JPH04132651A - Production of ceramic structure - Google Patents

Production of ceramic structure

Info

Publication number
JPH04132651A
JPH04132651A JP2254967A JP25496790A JPH04132651A JP H04132651 A JPH04132651 A JP H04132651A JP 2254967 A JP2254967 A JP 2254967A JP 25496790 A JP25496790 A JP 25496790A JP H04132651 A JPH04132651 A JP H04132651A
Authority
JP
Japan
Prior art keywords
raw material
powder
organic compound
material composition
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2254967A
Other languages
Japanese (ja)
Inventor
Seiji Yamanaka
山中 清二
Mamoru Kamiyama
上山 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2254967A priority Critical patent/JPH04132651A/en
Publication of JPH04132651A publication Critical patent/JPH04132651A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title structure with density close to the theoretical value by calcining a mixed raw material composition which is prepared by adding to a suspension of oxide ceramic raw material powder an organic compound containing the constituent elements for said raw material to effect coating the surface of the raw material powder with highly active fine particles. CONSTITUTION:Firstly, oxide ceramic powder is suspended in an organic solvent into a suspension. Thence, a liquid organic compound or a solution of this compound containing an element same as or different from the constituent element for said oxide is admixed with the above suspension followed by distillation. Thus, fine particles of said organic compound are deposited on the surface of the ceramic powder. The mixed raw material composition thus obtained is then formed and calcined.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は誘電体磁器、透明セラミックス、絶縁体磁器、
金属焼結体、磁性焼結体、その他のセラミックス構造体
を製造する方法に関する。更に詳しくは易焼結性とハン
ドリング性という二、律背反したセラミック粉体の特性
を兼備する混合原料組成物を得てセラミック構造体を製
造する方法に関するものである。
[Detailed Description of the Invention] “Industrial Application Field” The present invention relates to dielectric porcelain, transparent ceramics, insulating porcelain,
The present invention relates to a method of manufacturing metal sintered bodies, magnetic sintered bodies, and other ceramic structures. More specifically, the present invention relates to a method for manufacturing a ceramic structure by obtaining a mixed raw material composition that has two contradictory properties of ceramic powder: easy sinterability and easy handling.

[従来の技術] この種のセラミックス構造体はセラミックペーストをフ
ィルムシート等に塗工して所望のグリーンシートを得た
後、或いはセラミック粉体を所望の成形体にした後、焼
成してつくられる。
[Prior art] This type of ceramic structure is made by applying ceramic paste to a film sheet or the like to obtain a desired green sheet, or by forming ceramic powder into a desired molded body and then firing it. .

近年、セラミックス構造体のうち、セラミックス磁器等
の電子材料を製造する方法は、電子機器の小型化、高品
質化及び低価格化を実現するために、セラミック原料の
均一化、微細化が行われ、これにより低温焼結化が図ら
れている。このセラミック原料をサブミクロンオーダー
の径に均一に微細化する方法として、第一に原料の調合
、仮焼、粉砕を繰返し行い、粉砕をビーズミル等により
行う粉砕法、又は第二に金属アルコキシド法、共沈法等
の化学合成法が挙げられる。セラミックペーストはこの
均一に微細化したセラミック粉体に有機溶剤及びバイン
ダ類の添加物を加えて混合することにより製造される。
In recent years, methods for manufacturing electronic materials such as ceramic porcelain among ceramic structures have been made more uniform and finer in order to make electronic devices smaller, higher in quality, and lower in price. , thereby achieving low-temperature sintering. As a method for uniformly refining this ceramic raw material to a diameter on the submicron order, firstly, the pulverization method involves repeating the preparation, calcining, and pulverization of the raw materials, and the pulverization is performed using a bead mill, etc., or the second method is the metal alkoxide method. Examples include chemical synthesis methods such as coprecipitation method. Ceramic paste is manufactured by adding and mixing additives such as an organic solvent and a binder to this uniformly finely divided ceramic powder.

従来、この種のセラミックペーストの製造方法として、
厚膜を構成する金属元素のアルコキシド溶液を湿式反応
させて金属酸化物又は金属水酸化物とし、有機バインダ
、溶剤等を添加し、減圧蒸留で余剰の溶剤及び又は水分
を除去することにより、表面活性が高い所望の組成の厚
膜形成用ペーストの製造方法が開示されている(特開平
1286905)。
Conventionally, the manufacturing method for this type of ceramic paste is as follows:
The alkoxide solution of the metal element constituting the thick film is wet-reacted to form a metal oxide or metal hydroxide, an organic binder, a solvent, etc. are added, and the excess solvent and/or water is removed by vacuum distillation to form the surface. A method for producing a thick film forming paste having a desired composition and high activity is disclosed (Japanese Patent Laid-Open No. 1286905).

