JPH04133428A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04133428A
JPH04133428A JP25805390A JP25805390A JPH04133428A JP H04133428 A JPH04133428 A JP H04133428A JP 25805390 A JP25805390 A JP 25805390A JP 25805390 A JP25805390 A JP 25805390A JP H04133428 A JPH04133428 A JP H04133428A
Authority
JP
Japan
Prior art keywords
oxide film
silicon
polycrystal silicon
heat treatment
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25805390A
Other languages
Japanese (ja)
Inventor
Kenji Okada
健治 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25805390A priority Critical patent/JPH04133428A/en
Publication of JPH04133428A publication Critical patent/JPH04133428A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To enhance the initial breakdown strength and the reliability of the underneath silicon oxide film of a polycrystal silicon thereby enabling the high yield to be gained in the device manufacture by a method wherein, after the deposition of polysilicon on an insulating film and before performing the impurity doping step, the whole body is heat-treated at the temperature exceeding the deposition temperature of polycrystal silicon. CONSTITUTION:After the deposition of a polycrystal silicon 3 on an insulating film 4 and before performing the impurity doping step, the whole body is heat-treated at the temperature exceeding the deposition temperature of the polycrystal silicon 3. For example, after the formation of a silicon oxide film 2 for element separation on a silicon substrate 1 by selective oxidation process, the gate oxidation step is performed to form the underneath gate oxide film 4. Next, the polycrystal silicon film 3 is deposited on the silicon oxide film 2 and the underneath oxide film 4 at 600 deg.C-850 deg.C. Later, after the heat treatment at 1000 deg.C for 2 hours in nitrogen atmosphere, phosphorus is diffused on the polycrystal silicon 3. Next, the polycrystal silicon 3 is patterned by dry-etching step. Through these procedures, since the stress on the oxide films is relieved by the heat treatment, the deterioration in the oxide film characteristics due to the stress can be restrained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置の製造方法に関するものであ4 従来の技術 従来のMO8型半導体装置の製造方法の概略(戴シリコ
ン基板に選択酸化法により素子分離用のシリコン酸化膜
を形成した後、ゲート酸化を行い下地ゲート酸化膜を形
成し その後シリコン酸化膜および下地ゲート酸化膜上
に多結晶シリコンを堆積後、熱処理を行わずに直ちに不
純物(リン)拡散を行い、 ドライエツチングにより所
望のパターンを得るものであム 発明が解決しようとする課題 以上のように構成された従来のMO8型半導体装置の製
造方法においてはドライエツチング以降の各種1毘 特
にポリシリコンの酸化処理によって、下地ゲート酸化膜
の劣化が大きく、半導体デバイス製造における歩留りが
低下してしまうという問題点を有していた 本発明はかかる点に鑑へ 多結晶シリコン堆積抵 不純
物拡散を行う前に熱処理工程を入れることによって多結
晶シリコンの下地シリコン酸化膜の初期耐圧や信頼性を
向上することによってデバイス製造において高歩留りの
得られる半導体装置の製造方法を提供することを目的と
すム課題を解決するための手段 本発明(瓜 多結晶シリコン堆積後、不純物拡散前に熱
処理を行うことによってデバイス製造工程における歩留
りの向上を得るものであム作用 本発明は前記した構成により、多結晶シリコン堆積紘 
不純物拡散前に熱処理工程を入れることによって多結晶
シリコンの下地シリコン酸化膜の初期耐圧や信頼性が向
上する。その結果 半導体デバイス製造工程における歩
留りを向上させることが可能であム 実施例 (実施例1) 第1図は本発明の実施例1におけるMO8型半導体装置
の製造方法を示す工程図である。本実施例における製造
方法は 絶縁膜上の多結晶シリコンを堆積也 不純物の
ドーピングを行う前に多結晶シリコン堆積温度以上の温
度にて熱処理を行う点が従来技術と異なる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a semiconductor device. After forming a silicon oxide film for the silicon oxide film, gate oxidation is performed to form a base gate oxide film. After that, polycrystalline silicon is deposited on the silicon oxide film and the base gate oxide film, and impurity (phosphorus) is immediately diffused without heat treatment. In the conventional method for manufacturing an MO8 type semiconductor device configured as described above, a desired pattern is obtained by dry etching. In view of this problem, the present invention has had the problem that the underlying gate oxide film is significantly degraded by the oxidation treatment of the polycrystalline silicon deposited resistor before impurity diffusion. The purpose of the present invention is to provide a method for manufacturing semiconductor devices that can obtain high yields in device manufacturing by improving the initial breakdown voltage and reliability of the silicon oxide film underlying polycrystalline silicon by adding a heat treatment step to the process. Means for Solving the Problems The present invention improves the yield in the device manufacturing process by performing heat treatment after polycrystalline silicon deposition and before impurity diffusion. Hiro
Introducing a heat treatment process before impurity diffusion improves the initial breakdown voltage and reliability of the silicon oxide film underlying polycrystalline silicon. As a result, it is possible to improve the yield in the semiconductor device manufacturing process.Embodiment (Example 1) FIG. 1 is a process diagram showing a method for manufacturing an MO8 type semiconductor device in Example 1 of the present invention. The manufacturing method of this embodiment differs from the prior art in that before depositing polycrystalline silicon on an insulating film and doping with impurities, heat treatment is performed at a temperature equal to or higher than the polycrystalline silicon deposition temperature.

