JPH05840A - Ceramic slurry and production of ceramic structural body by using this slurry - Google Patents

Ceramic slurry and production of ceramic structural body by using this slurry

Info

Publication number
JPH05840A
JPH05840A JP3173060A JP17306091A JPH05840A JP H05840 A JPH05840 A JP H05840A JP 3173060 A JP3173060 A JP 3173060A JP 17306091 A JP17306091 A JP 17306091A JP H05840 A JPH05840 A JP H05840A
Authority
JP
Japan
Prior art keywords
ceramic
solvent
slurry
particles
spherical particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3173060A
Other languages
Japanese (ja)
Inventor
Yasuyuki Ogata
康行 緒方
Seiji Saito
征士 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP3173060A priority Critical patent/JPH05840A/en
Publication of JPH05840A publication Critical patent/JPH05840A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain the ceramic structural body having the sintering density approximate to the theoretical sintering density after calcination by obtaining a ceramic slurry which has good dispersibility of ceramic powder and can form a ceramic molding of a higher density, and calcining the ceramic molding at a relatively low temp. CONSTITUTION:A 1st binder which is soluble in a 2nd solvent and is insoluble in a 1st solvent at need is dissolved in the 2nd solvent which is different from the 1st solvent and thereafter, the ceramic particles are dispersed and spherical particles having the grain size larger than the grain size of the ceramic particles are granulated from the dispersion. The ceramic slurry is then prepd. by dispersing the spherical particles into the 1st solvent. A 2nd binder which is soluble in the 1st solvent and is insoluble in the 2nd solvent is dissolved into the slurry at need and after the ceramic molding is molded from this slurry, the molding is calcined to obtain the ceramic structural body. Since the ceramic particles constituting the spherical particles are fine, the particles are bonded to each other by a flocculation effect and the spherical particles are densely packed to each other. Since the spherical particles have the relatively large grain sizes, the flocculating force between these particles is weak.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミック成形体を高
密度化できるセラミックスラリーに関する。更にこのス
ラリーを用いたセラミック構造体の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic slurry capable of densifying a ceramic compact. Further, the present invention relates to a method for manufacturing a ceramic structure using this slurry.

【0002】[0002]

【従来の技術】セラミック構造体を製造する初期の工程
において、セラミックスラリーをドクターブレード法、
鋳込み成形法、押出し成形法等によりセラミック成形体
に成形する場合がある。このセラミック成形体を焼成し
たときの焼結体の気孔率及び焼成収縮率を減少させて焼
成時のクラックを低減させる等の理由から、セラミック
成形体の密度は高い程好ましい。一方、電子材料用のセ
ラミック構造体は、電子機器の小型化、高品質化及び低
価格化を実現するために、易焼結性のセラミック粉体
や、或いは焼結促進剤を添加したセラミック粉体をそれ
ぞれ低温で焼結させて製造される。易焼結性のセラミッ
ク粉体を得るには、セラミック粉体をサブミクロンオー
ダーの径に均一に微細化する必要があり、この粉体製造
方法としては、第一に原料の調合、仮焼、粉砕を繰返し
行い、粉砕をビーズミル等により行う粉砕法、又は第二
に金属アルコキシド法、共沈法、水熱合成法等の化学合
成法が挙げられる。
2. Description of the Related Art In an early stage of manufacturing a ceramic structure, the ceramic slurry is treated by a doctor blade method,
In some cases, the ceramic molded body is molded by a cast molding method, an extrusion molding method, or the like. The higher the density of the ceramic molded body is, the more preferable it is because the porosity and the firing shrinkage rate of the sintered body when the ceramic molded body is fired are reduced to reduce the cracks during firing. On the other hand, a ceramic structure for electronic materials is a ceramic powder that is easily sinterable or a ceramic powder to which a sintering accelerator is added in order to achieve downsizing, quality improvement and cost reduction of electronic devices. It is manufactured by sintering each body at low temperature. In order to obtain an easily sinterable ceramic powder, it is necessary to make the ceramic powder uniformly finer to a diameter of the submicron order. A pulverization method in which pulverization is repeated and pulverization is performed with a bead mill or the like, and secondly, a chemical synthesis method such as a metal alkoxide method, a coprecipitation method or a hydrothermal synthesis method can be mentioned.

【0003】[0003]