この方法は金属酸化物等の濾過、洗浄、脱水等の操作を
必要としないため、操作過程での不純物の混入を阻止し
て、しかも構成成分の・溶出や蒸発による組成のずれや
表面活性の低下を防止でき、一連の操作でペーストを生
成できる特長がある。
Since this method does not require operations such as filtration, washing, and dehydration of metal oxides, it prevents the contamination of impurities during the operation process, and also prevents compositional deviations and surface activity due to elution and evaporation of constituent components. It has the advantage of being able to prevent deterioration and generate paste through a series of operations.

[発明が解決しようとする課題] 前記粉砕法、化学合成法により易焼結性の粉体が得られ
るが、易焼結性を追究して際限なく粉体を微細化すると
、粉砕法では不純物の混入の恐れが生じ、また粉体の表
面活性エネルギの増大からペーストにしたときにペース
ト粘度が高まり、ゲル化し易くなったり、或いは粉体が
均一に分散しにくくなって、成形したときの粉体の充填
率が低下し、焼結密度が理論密度に近似しにくい等の問
題点があった。
[Problem to be solved by the invention] Powder that is easily sinterable can be obtained by the above-mentioned pulverization method and chemical synthesis method, but if the powder is infinitely refined in pursuit of sinterability, the pulverization method will produce impurities. Also, due to the increase in the surface active energy of the powder, when it is made into a paste, the viscosity of the paste increases and it becomes easier to gel, or the powder becomes difficult to disperse uniformly, causing the powder to deteriorate when molded. There were problems such as the filling rate of the body decreased and the sintered density was difficult to approximate the theoretical density.

特に、前記厚膜形成用ペーストの製造方法で得られた組
成物粒子はサブミクロン未満の極めて微細な粒径を有し
、比表面積が非常に大きくなるため、ペーストを製造し
た後で組成物粒子同士が凝集し易くハンドリング性に劣
り、前記問題点を招来する恐れがある。
In particular, the composition particles obtained by the method for producing a paste for forming a thick film have an extremely fine particle size of less than submicron and have a very large specific surface area. They tend to aggregate with each other, resulting in poor handling properties, which may lead to the above-mentioned problems.

本発明の目的は、第一に酸化物粉体の表面を微粒子で被
覆することにより容易に易焼結性の混合原料組成物が得
られる方法を提供することにある。
The first object of the present invention is to provide a method by which an easily sinterable mixed raw material composition can be obtained by coating the surface of oxide powder with fine particles.

第二に混合原料組成物を連続した操作で製造でき、製造
後に凝集が起りにくく取扱いが容易で、しかも成形後の
焼成温度が低くて済み、焼成後に理論密度に近い焼結密
度が得られるセラミック構造体の製造方法を提供するこ
とにある。
Secondly, the mixed raw material composition can be manufactured in a continuous operation, and it is difficult to agglomerate after manufacturing, making it easy to handle. Moreover, the firing temperature after molding is low, and a sintered density close to the theoretical density can be obtained after firing. An object of the present invention is to provide a method for manufacturing a structure.

[課題を解決するための手段] 本発明者らは、サブミクロンオーダーの粒径の酸化物セ
ラミック粉体を核体としてこの粉体表面をこの粉体より
更に微細な粒子で被覆すれば、サブミクロン未満の極め
て微細な粒径を有する粉体と比べて、粉体同士の凝集が
起りにくくなり、しかも焼成時に被覆した微粒子により
低温焼結が可能となることに着目し、本発明に到達した
[Means for Solving the Problems] The present inventors have discovered that if an oxide ceramic powder with a particle size on the submicron order is used as a core and the surface of this powder is coated with particles even finer than this powder, a submicron particle size can be obtained. The present invention was achieved by focusing on the fact that, compared to powders with extremely fine particle sizes of less than microns, agglomeration between powders is less likely to occur, and low-temperature sintering is possible due to the fine particles coated during firing. .

