amplifier through an insulating film on the wiring layer that connects the floating diffusion layer and the input end of the buffer amplifier. By almost eliminating the capacitance between the floating diffusion layer and the semiconductor substrate, the total capacitance of the floating diffusion layer can be reduced, and the conversion efficiency into voltage can be increased. In addition, since the S/N of the same output section is dominated by reset noise, the subsequent signal processing (correlated double sampling, etc.)
Since this can be removed, it has the effect of increasing sensitivity.

電極5.6・・・出力ゲート電極、7・・・リセットゲ
ート電極、8・・・浮遊拡散層、9・・・駆動トランジ
スタ、10・・・負荷トランジスタ、11・・・出力配
線層、12・・・ゲートバイアス電源、13.14・・
・AII配線層、15・・・ドレイン領域、16・・・
ゲート電極、17・・・ソース領域、18−1.18−
2゜19.20・・・コンタクト穴、21・・・電極配
線層、22・・・絶縁膜、23.24.25・・・コン
タクト穴、26・・・第2層A、&電極。
Electrode 5.6... Output gate electrode, 7... Reset gate electrode, 8... Floating diffusion layer, 9... Drive transistor, 10... Load transistor, 11... Output wiring layer, 12 ...gate bias power supply, 13.14...
- AII wiring layer, 15... drain region, 16...
Gate electrode, 17... Source region, 18-1.18-
2゜19.20... Contact hole, 21... Electrode wiring layer, 22... Insulating film, 23.24.25... Contact hole, 26... Second layer A, & electrode.

Claims (1)

【特許請求の範囲】[Claims]  電荷転送部と、前記電荷転送部から信号電荷を受取る
浮遊拡散層と、前記浮遊拡散層の電位を検出するバッフ
ァ増幅器とが半導体基板に集積されている固体撮像素子
において、前記バッファ増幅器の出力端に接続された電
極配線層が前記半導体基板上に設けられ、前記電極配線
層上に絶縁膜を介して前記浮遊拡散層と前記バッファ増
幅器の入力端とを接続する配線層が設けられていること
を特徴とする固体撮像素子。
In a solid-state imaging device in which a charge transfer section, a floating diffusion layer that receives signal charges from the charge transfer section, and a buffer amplifier that detects the potential of the floating diffusion layer are integrated on a semiconductor substrate, an output terminal of the buffer amplifier An electrode wiring layer connected to the semiconductor substrate is provided on the semiconductor substrate, and a wiring layer connecting the floating diffusion layer and the input end of the buffer amplifier via an insulating film is provided on the electrode wiring layer. A solid-state image sensor featuring:
JP2257783A 1990-09-27 1990-09-27 Solid-state image sensing element Pending JPH04134865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2257783A JPH04134865A (en) 1990-09-27 1990-09-27 Solid-state image sensing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2257783A JPH04134865A (en) 1990-09-27 1990-09-27 Solid-state image sensing element

Publications (1)

Publication Number Publication Date
JPH04134865A true JPH04134865A (en) 1992-05-08

Family

ID=17311044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2257783A Pending JPH04134865A (en) 1990-09-27 1990-09-27 Solid-state image sensing element

Country Status (1)

Country Link
JP (1) JPH04134865A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5615873A (en) * 1992-09-10 1997-04-01 Seiko Epson Corporation Paper feeder in a printer
JP2007201016A (en) * 2006-01-24 2007-08-09 Matsushita Electric Ind Co Ltd Solid-state image pickup device, signal charge detector, and camera

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5615873A (en) * 1992-09-10 1997-04-01 Seiko Epson Corporation Paper feeder in a printer
US5648807A (en) * 1992-09-10 1997-07-15 Seiko Epson Corporation Ink jet recording apparatus having an antismear sheet deformation discharge system
US5742316A (en) * 1992-09-10 1998-04-21 Seiko Epson Corporation Actuation mechanism and printer using same
US5850235A (en) * 1992-09-10 1998-12-15 Seiko Epson Corporation Printer
US5946016A (en) * 1992-09-10 1999-08-31 Seiko Epson Corp. Printer sheet discharge method
US6027204A (en) * 1992-09-10 2000-02-22 Seiko Epson Corporation Printer including an ink cartridge
USRE38926E1 (en) 1992-09-10 2005-12-27 Seiko Epson Corporation Printer including an ink cartridge
USRE40581E1 (en) * 1992-09-10 2008-11-25 Seiko Epson Corporation Printer including an ink cartridge
JP2007201016A (en) * 2006-01-24 2007-08-09 Matsushita Electric Ind Co Ltd Solid-state image pickup device, signal charge detector, and camera

Similar Documents

Publication Publication Date Title
JP4321568B2 (en) Solid-state imaging device and imaging device
US7075575B2 (en) Gated vertical punch through device used as a high performance charge detection amplifier
US7626620B2 (en) Photoelectric conversion unit stacked structure
JPH04134865A (en) Solid-state image sensing element
JPS60223161A (en) Output circuit for charge transfer element
JP2006303019A (en) Imaging device
JP3189327B2 (en) Charge detection device
JPH07106553A (en) Solid state image pickup element
US7468500B2 (en) High performance charge detection amplifier for CCD image sensors
JP2827993B2 (en) Solid-state imaging device
JPH08306908A (en) Charge detecting element
JP2510862B2 (en) Solid-state imaging device
JP3349451B2 (en) Charge transfer element
JP3463309B2 (en) Internal amplification type solid-state imaging device
JP6644336B2 (en) Ion concentration sensor
JPH0418737A (en) Ccd solid-state image pickup element
JP2005347655A (en) Solid state imaging device
JP3130540B2 (en) Signal detection circuit
JP2982258B2 (en) Charge coupled device
JPH0445240Y2 (en)
JPH03192766A (en) Solid-state image sensing device
JP3173806B2 (en) Driving method of charge detection circuit
JPH05152558A (en) Charge-transfer device
JPH08250695A (en) Solid-state image sensor
JP3139465B2 (en) Solid-state imaging device