JPH04134818A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04134818A
JPH04134818A JP25779390A JP25779390A JPH04134818A JP H04134818 A JPH04134818 A JP H04134818A JP 25779390 A JP25779390 A JP 25779390A JP 25779390 A JP25779390 A JP 25779390A JP H04134818 A JPH04134818 A JP H04134818A
Authority
JP
Japan
Prior art keywords
oxide film
etching
layer
gas
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25779390A
Other languages
Japanese (ja)
Inventor
Akira Isobe
晶 礒部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25779390A priority Critical patent/JPH04134818A/en
Publication of JPH04134818A publication Critical patent/JPH04134818A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the reliability and yield of a semiconductor device by using gaseous-phase etching through hydrofluoric acid vapor as a pretreatment for the formation of a wiring metal film. CONSTITUTION:A diffusion layer 12, field oxide film 13, gate oxide film 14 and polysilicon layer 15 for forming wiring and gate electrode are formed in a semiconductor substrate 11, then CVD oxide film 16, SOG layer 17 by application method and CVD oxide film 18 are formed on the whole surface and connection holes 20 are formed thereafter. Subsequently, a natural oxide film on the diffusion layer 12 or polysilicon layer 15 is removed by hydro-fluoric acid vapor. The flow rate of N2 and that of anhydrous hydrogen fluoride gas are regulated so that etching rate is controlled. Then, aluminum wiring 19 is attached for the purpose of completing the title device. At the time of etching where no abnormal etching part is formed in the SOG layer, O3 gas may be used because of removing the natural oxide film. In addition to the natural oxide film, organic contaminants of a substrate surface brought from a preceding process can be also removed by the introduction of the O3 gas so that the connection of the title device is stabilized further.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に塗布法によ
る絶縁膜を含む層間絶縁膜へのコンタクト孔の形成方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming a contact hole in an interlayer insulating film including an insulating film by a coating method.

〔従来の技術〕[Conventional technology]

配線下の眉間絶縁膜の平坦化法としては、リン含有ケイ
酸ガラス(PSG)層等を高温で熱処理してリフローさ
せるリフロー法と、ケイ酸化合物のアルコール溶液を回
転塗布した後焼成させる塗布法とが一般的である。特に
今後の微細なパターンを有するLSIの製造においては
、リフロー法では平坦化に限界があるため、塗布法が最
も有望な平坦化手段であると言える。
Methods for flattening the glabellar insulating film under the wiring include a reflow method in which a phosphorus-containing silicate glass (PSG) layer is heat-treated at high temperature and reflowed, and a coating method in which an alcohol solution of a silicate compound is spin-coated and then baked. is common. Particularly in the future manufacturing of LSIs with fine patterns, the reflow method has a limit in planarization, so the coating method can be said to be the most promising planarization method.

次に第3図を用いて塗布法による眉間絶縁膜へのコンタ
クト孔形成プロセスを説明する。
Next, the process of forming contact holes in the glabella insulating film by the coating method will be explained using FIG.

まず第3図(a)に示すように、半導体基板11に拡散
層12とゲート酸化膜14及びフィールド酸化膜13を
形成したのち、ゲート電極や配線形成用のポリシリコン
層15を形成する。次で全面にCVD法によるシリコン
酸化膜(以下CVD酸化膜という)16を形成する。
First, as shown in FIG. 3(a), a diffusion layer 12, a gate oxide film 14, and a field oxide film 13 are formed on a semiconductor substrate 11, and then a polysilicon layer 15 for forming gate electrodes and wiring is formed. Next, a silicon oxide film (hereinafter referred to as a CVD oxide film) 16 is formed on the entire surface by the CVD method.

次に第3図(b)に示すように、シリコン化合物のアル
コール溶液2例えば0CD−Type2(東京応化部)
を回転塗布し、150℃、300℃及び900℃でそれ
ぞれ30分の熱処理を行い、シリコン酸化膜(以下SO
G層という)17を形成する。次で再び全面にCVD酸
化M18を成長する。
Next, as shown in FIG. 3(b), a silicon compound alcohol solution 2, for example 0CD-Type 2 (Tokyo Ohka Department)
A silicon oxide film (hereinafter referred to as SO
17 (referred to as G layer) is formed. Next, CVD oxide M18 is grown again on the entire surface.

次に第3図(c)に示すように、拡散層12あるいは多
結晶シリコンの配線と後工程で形成される上層アルミ配
線との導通をとるためのコンタクト孔20を選択的に開
孔する。
Next, as shown in FIG. 3(c), a contact hole 20 is selectively opened to establish electrical connection between the diffusion layer 12 or the polycrystalline silicon wiring and the upper layer aluminum wiring to be formed in a subsequent step.