前記目的を達成するために、本発明のセラミ・ツク構造
体の製造方法は、有機溶媒に対して実質的に不溶な酸化
物セラミック粉体を前記溶媒に分散して懸濁液を調製し
、前記酸化物を構成する元素と同種又は異種のいずれか
又は双方の元素を含む液状有機化合物又は有機化合物の
溶液を前記懸濁液に添加して混合し、前記混合液を蒸留
して前記セラミック粉体の表面に前記有機化合物微粒子
又は水酸化物微粒子が析出した混合原料組成物を調製し
、前記混合原料組成物を成形した後、焼成する方法であ
る。
In order to achieve the above object, the method for manufacturing a ceramic structure of the present invention comprises: dispersing oxide ceramic powder substantially insoluble in an organic solvent in the solvent to prepare a suspension; A liquid organic compound or a solution of an organic compound containing either or both of the same or different elements constituting the oxide is added to and mixed with the suspension, and the mixed liquid is distilled to produce the ceramic powder. In this method, a mixed raw material composition in which the organic compound fine particles or hydroxide fine particles are precipitated on the surface of the body is prepared, the mixed raw material composition is shaped, and then fired.

以下、本発明を詳述する。The present invention will be explained in detail below.

本発明の出発原料は有機溶媒に対して実質的に不溶な酸
化物セラミック粉体である。この酸化物セラミック粉体
は公知の粉砕法、化学合成法で作られる微粉からなり、
焼結特性からはサブミクロンの領域の粒度、好ましくは
05μm以下を用いるが、焼結温度を低温化することが
目的なので、特に限定するものではない。
The starting material of the present invention is an oxide ceramic powder that is substantially insoluble in organic solvents. This oxide ceramic powder is made of fine powder made by known pulverization methods and chemical synthesis methods.
From the viewpoint of sintering characteristics, a particle size in the submicron range, preferably 05 μm or less, is used, but since the purpose is to lower the sintering temperature, there is no particular limitation.

この酸化物セラミック粉体を有機溶媒に懸濁させて懸濁
液を調製する。有機溶媒としては、蒸留時に揮発し易い
、50〜100 ’Cの低沸点のアルコール類、ベンセ
ン、アセトン)が挙げられる。
This oxide ceramic powder is suspended in an organic solvent to prepare a suspension. Examples of the organic solvent include alcohols with a low boiling point of 50 to 100'C, benzene, and acetone, which easily volatilize during distillation.

溶媒中で粉体かフロックを形成するときには、分散剤を
添加したり、或いはミル等の混合分散機を用いて粉体を
分散させることが好ましい。
When forming powder or flocs in a solvent, it is preferable to add a dispersant or to disperse the powder using a mixing/dispersing machine such as a mill.

この懸濁液に有機化合物を添加して混合する。Organic compounds are added to this suspension and mixed.

この有機化合物は前記酸化物を構成する元素と同種又は
異種のいずれか又は双方の元素を含む液状有機化合物又
は有機化合物の溶液である。有機化合物の添加量は酸化
物セラミック粉体の粒子中位で任意に管理制御すること
ができ、酸化物セラミック粉体100重量%に対して1
〜10重量%程度である。1重量%未満であると成形体
が低温で焼結せず、10重量%を越えると粒子同士が凝
集し易くなる。
This organic compound is a liquid organic compound or a solution of an organic compound containing either or both of the same or different elements as the elements constituting the oxide. The amount of organic compound added can be arbitrarily controlled at the particle center of the oxide ceramic powder, and is 1% by weight per 100% by weight of the oxide ceramic powder.
It is about 10% by weight. If it is less than 1% by weight, the molded body will not be sintered at low temperatures, and if it exceeds 10% by weight, particles will tend to aggregate with each other.

次に懸濁液と有機化合物の混合液を前記有機溶媒の沸点
に近い温度で蒸留する。これにより前記溶媒か除去され
、この混合液中の酸化物セラミック粉体の表面に有機化
合物微粒子が析出して微粒子による被覆層が形成される
。有機化合物が有機溶媒に可溶であったり、蒸留時に有
機溶媒とともに揮発して微粒子による被覆層が形成され
ない場合には、■有機化合物の溶液として金属アルコキ
シドのアルコール、ベンセン等の有機溶液を用い、混合
液中の金属アルコキシドを加水分解した後に、或いは■
混合液に沈殿剤を添加した後に、それぞれ蒸留する。
Next, the mixture of the suspension and the organic compound is distilled at a temperature close to the boiling point of the organic solvent. As a result, the solvent is removed, and organic compound fine particles are precipitated on the surface of the oxide ceramic powder in this liquid mixture, forming a coating layer of fine particles. If the organic compound is soluble in the organic solvent, or if it evaporates together with the organic solvent during distillation and a coating layer of fine particles is not formed, After hydrolyzing the metal alkoxide in the mixture, or
After adding a precipitant to the mixture, each is distilled.