以下本実施例の半導体装置の製造方法について第1図及
び第3図を用いて説明すも 処理10では選択酸化法により素子分離用のシリコン酸
化膜2を形成した後、処理11ではゲート酸化を行い下
地ゲート酸化膜4を形成する(第3図(a)参照)。
The method for manufacturing the semiconductor device of this example will be described below with reference to FIGS. 1 and 3. In process 10, a silicon oxide film 2 for element isolation is formed by selective oxidation, and in process 11, gate oxidation is performed. Then, a base gate oxide film 4 is formed (see FIG. 3(a)).

次に処理12ではシリコン酸化膜2および下地ゲート酸
化膜4上に600℃〜850℃で多結晶シリコン3の堆
積を行なう(第3図(b)参照)。その後、処理13で
は1000\ 2時間の窒素雰囲気中での熱処理を行う
。その後処理14では多結晶シリコン3ヘリン拡散を行
なう。
Next, in process 12, polycrystalline silicon 3 is deposited on silicon oxide film 2 and base gate oxide film 4 at 600 DEG C. to 850 DEG C. (see FIG. 3(b)). Thereafter, in process 13, heat treatment is performed in a nitrogen atmosphere at 1000\2 hours. Thereafter, in process 14, polycrystalline silicon 3-heline diffusion is performed.

次に処理15では所望の形状にドライエツチングにて多
結晶シリコン3のパターン出しを行う(第3図(C)参
照)。
Next, in process 15, the polycrystalline silicon 3 is patterned into a desired shape by dry etching (see FIG. 3(C)).

このような方法により、リン拡散前には多結晶シリコン
と酸化膜との界面により発生する酸化膜中の応力が熱処
理によって緩和されも 酸化膜中の応力によって耐圧・
TDDB等の電気特性の劣化が発生するカミ 本実施例
によれば酸化膜にかかる応力に起因する酸化膜特性の劣
化を抑制することが可能とな4 第4図および第5図は
その効果を示す図であり、口は従来の製造方法 −は実
施例1を示す。
With this method, even if the stress in the oxide film generated at the interface between the polycrystalline silicon and the oxide film is alleviated by heat treatment before phosphorus diffusion, the stress in the oxide film will reduce the breakdown voltage.
According to this example, it is possible to suppress the deterioration of the oxide film characteristics caused by the stress applied to the oxide film.4 Figures 4 and 5 show the effect. FIG. 3 is a diagram showing a conventional manufacturing method;