次に第3図(d)に示すように、例えば拡散層12上の
自然酸化膜を除去するため、例えば1:50のバッフア
ート弗酸で60秒間エツチングを行なう。以下A、&層
をスパッタ法により形成したのちパターニングしてアル
ミ配線を形成する。
Next, as shown in FIG. 3(d), in order to remove, for example, the native oxide film on the diffusion layer 12, etching is performed for 60 seconds using, for example, 1:50 buffered hydrofluoric acid. Thereafter, layers A and & are formed by sputtering and then patterned to form aluminum wiring.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の半導体装置の製造法における、塗布法に
より形成された300層17のバッフアートフッ酸によ
るエツチングレートは、上下のCVD酸化膜より約1.
5〜2倍大きい。しかし、ウェットエツチングを行う時
間は、通常熱酸化膜換算で約100Aエツチングする程
度であり、この程度のエツチングでは300層17とC
VD酸化膜のエツチングレートの差はほとんど問題ない
はずである。
In the conventional semiconductor device manufacturing method described above, the etching rate of the 300 layer 17 formed by the coating method using buffered hydrofluoric acid is about 1.
5 to 2 times larger. However, the time required for wet etching is usually about 100A in terms of thermal oxide film, and with this amount of etching, 300 layers 17 and C
There should be almost no problem with the difference in etching rate of the VD oxide film.

ところが、毛細管現象により、SOG/117と上下の
CVD酸化膜の界面にエツチング液が浸透し、エツチン
グ処理後も300層17中に残留し、コンタクト孔20
近傍の300層17がエツチングされ異常エツチング部
21が発生し、半導体装置の信頼性及び歩留りを低下さ
せるという問題点がある。
However, due to the capillary phenomenon, the etching solution permeates the interface between the SOG/117 and the upper and lower CVD oxide films, remains in the 300 layer 17 even after the etching process, and forms the contact hole 20.
There is a problem in that the adjacent 300 layer 17 is etched, resulting in an abnormally etched portion 21, which lowers the reliability and yield of the semiconductor device.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、半導体基板上に形成
された塗布法による絶縁膜を含む層間絶縁膜にコンタク
ト孔を形成する工程と、フッ化水素の蒸気による気相エ
ツチングにより、前記コンタクト孔底面の自然酸化膜を
除去する工程とを含んで構成される。
The method for manufacturing a semiconductor device of the present invention includes a step of forming a contact hole in an interlayer insulating film including an insulating film formed on a semiconductor substrate by a coating method, and etching the contact hole by vapor phase etching using hydrogen fluoride vapor. The method includes a step of removing a natural oxide film on the bottom surface.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例を説明するための半導体チッ
プの断面図、第2図は実施例に用いる酸化膜除去装置の
構成図である。
FIG. 1 is a sectional view of a semiconductor chip for explaining an embodiment of the present invention, and FIG. 2 is a configuration diagram of an oxide film removal apparatus used in the embodiment.

まず第1図(a>に示すように、従来例と同様の操作に
より、半導体基板11に拡散層12.フィールド酸化M
13.ゲート酸化膜14.配線及びゲート電極形成用の
ポリシリコン層15を形成する。次で眉間絶縁膜を構成
するCVD酸化膜16、塗布法による300層17及び
CVD酸化膜18を全面に形成したのち、コンタクト孔
2゜を形成する。次に、第2図に示した酸化M除去装置
を用いて、フッ酸蒸気によって拡散層12あるいはポリ
シリコン層15上の自然酸化膜の除去を行う。
First, as shown in FIG. 1(a), a diffusion layer 12, a field oxidation M
13. Gate oxide film 14. A polysilicon layer 15 for forming wiring and gate electrodes is formed. Next, a CVD oxide film 16 constituting an insulating film between the eyebrows, a 300 layer 17 by a coating method, and a CVD oxide film 18 are formed on the entire surface, and then a 2° contact hole is formed. Next, the native oxide film on the diffusion layer 12 or the polysilicon layer 15 is removed using hydrofluoric acid vapor using the oxidized M removal apparatus shown in FIG.

酸化膜除去装置は第2図に示したように、ガスラインl
より供給されたN2にペーパーチャンバー3で水蒸気を
混入させ、プロセスチャンバー4に導入する。ガスライ
ン2がらは無水フッ酸ガスを導入する。プロセスチャン
バー4内の回転テーブル5の上に半導体基板11を置き
エツチング処理を行う、この時N2流量および無水フッ
酸ガスの流量を調整することにより、エツチング速度を
コントロールできる。ここでは、熱酸化膜を100八程
度エツチングする時間だけ処理を行つ。
As shown in Figure 2, the oxide film removal equipment is connected to the gas line l.
Water vapor is mixed into the N2 supplied by the paper chamber 3, and the mixture is introduced into the process chamber 4. Anhydrous hydrofluoric acid gas is introduced into the gas line 2. The semiconductor substrate 11 is placed on the rotary table 5 in the process chamber 4 and etching is performed.At this time, the etching speed can be controlled by adjusting the flow rate of N2 and the flow rate of anhydrous hydrofluoric acid gas. Here, the processing is performed for a period of time to etch the thermal oxide film by about 100%.

次に第1図(b)に示すように、配線用A、&をスパッ
タ法により成膜したのちパターニングし、アルミ配線1
つを形成する。
Next, as shown in FIG. 1(b), wiring A, & are formed into films by sputtering, patterned, and aluminum wiring 1
form one.