加水分解時には加水分解に必要なモルと等モルの水、或
いは数倍モルの水を混合液に添加することにより、それ
ぞれアルコキシドを構成した金属の酸化物又は水酸化物
が前記金属酸化物粉体の表面に沈殿し微粒子による被覆
層が形成される。
During hydrolysis, the oxide or hydroxide of the metal constituting the alkoxide is converted into the metal oxide powder by adding to the mixture an equimolar amount of water or several times the molar amount of water required for hydrolysis. A coating layer of fine particles is formed on the surface of the particles.

また沈殿剤の添加は前記懸濁液に添加する有機化合物と
して、カルボン酸塩等の水溶性有機化合物を選択した場
合に行われる。沈殿剤の添加により有機化合物の水酸化
物微粒子が酸化物セラミック粉体の表面に沈殿する。沈
殿剤としてはアンモニア、シゅつ酸、シゅう酸アンモニ
ウム、炭酸アンモニウム等が用いられる。前記被覆層を
構成する微粒子の粒径は0.01〜0.05μm程度で
あり、被覆層は複数積層される。
Further, the addition of a precipitant is carried out when a water-soluble organic compound such as a carboxylic acid salt is selected as the organic compound to be added to the suspension. By adding a precipitating agent, fine particles of hydroxide of an organic compound are precipitated on the surface of the oxide ceramic powder. As the precipitant, ammonia, oxalic acid, ammonium oxalate, ammonium carbonate, etc. are used. The particle size of the fine particles constituting the coating layer is about 0.01 to 0.05 μm, and a plurality of coating layers are laminated.

蒸留により完全に溶媒が除去されれば、粉体の混合原料
組成物が得られる。また懸濁液の調製に使用した有機溶
媒より高い沸点の有機溶媒を蒸留前に添加し、低沸点の
41機溶媒だけを揮発するように蒸留すれば高沸点の有
機溶媒を分散媒とする溶剤系ペーストの混合原料組成物
が得られる。有機化合物として、前記水溶性有機化合物
を選択した場合には水系ペーストが得られる。
If the solvent is completely removed by distillation, a powder mixed raw material composition can be obtained. In addition, if an organic solvent with a higher boiling point than the organic solvent used to prepare the suspension is added before distillation, and distillation is carried out to volatilize only the low-boiling point 41 solvent, the high-boiling point organic solvent can be used as a dispersion medium. A mixed raw material composition for a paste-based paste is obtained. When the above-mentioned water-soluble organic compound is selected as the organic compound, a water-based paste can be obtained.

粒子同士を結合し、成形体の強度を高めるためにバイン
ダを蒸留前もしくは蒸留後、又は沈殿前もしくは沈殿後
に加えることが好ましい。蒸留前又は沈殿前のバインダ
の添加は懸濁液への有機化合物の添加の前後もしくは同
時に行うが、前記混合液の調製後に行うことが好ましい
。蒸留又は沈殿により液中で前記微粒子が形成するとき
、或いは前記微粒子が酸化物セラミック粉体の表面に析
出するときにバインダが微粒子の被覆層を形成する。ま
た蒸留後又は沈殿後のバインダの添加は、微粒子による
被覆層が形成され続いて加熱熟成した後で、行うことが
好ましい。前記加熱熟成条件は、金属アルコキシドの加
水分解時の熟成条件で同等でよく、熟成温度は使用する
溶媒の沸点で、例えばアルコールでは70〜80 ’C
であり、熟成時間は1時間〜3時間程度である。
It is preferable to add a binder before or after distillation, or before or after precipitation, in order to bond the particles together and increase the strength of the molded body. The addition of the binder before distillation or precipitation is carried out before, after or simultaneously with the addition of the organic compound to the suspension, but it is preferably carried out after the preparation of the mixture. When the fine particles are formed in a liquid by distillation or precipitation, or when the fine particles are deposited on the surface of the oxide ceramic powder, the binder forms a coating layer of the fine particles. Further, the addition of the binder after distillation or precipitation is preferably carried out after a coating layer of fine particles is formed and then heated and aged. The heating and aging conditions may be the same as those for hydrolyzing metal alkoxides, and the aging temperature is the boiling point of the solvent used, for example, 70-80'C for alcohol.
The aging time is about 1 to 3 hours.

蒸留前後に用いられるバインダとしては、溶剤系のポリ
ビニルブチラール、メチルセルロース等が挙げられる。
Examples of the binder used before and after distillation include solvent-based polyvinyl butyral and methyl cellulose.

水系ペーストの混合原料組成物を得るために沈殿前後に
用いられるバインダとしては、水系のポリビニルアルコ
ール等が挙げられる。
Examples of the binder used before and after precipitation to obtain the mixed raw material composition of the water-based paste include water-based polyvinyl alcohol.