第4図においては酸化膜信頼性試験における不良率を示
しており、 3種の異なる後処理を行ったいずれの場合
においても実施例1は従来の製造方法よりも不良率が低
くなっており、その効果が明かであも 第5図はF−N注入試験におけるトラップ発生量を示し
た図であり、従来の製造方法に比較して本実施例ではい
ずれの後処理においても小さくなっていも このトラッ
プ発生量の違いは酸化膜にかかる応力の変化に起因して
いるものと考えられも また 熱処理をリン拡散前に行
うことによって多結晶シリコン−酸化膜界面におけるリ
ンを含む化合物の形成を抑制できるた数 これに伴う酸
化膜質の劣化も抑制可能である。よって、下地ゲート酸
化膜4の初期耐圧および信頼性が改善されその結果 半
導体デバイス製造工程における歩留りが向上すム 以上のよう!−本実施例によれば半導体デバイス製造工
程における歩留りの向上を得ることが可能であム (実施例2) 第2図は本発明の実施例2におけるMO3型半導体装置
の製造方法を示す工程図であも 本実施例における製造
方法(よ 絶縁膜上の多結晶シリコンを堆積後、第1の
不純物拡散を行なった後に熱処理を行(X、続いて第2
の不純物拡散を行う点が従来技術と異な4 以下本実施例の半導体装置の製造方法について第2図及
び第3図を用いて説明すも 処理20で(よ 選択酸化法により素子分離用のシリコ
ン酸化膜2を形成した後、処理21ではゲート酸化を行
い下地ゲート酸化膜4を形成する(第3図(a)参照)
Figure 4 shows the defective rate in the oxide film reliability test, and in all three different post-treatments, Example 1 had a lower defective rate than the conventional manufacturing method. Although the effect is clear, Figure 5 shows the amount of traps generated in the F-N injection test, and even though the amount of traps generated in this example is smaller in any post-processing than in the conventional manufacturing method, this The difference in the amount of traps generated is thought to be due to changes in the stress applied to the oxide film, and the formation of phosphorus-containing compounds at the polycrystalline silicon-oxide film interface can be suppressed by performing heat treatment before phosphorus diffusion. The accompanying deterioration of oxide film quality can also be suppressed. Therefore, the initial breakdown voltage and reliability of the underlying gate oxide film 4 are improved, and as a result, the yield in the semiconductor device manufacturing process is improved! - According to this embodiment, it is possible to improve the yield in the semiconductor device manufacturing process (Example 2) Fig. 2 is a process diagram showing a method for manufacturing an MO3 type semiconductor device in Example 2 of the present invention. However, the manufacturing method in this example is as follows: After depositing the polycrystalline silicon on the insulating film, the first impurity diffusion is performed, and then the heat treatment is performed (X, followed by the second
The manufacturing method of the semiconductor device of this embodiment will be explained below with reference to FIG. 2 and FIG. After forming the oxide film 2, gate oxidation is performed in process 21 to form a base gate oxide film 4 (see FIG. 3(a)).
.

次に処理22ではシリコン酸化膜2および下地ゲート酸
化膜4上に600℃〜850℃で多結晶シリコン3の堆
積を行なう(第3図(b)参照)。
Next, in process 22, polycrystalline silicon 3 is deposited on silicon oxide film 2 and underlying gate oxide film 4 at 600 DEG C. to 850 DEG C. (see FIG. 3(b)).

次に処理23では900℃5分の第1の不純物拡散を行
1.X、その後処理24では1000t、  2時間の
窒素雰囲気中での熱処理 さらに処理25では900\
 25分の第2の不純物拡散を行う。
Next, in process 23, first impurity diffusion is performed at 900°C for 5 minutes in row 1. X, heat treatment in a nitrogen atmosphere for 2 hours at 1000 tons in subsequent treatment 24, and 900\ in treatment 25
Perform a second impurity diffusion for 25 minutes.

次に処理26では所望の形状にドライエツチングにて多
結晶シリコン3のパターン出しを行う(第3図(c)参
照)。
Next, in step 26, the polycrystalline silicon 3 is patterned into a desired shape by dry etching (see FIG. 3(c)).