このように本実施例によれば、自然酸化膜をフッ化水素
の蒸気により除去するため、従来のようにSOG層に異
常エツチング部が形成されることはなくなる。
As described above, according to this embodiment, since the natural oxide film is removed by hydrogen fluoride vapor, abnormally etched portions are not formed in the SOG layer as in the conventional case.

尚フッ酸蒸気によるエツチングの際にN2ガスを用いた
が03ガスを用いてもよい。03ガスを導入することに
より、自然酸化膜だけでなく、前工程から持ち込まれた
基板表面の有機汚染物も除去することができ、コンタク
ト性がさらに安定する。
Although N2 gas was used for etching with hydrofluoric acid vapor, 03 gas may also be used. By introducing the 03 gas, not only the natural oxide film but also the organic contaminants on the substrate surface brought in from the previous process can be removed, and the contact properties are further stabilized.

上記実施例ではAρのスパッタ前処理を例としてとりあ
げたが、これに限定されるものではなく、T i Nや
TiW、WSi等のスパッタ前処理や、WのCVD成長
の前処理としても同様に有効であることは言うまでもな
い。
In the above embodiment, sputtering pretreatment of Aρ was taken as an example, but the present invention is not limited to this, and the same can be used as sputtering pretreatment of TiN, TiW, WSi, etc., or pretreatment of CVD growth of W. Needless to say, it is effective.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、配線用金属膜の形成の前
処理として、フッ酸蒸気による気相エツチングを用いる
ことにより、従来のウェット処理で見られるようなエツ
チング液の浸透、残留に起因する塗布法による絶縁膜の
異常エツチングを起こす心配がなくなるため、半導体装
置の信頼性及び歩留りを向上させることができるという
効果がある。
As explained above, the present invention uses vapor phase etching using hydrofluoric acid vapor as a pretreatment for forming a metal film for wiring, thereby eliminating the problem caused by penetration and residual etching solution that occurs in conventional wet processing. Since there is no need to worry about abnormal etching of the insulating film caused by the coating method, the reliability and yield of semiconductor devices can be improved.

孔、 1・・・異常エツチング部。hole, 1...Abnormal etching area.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に形成された塗布法による絶縁膜を含む
層間絶縁膜にコンタクト孔を形成する工程と、フッ化水
素の蒸気による気相エッチングにより、前記コンタクト
孔底面の自然酸化膜を除去する工程とを含むことを特徴
とする半導体装置の製造方法。
A step of forming a contact hole in an interlayer insulating film including an insulating film formed on a semiconductor substrate by a coating method, and a step of removing a natural oxide film on the bottom surface of the contact hole by vapor phase etching using hydrogen fluoride vapor. A method for manufacturing a semiconductor device, comprising:
JP25779390A 1990-09-27 1990-09-27 Manufacture of semiconductor device Pending JPH04134818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25779390A JPH04134818A (en) 1990-09-27 1990-09-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25779390A JPH04134818A (en) 1990-09-27 1990-09-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04134818A true JPH04134818A (en) 1992-05-08

Family

ID=17311187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25779390A Pending JPH04134818A (en) 1990-09-27 1990-09-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04134818A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224153A (en) * 1992-11-09 1994-08-12 Internatl Business Mach Corp <Ibm> Method and equipment for etching

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224153A (en) * 1992-11-09 1994-08-12 Internatl Business Mach Corp <Ibm> Method and equipment for etching

Similar Documents

Publication Publication Date Title
JPS59159544A (en) Semiconductor device and manufacture thereof
JPS61222172A (en) Forming method for gate insulating film in mosfet
JPH04134818A (en) Manufacture of semiconductor device
JPH023244A (en) Manufacture of semiconductor device
JP3296551B2 (en) Method for improving step coverage in depositing a thin film in a concave tank and application to semiconductor device manufacturing
US5977608A (en) Modified poly-buffered isolation
KR910010717A (en) Manufacturing Method of Semiconductor Device
JPH04226080A (en) Manufacture of thin film transistor
JPH06196498A (en) Semiconductor device and manufacture thereof
JP2611744B2 (en) Method for manufacturing semiconductor device
JPS63190357A (en) Manufacture of semiconductor device
JPH0846044A (en) Manufacture of semiconductor device
JPS63296353A (en) Formation of contact hole
JPH05175328A (en) Semiconductor device and manufacture thereof
JPH06124944A (en) Semiconductor device
JPH04144231A (en) Manufacture of semiconductor device
JPS62206873A (en) Manufacture of semiconductor device
JP2712450B2 (en) Method for manufacturing semiconductor device
JPS59169138A (en) Manufacture of semiconductor device
JPS61176114A (en) Manufacture of semiconductor device
JPH0216019B2 (en)
JPH05868B2 (en)
JPS5885529A (en) Manufacture of semiconductor device
KR970003848A (en) Contact manufacturing method of semiconductor device
JPS6279625A (en) Manufacture of semiconductor device