バインダは、蒸留により得られた混合原料組成物がペー
ストである場合には、酸化物100重量%に対して約5
〜10重量%、また混合原料組成物が粉体である場合に
は、約1〜5重量%添加される。
When the mixed raw material composition obtained by distillation is a paste, the binder is about 5% by weight based on 100% by weight of the oxide.
~10% by weight, and when the mixed raw material composition is a powder, it is added in an amount of about 1 to 5% by weight.

更に必要があれば、分散剤、可塑剤等を加え、十分に攪
拌する。分散剤としては、グリセリン、オレイン酸、モ
ノオレイン酸グリセリン、トリステアリン酸グリセリン
等が挙げられ、可塑剤としては、フタル酸ジオクチル、
フタル酸ジブチル等のフタル酸エステル、トリエチレン
グリコール、ポリアルキレングリコール等のグリコール
エステル等が挙げられる。酸化物100重量%に対して
分散剤は約0,1〜3重量%、可塑剤は約1〜4重量%
それぞれ添加される。
Further, if necessary, add a dispersant, plasticizer, etc., and stir thoroughly. Examples of dispersants include glycerin, oleic acid, glycerin monooleate, glycerin tristearate, etc., and examples of plasticizers include dioctyl phthalate,
Examples include phthalic acid esters such as dibutyl phthalate, and glycol esters such as triethylene glycol and polyalkylene glycol. The dispersant is about 0.1 to 3% by weight and the plasticizer is about 1 to 4% by weight based on 100% by weight of the oxide.
are added respectively.

このようにして得られた粉体の混合原料組成物はプレス
を用いた乾式成形法により、またべ−□ストの混合原料
組成物はドクターブレード法、印刷法により、所定の形
状に成形される。成形体を5〜10時間、400〜70
0℃で加熱して脱脂した後、焼成することによって、混
合原料組成物が焼結してセラミック構造体が得られる。
The powder mixed raw material composition obtained in this way is molded into a predetermined shape by a dry molding method using a press, and the base mixed raw material composition is molded into a predetermined shape by a doctor blade method or a printing method. . Molded body for 5 to 10 hours, 400 to 70
After degreasing by heating at 0° C., the mixed raw material composition is sintered and a ceramic structure is obtained by firing.

なお、上記説明で例示した種々の原材料以外の原材料で
あって、本発明の目的としている作用及び効果が得られ
るものは、本発明が適用されることは勿論である。
It goes without saying that the present invention is applicable to raw materials other than the various raw materials exemplified in the above description that can achieve the functions and effects aimed at by the present invention.

[作 用] サブミクロンオーダーの粒径の酸化物セラミック粉体を
核体としてこの粉体表面をこの粉体より更に微細な粒子
で被覆又は吸着させることにより、従来のように全ての
粉体がサブミクロン未満の極めて微細な粒径を有するも
のと比べて、粉体の比表面積は小さくなって粉体同士の
凝集が起りにくくなり、しかも焼成時に被覆した微粒子
が粒子間において焼結を誘導、促進するため、全ての粉
体がサブミクロン未満の極めて微細な粒径を有するもの
と同程度の低い温度で焼結する。
[Function] By using oxide ceramic powder with a particle size on the submicron order as a core and coating or adsorbing the surface of this powder with particles even finer than this powder, all the powder can be removed as in the conventional method. Compared to powders with extremely fine particle sizes of less than submicrons, the specific surface area of the powder is smaller, making it difficult for powders to agglomerate, and the fine particles coated during firing induce sintering between the particles. To facilitate sintering, all powders are sintered at temperatures as low as those with extremely fine submicron particle sizes.

[発明の効果コ 以上述べたように、本発明によれば、従来の化学合成法
によるサブミクロンオーダーの粒径を有するセラミック
原料粉を用いて、この原料粉の懸濁液にこのセラミック
原料の一種以上の構成元素又はこの構成元素と異なる第
二の元素のいずれか又は双方の元素を含む有機化合物を
加えて、セラミック原料粉の表面に表面活性の高いサブ
ミクロン未満の極めて微細な粒径の微粒子を粉体の粒子
単位で被覆又は吸着させることにより、連続した操作で
容易に易焼結性の混合原料組成物を製造することができ
る。この混合原料組成物は全ての粉体がサブミクロン未
満の極めて微細な粒径を有するものと比べて、粉体の比
表面積が小さくなって粉体同士の凝集が起りにくくその
ハンドリング性が良好になる。
[Effects of the Invention] As described above, according to the present invention, a ceramic raw material powder having a particle size on the submicron order obtained by a conventional chemical synthesis method is used, and this ceramic raw material powder is added to a suspension of this raw material powder. By adding an organic compound containing one or more constituent elements or a second element different from the constituent elements, or both elements, the surface of the ceramic raw material powder is coated with extremely fine particle sizes of less than submicron with high surface activity. By coating or adsorbing fine particles on a particle-by-particle basis, an easily sinterable mixed raw material composition can be easily produced in a continuous operation. This mixed raw material composition has a smaller specific surface area of the powder, which makes it difficult for powders to agglomerate together, and has good handling properties, compared to those in which all the powders have extremely fine particle sizes of less than submicrons. Become.