このような方法により、第1の不純物拡散23を行うこ
とによってその後の熱処理24における多結晶シリコン
の粒成長が行わない場合に比較して非常に速くなる。そ
の結果第2の不純物拡散25を行し\ 所望の不純物濃
度になってからの多結晶シリコンの粒成長が少なくなり
、粒成長に伴う酸化膜の薄膜化や変形が抑制される。よ
って、ゲート酸化膜の耐圧や信頼性が向上し その結果
半導体デバイス製造工程における歩留りが向上する。
By performing the first impurity diffusion 23 using such a method, grain growth of polycrystalline silicon in the subsequent heat treatment 24 becomes much faster than when no grain growth is performed. As a result, after the second impurity diffusion 25 is performed and the desired impurity concentration is reached, grain growth of the polycrystalline silicon is reduced, and thinning and deformation of the oxide film due to grain growth are suppressed. Therefore, the breakdown voltage and reliability of the gate oxide film are improved, and as a result, the yield in the semiconductor device manufacturing process is improved.

本実施例で(よ 第1の不純物拡散を行うことによって
実施例1に比べて多結晶シリコンの粒成長および多結晶
シリコンと下地シリコン酸化膜界面の改善を促進するこ
とが可能であるた敢 熱処理効果を高めることが可能で
あも このように実施例1に比べてさらに優れた効果が
期待できる。以上のように 本実施例によれば半導体デ
バイス製造工程における歩留りの向上を得ることが可能
であム な耘 本実施例において、不純物拡散を3段以上に分け
、その間に1段もしくは2段以上の熱処理を行うことも
可能であ4 また 実施例1,2ではMO8型半導体装置について説
明しため交 一般の絶縁膜上に堆積した多結晶シリコン
に不純物のドーピングを行なう場合にも本発明を適用す
ることにより同様の効果が得られることは言うまでもな
賎 発明の詳細 な説明したよう艮 本発明によれは 多結晶シリコンの
下地酸化膜の耐圧や信頼性を向上させることにより、半
導体デバイス製造工程における歩留りを向上させること
が可能であり、その実用的効果は大き賎
In this example, it was possible to promote the grain growth of polycrystalline silicon and the improvement of the interface between polycrystalline silicon and the underlying silicon oxide film compared to Example 1 by performing the first impurity diffusion. Although it is possible to enhance the effect, as described above, even better effects can be expected compared to Example 1.As described above, according to this example, it is possible to improve the yield in the semiconductor device manufacturing process. In this example, it is also possible to divide the impurity diffusion into three or more stages and perform one or two or more stages of heat treatment between them. It goes without saying that similar effects can be obtained by applying the present invention to the case where polycrystalline silicon deposited on a general insulating film is doped with impurities. By improving the breakdown voltage and reliability of the underlying oxide film of polycrystalline silicon, it is possible to improve the yield in the semiconductor device manufacturing process, and its practical effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における実施例1の半導体装置の製造方
法を示す工程医 第2図は本発明における実施例2の半
導体装置の製造方法を示す工程医第3図は半導体装置の
製造方法を示す工程断面医第4図は従来の製造方法及び
実施例1における酸化膜不良率をプロットした医 第5
図は従来の製造方法及び実施例1におけるF−N注入試
験におけるトラップ形成量をプロットした図である。 1・・・シリコン基板、 2・・・シリコン酸化A 3
・・・多結晶シリコン、4・・・下地ゲート酸化罠代理
人の氏名 弁理士 小鍜治 明 ほか2名第1図 第 図 第 処理j 図 ロフ ルなし −7二−ルあす 処理2 述ff、li 第 図 第 図 処理j ! 4下把ケート膀ブC庸 一九なし 一フ ルあ一ノ 定P12 処理3
1 is a process diagram showing a method for manufacturing a semiconductor device according to a first embodiment of the present invention. FIG. 2 is a process diagram showing a method for manufacturing a semiconductor device according to a second embodiment of the present invention. FIG. The process cross-sectional diagram shown in FIG.
The figure is a diagram plotting the amount of trap formation in the F-N injection test in the conventional manufacturing method and Example 1. 1... Silicon substrate, 2... Silicon oxide A 3
...Polycrystalline silicon, 4...Underlying gate oxidation trap Name of agent Patent attorney Akira Okaji and two others Fig. 1 Fig. Processing j Fig. No Rofur -7 Ni-ru Tomorrow processing 2 Description ff, li Fig. Fig. Fig. Processing j! 4 lower grip Kate bladder C yen 19 no 1 full Aichi no fixed P12 Processing 3

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁膜上の多結晶シリコンを堆積後、不純物のド
ーピングを行う前に多結晶シリコン堆積温度以上の温度
にて熱処理を行うことを特徴とする半導体装置の製造方
法。
(1) A method for manufacturing a semiconductor device, which comprises performing heat treatment at a temperature equal to or higher than the polycrystalline silicon deposition temperature after depositing polycrystalline silicon on an insulating film and before doping with impurities.
(2)絶縁膜上の多結晶シリコンを堆積後、第1の不純
物拡散を行なった後に熱処理を行い、続いて第2の不純
物拡散を行うことを特徴とする半導体装置の製造方法。
(2) A method for manufacturing a semiconductor device, which comprises depositing polycrystalline silicon on an insulating film, performing first impurity diffusion, then heat treatment, and then performing second impurity diffusion.
JP25805390A 1990-09-26 1990-09-26 Manufacture of semiconductor device Pending JPH04133428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25805390A JPH04133428A (en) 1990-09-26 1990-09-26 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25805390A JPH04133428A (en) 1990-09-26 1990-09-26 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04133428A true JPH04133428A (en) 1992-05-07

Family

ID=17314887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25805390A Pending JPH04133428A (en) 1990-09-26 1990-09-26 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04133428A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04316332A (en) * 1991-04-16 1992-11-06 Nec Yamagata Ltd Fabrication of semiconductor device
JPH07226510A (en) * 1993-10-28 1995-08-22 Lg Semicon Co Ltd Doping of semiconductor polysilicon layer and manufacture of pmosfet using this
JP2002009282A (en) * 2000-04-19 2002-01-11 Seiko Instruments Inc Method of manufacturing semiconductor device
JP2021511667A (en) * 2018-01-25 2021-05-06 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Dogbone inlet cone contour for remote plasma oxidation chamber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04316332A (en) * 1991-04-16 1992-11-06 Nec Yamagata Ltd Fabrication of semiconductor device
JPH07226510A (en) * 1993-10-28 1995-08-22 Lg Semicon Co Ltd Doping of semiconductor polysilicon layer and manufacture of pmosfet using this
JP2002009282A (en) * 2000-04-19 2002-01-11 Seiko Instruments Inc Method of manufacturing semiconductor device
JP2021511667A (en) * 2018-01-25 2021-05-06 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Dogbone inlet cone contour for remote plasma oxidation chamber
US11501954B2 (en) 2018-01-25 2022-11-15 Applied Materials, Inc. Dogbone inlet cone profile for remote plasma oxidation chamber

Similar Documents

Publication Publication Date Title
JPH08139278A (en) Manufacture of semiconductor device
JPH04133428A (en) Manufacture of semiconductor device
JPS63174366A (en) Manufacture of semiconductor device
JPH02218136A (en) Manufacture of mos semiconductor device
JP3074156B2 (en) Method for forming field oxide film of semiconductor device
JPH08203886A (en) Method of isolating semiconductor element
JPH07162002A (en) Manufacture of semiconductor film and manufacture of thin-film transistor
JPH06216377A (en) Manufacture of mos semiconductor device
JPH03227024A (en) Manufacture of semiconductor device
JPS61127117A (en) Method for forming polycrystalline semiconductor thin film
JPH0196923A (en) Epitaxial growth method
JPS63236310A (en) Semiconductor device and manufacture thereof
JPH04226080A (en) Manufacture of thin film transistor
JP2619950B2 (en) Method for manufacturing semiconductor device
JPS63137411A (en) Manufacture of semiconductor device
JP3538969B2 (en) Method of forming oxide film on polysilicon semiconductor layer
JP2845008B2 (en) Method for manufacturing semiconductor device
JPH04316332A (en) Fabrication of semiconductor device
JPH04162675A (en) Semiconductor device and manufacture thereof
JPH0336751A (en) Manufacture of semiconductor device
JPS61147550A (en) Manufacture of semiconductor device
JPH0218936A (en) Manufacture of semiconductor device
JPS63271963A (en) Manufacture of semiconductor device
JPS63221631A (en) Manufacture of semiconductor device
JPH036815A (en) Manufacture of semiconductor device and semiconductor device