本発明の混合原料組成物を成形して焼成すれば、セラミ
ック原料粉の表面の微粒子の存在によりセラミックスの
粒界における固溶相を任意に制御して、セラミック原料
粉の物理的、電気的特性を損なうことなく、焼結性を高
めることができ、理論密度に近い焼結密度のセラミック
構造体が得られる。
When the mixed raw material composition of the present invention is molded and fired, the presence of fine particles on the surface of the ceramic raw material powder can arbitrarily control the solid solution phase at the grain boundaries of the ceramic, improving the physical and electrical properties of the ceramic raw material powder. The sinterability can be improved without impairing the sinterability, and a ceramic structure with a sintered density close to the theoretical density can be obtained.

本発明のセラミック構造体は、誘電体磁器、透明セラミ
ックス、絶縁体磁器、金属焼結体、磁性焼結体などのセ
ラミックスに広く利用することができる。
The ceramic structure of the present invention can be widely used in ceramics such as dielectric ceramics, transparent ceramics, insulating ceramics, metal sintered bodies, and magnetic sintered bodies.

[実施例] 次に本発明の実施例を比較例とともに詳しく説明するが
、以下に示す例はあくまでも一例であって、これにより
本発明の技術的範囲を限定するものではない。
[Example] Next, Examples of the present invention will be described in detail together with Comparative Examples, but the examples shown below are merely examples, and are not intended to limit the technical scope of the present invention.

〈実施例〉 特開昭62−138360号公報に記載の誘電体磁器組
成物 X(Pb、−utau)(zr+−VTIV)0
8 ” (1−X)Pb(Mg+zaNb2is)Os
のうち、X= 0.15.  u= 0.13.  v
= 1.0の0、15(Pbo、 atLao、 + 
a) (Ti)03 ・0.85Pb(Mg+/3Nb
2za)03のPLZT−PMN酸化物粉体を化学合成
法により合成した。
<Example> Dielectric ceramic composition described in JP-A No. 62-138360 X(Pb, -utau)(zr+-VTIV)0
8” (1-X)Pb(Mg+zaNb2is)Os
Of which, X = 0.15. u=0.13. v
= 1.0 of 0, 15 (Pbo, atLao, +
a) (Ti)03 ・0.85Pb(Mg+/3Nb
PLZT-PMN oxide powder of 2za)03 was synthesized by a chemical synthesis method.

硝酸鉛0.73モル、硝酸マグネシウム(6水和物)0
.21モル、硝酸ランタン0.015モルを700m見
の水に溶解した。この溶液にチタンイソプロポキシド0
.113モル及び塩化ニオブ0.43モルのインプロピ
ルアルコール溶液150m lを滴下して加水分解を行
い、沈殿物を得た。この沈殿液に更にジエチルアミン3
00m lを添加して残存する溶解元素を沈殿させ、沈
殿物を濾過、乾燥した後、750℃にて仮焼した。仮焼
物をボールミルにて粉砕し、平均粒径が0.2〜0.3
μmのI) L Z i’ −P M N酸化物粉体を
得た。
Lead nitrate 0.73 mol, magnesium nitrate (hexahydrate) 0
.. 21 moles of lanthanum nitrate and 0.015 moles of lanthanum nitrate were dissolved in 700 m of water. Add 0 titanium isopropoxide to this solution.
.. Hydrolysis was carried out by dropping 150 ml of an inpropyl alcohol solution containing 113 mol of niobium chloride and 0.43 mol of niobium chloride to obtain a precipitate. Add 3 diethylamine to this precipitate.
00 ml was added to precipitate the remaining dissolved elements, and the precipitate was filtered, dried, and then calcined at 750°C. The calcined product is ground in a ball mill to give an average particle size of 0.2 to 0.3.
I) LZi'-PMN oxide powder of μm was obtained.

前記酸化物粉体100gに対して50m lのイソプロ
ピルアルコールを加え、更に分散剤としてレジチンを1
g添加して良く分散させ懸濁液を調製した。この懸濁液
に鉛ブトキシド15.3X 10−3モル、酢酸マグネ
シウム4.43X 10−3モル、ランタンイソプロポ
キシド0.30X 10−3モル、チタンイソプロポキ
シド2.34X 10−3モル、及びニオブイソプロポ
キシl”8.85X 10−3モルのイソプロピルアル
コール溶液30m f)−を添加し均一に混合した。
Add 50 ml of isopropyl alcohol to 100 g of the oxide powder, and add 1 ml of resistin as a dispersant.
g was added and dispersed well to prepare a suspension. This suspension contains 15.3X 10-3 moles of lead butoxide, 4.43X 10-3 moles of magnesium acetate, 0.30X 10-3 moles of lanthanum isopropoxide, 2.34X 10-3 moles of titanium isopropoxide, and Niobium isopropoxy l''8.85X 10-3 molar isopropyl alcohol solution (30mf) was added and mixed uniformly.

この混合液に水2m lを添加し、80°Cで1時間上
記アルコキシドを加水分解した。加水分解後、ポリビニ
ルブチラール5gを溶解したテルピネオール溶液25m
 Qを添加し、大気圧ド120°Cにて蒸留し、ペース
トの混合原料組成物を得た。
2 ml of water was added to this mixture, and the alkoxide was hydrolyzed at 80°C for 1 hour. After hydrolysis, 25 m of terpineol solution in which 5 g of polyvinyl butyral was dissolved.
Q was added and distilled at atmospheric pressure and 120°C to obtain a mixed raw material composition for paste.

〈比較例〉 実施例のPLZT−I)MN酸化物粉体100gに対し
て50m flのイソプロピルアルコールを加え、更に
分散剤としてレシチンを1g添加して良く分散させ懸濁
lfkを、2.1製した。この懸濁Hkにポリビニルブ
チラール5gを溶解したテルピネオール溶液25m l
を添加し、大気圧下120℃にて蒸留し、ペーストの原
料組成物を得た。
<Comparative example> 50 m fl of isopropyl alcohol was added to 100 g of the PLZT-I)MN oxide powder of the example, and 1 g of lecithin was added as a dispersant to disperse well and suspend lfk. did. 25 ml of terpineol solution in which 5 g of polyvinyl butyral was dissolved in this suspension Hk
was added and distilled at 120° C. under atmospheric pressure to obtain a paste raw material composition.

上記実施例及び比較例で得られたペーストをポリエステ
ルのフィルムシート(商品名マイラシート)上にそれぞ
れスクリーン印刷し、10×10×1mmのセラミック
グリーンシートを得た。これらのグリーンシートを50
0°Cで5時間加熱して脱脂した後、900°C,95
0°C,1000°C,1050°C,1100°Cで
それぞれ2時間焼成した。その結果を第1表に示す。
The pastes obtained in the above Examples and Comparative Examples were screen printed on polyester film sheets (trade name Mylar Sheet) to obtain ceramic green sheets of 10 x 10 x 1 mm. 50 of these green sheets
After degreasing by heating at 0°C for 5 hours, 900°C, 95
It was baked at 0°C, 1000°C, 1050°C, and 1100°C for 2 hours each. The results are shown in Table 1.

第  1  表 のグリーンシートの焼結密度は、比較例の焼成温度が1
050℃の場合の焼結密度に相当し、実施例のグリーン
シートが低温で高い焼結性を有することが判明した。
The sintered density of the green sheet in Table 1 is determined when the firing temperature of the comparative example is 1.
This corresponds to the sintered density at 050° C., and it was found that the green sheets of Examples had high sinterability at low temperatures.

Claims (1)

【特許請求の範囲】 1)有機溶媒に対して実質的に不溶な酸化物セラミック
粉体を前記溶媒に分散して懸濁液を調製し、前記酸化物
を構成する元素と同種又は異種のいずれか又は双方の元
素を含む液状有機化合物又は有機化合物の溶液を前記懸
濁液に添加して混合し、前記混合液を蒸留して前記セラ
ミック粉体の表面に前記有機化合物微粒子が折出した混
合原料組成物を調製し、 前記混合原料組成物を成形した後、焼成するセラミック
構造体の製造方法。 2)前記有機化合物の溶液が金属アルコキシドの有機溶
液であって、前記混合液中の金属アルコキシドを加水分
解した後、蒸留して前記セラミック粉体の表面に前記有
機化合物の水酸化物微粒子が析出した混合原料組成物を
調製する請求項1記載のセラミック構造体の製造方法。 3)前記混合液に沈殿剤を添加した後、蒸留して前記セ
ラミック粉体の表面に前記有機化合物の水酸化物微粒子
が析出した混合原料組成物を調製する請求項1記載のセ
ラミック構造体の製造方法。 4)蒸留前にバインダを添加する請求項1ないし3いず
れか記載のセラミック構造体の製造方法。 5)蒸留後にバインダを添加する請求項1ないし3いず
れか記載のセラミック構造体の製造方法。
[Claims] 1) A suspension is prepared by dispersing an oxide ceramic powder that is substantially insoluble in an organic solvent in the solvent, and a suspension is prepared by dispersing an oxide ceramic powder that is substantially insoluble in an organic solvent, A mixture in which a liquid organic compound or a solution of an organic compound containing either or both elements is added to the suspension and mixed, and the mixed liquid is distilled to precipitate the organic compound fine particles on the surface of the ceramic powder. A method for manufacturing a ceramic structure, comprising preparing a raw material composition, molding the mixed raw material composition, and then firing the mixed raw material composition. 2) The solution of the organic compound is an organic solution of a metal alkoxide, and after the metal alkoxide in the mixed solution is hydrolyzed, it is distilled to precipitate fine particles of hydroxide of the organic compound on the surface of the ceramic powder. The method for manufacturing a ceramic structure according to claim 1, wherein a mixed raw material composition is prepared. 3) The ceramic structure according to claim 1, wherein a precipitating agent is added to the mixed liquid and then distilled to prepare a mixed raw material composition in which hydroxide fine particles of the organic compound are precipitated on the surface of the ceramic powder. Production method. 4) The method for manufacturing a ceramic structure according to any one of claims 1 to 3, wherein a binder is added before distillation. 5) The method for manufacturing a ceramic structure according to any one of claims 1 to 3, wherein a binder is added after distillation.
JP2254967A 1990-09-25 1990-09-25 Production of ceramic structure Pending JPH04132651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2254967A JPH04132651A (en) 1990-09-25 1990-09-25 Production of ceramic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2254967A JPH04132651A (en) 1990-09-25 1990-09-25 Production of ceramic structure

Publications (1)

Publication Number Publication Date
JPH04132651A true JPH04132651A (en) 1992-05-06

Family

ID=17272359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2254967A Pending JPH04132651A (en) 1990-09-25 1990-09-25 Production of ceramic structure

Country Status (1)

Country Link
JP (1) JPH04132651A (en)

Similar Documents

Publication Publication Date Title
EP0517738B1 (en) Improved ceramic dielectric compositions and method for enhancing dielectric properties
US4710227A (en) Dispersion process for ceramic green body
JP2001114569A (en) Ceramic slurry composition, ceramic green sheet and production of multilayer ceramic electronic part
KR101773942B1 (en) Complex oxide-coated metal powder, production method therefor, conductive paste using complex oxide-coated metal powder, and multilayer ceramic electronic component
JP2010067418A (en) Conductive paste and method of manufacturing the same
KR100568286B1 (en) A Method for Dispersed Coating Additive on Ceramic Powder
CN1281549C (en) Barium titanate based multilayer ceramic capacitor nanopowder for nickel electrode and production method thereof
JPH04132651A (en) Production of ceramic structure
KR101786056B1 (en) Lead-free piezoelectric seramic for low temperature firing having core-shell structure and method of manufacturing the same
JPH0559048B2 (en)
JP2007099541A (en) Method of manufacturing dielectric ceramic composition, and ceramic capacitor using the manufactured dielectric ceramic composition
JP3376468B2 (en) Manufacturing method of ceramic material powder
JPH04182343A (en) Production of ceramic structure
JP3538706B2 (en) Method for producing ceramic slurry composition and method for producing ceramic green sheet
JPH05840A (en) Ceramic slurry and production of ceramic structural body by using this slurry
JPH01294557A (en) Production of ceramic thin film
KR100568282B1 (en) Additive for Dieletric Composition of Multi-Layer Ceramic Capacitor, Method of Manufacturing Thereof and Method of Manufacturing Dieletric Composition Slurry of Multi-Layer Ceramic Capacitor
JP3531047B2 (en) Method for producing titanate compound-based ceramic material powder
JP4119333B2 (en) Method for producing composition for ceramic green sheet
JPS63233034A (en) Raw material powder for dielectric ceramic composition and manufacture
JPH10183028A (en) Production of composite paint and production of lc composite part
JPH0531516B2 (en)
JPS63117914A (en) Production of metal oxide powder for ptc-thermistor
JPS6325265A (en) Manufacture of high density bznt base ferroelectric ceramic
JPS62216964A (en) Manufacture of light transmitting ceramics