【発明が解決しようとする課題】前記粉砕法、化学合成
法により、易焼結性を追究して際限なく粉体を微細化す
ると、粉砕法では不純物の混入の恐れが生じ、また粉砕
法及び化学合成法ではともに粉体の表面活性エネルギの
増大からスラリーにしたときに分散しているセラミック
粉体同士が凝集し易くなる。この粉体の凝集力は強くか
つ凝集はランダムに発生するため、微細化した易焼結性
セラミック粉体でセラミック構造体を製造する際に、ス
ラリー粘度が高まってゲル化し易くなったり、或いは粉
体が均一に分散しにくくなって、ハンドリング性に劣る
とともに、成形したときの粉体の充填率が低下し、焼結
密度が理論密度に近似しにくい等の問題点がある。ま
た、焼結促進剤を添加したセラミック粉体を液相を伴っ
て焼結させる方法では、焼結促進剤を酸化物粉体にミル
などにより混合したときに、促進剤粒子が酸化物粉体の
凝集塊などの影響を受けて局部的に偏在し、各粉体の表
面を均一に覆うことができない。このために、焼結促進
剤を酸化物粉体に十分に混合しても粉体同士が形成する
スリーポケット等に促進剤が偏析し易くなり、焼成時に
焼結促進効果が十分に発揮されない。この点を避けるた
めに、比較的多くの焼結促進剤を添加すると、焼結促進
効果は生じるが、この場合には焼結体の所期の性能を劣
化させる問題点がある。例えば、高純度アルミナに焼結
促進剤として20ppm以上のSiO2を添加した場
合、又は50〜500ppmのMgOを添加した場合に
は液相を生成する際に焼結促進剤が不純物となって粒界
における気孔が消失しにくくなるため緻密な焼結体が得
られない。本発明の目的は、セラミック粉体の分散性が
良く、セラミック成形体を高密度化してセラミック焼結
体を緻密にし得るセラミックスラリーを提供することに
ある。更に本発明の目的は、セラミック成形体を比較的
低い温度で焼成でき、焼成後に理論密度に近い焼結密度
が得られるセラミック構造体の製造方法を提供すること
にある。
If the powder is infinitely refined by pursuing easy sinterability by the above-mentioned pulverization method or chemical synthesis method, there is a risk that impurities will be mixed in the pulverization method. In both of the chemical synthesis methods, the ceramic powders dispersed in the slurry are easily aggregated due to the increase in the surface activation energy of the powders. Since the cohesive force of this powder is strong and agglomeration occurs randomly, when the ceramic structure is manufactured from finely sinterable ceramic powder, the slurry viscosity increases and gelation easily occurs, or There are problems that it is difficult to uniformly disperse the body, the handling property is poor, the packing rate of the powder when molded is lowered, and the sintered density is difficult to approximate the theoretical density. Further, in the method of sintering the ceramic powder to which the sintering accelerator is added together with the liquid phase, when the sintering accelerator is mixed with the oxide powder by a mill or the like, the accelerator particles become the oxide powder. It is unevenly distributed locally under the influence of agglomerates of the above, and the surface of each powder cannot be uniformly covered. For this reason, even if the sintering accelerator is sufficiently mixed with the oxide powder, the accelerator is likely to segregate in the three pockets formed between the powders, and the sintering promoting effect is not sufficiently exhibited during firing. In order to avoid this point, if a relatively large amount of a sintering accelerator is added, a sintering promoting effect is produced, but in this case, there is a problem that the intended performance of the sintered body is deteriorated. For example, when 20 ppm or more of SiO 2 is added as a sintering accelerator to high-purity alumina, or when 50 to 500 ppm of MgO is added, the sintering accelerator becomes an impurity when forming a liquid phase and becomes a grain. Since it is difficult for pores in the boundary to disappear, a dense sintered body cannot be obtained. An object of the present invention is to provide a ceramic slurry which has a good dispersibility of ceramic powder and which can densify a ceramic molded body to make a ceramic sintered body dense. A further object of the present invention is to provide a method for producing a ceramic structure capable of firing a ceramic compact at a relatively low temperature and obtaining a sintered density close to the theoretical density after firing.

【0004】[0004]

【課題を解決するための手段】本発明者らは、サブミク
ロン未満の極めて微細な粒径のセラミック微粒子を所定
のバインダ等を用いてこれより大きな粒径の球状粒子に
すれば、セラミック微粒子と比べて、球状粒子同士の凝
集が起りにくくなることに着目し、本発明に到達した。
本発明のセラミックスラリーは、第1溶媒と異種の第2
溶媒に、必要により第2溶媒に可溶でかつ第1溶媒に不
溶な第1バインダを溶解した後、セラミック微粒子を分
散し、前記分散液から前記セラミック微粒子より大きな
粒径の球状粒子を造粒し、前記球状粒子を前記第1溶媒
に分散して調製される。また本発明のセラミック構造体
の製造方法は、上記セラミックスラリーからセラミック
成形体を成形した後、焼成する方法である。
Means for Solving the Problems The present inventors have found that when ceramic fine particles having an extremely fine particle size of less than submicron are made into spherical particles having a larger particle size by using a predetermined binder, etc. In comparison, the present invention has been achieved, focusing on the fact that aggregation of spherical particles is less likely to occur.
The ceramic slurry of the present invention comprises a second solvent different from the first solvent.
If necessary, the first binder, which is soluble in the second solvent and insoluble in the first solvent, is dissolved in the solvent, and then the ceramic fine particles are dispersed, and spherical particles having a larger particle size than the ceramic fine particles are granulated from the dispersion liquid. Then, the spherical particles are dispersed in the first solvent to be prepared. Further, the method for producing a ceramic structure of the present invention is a method in which a ceramic compact is molded from the above ceramic slurry and then fired.

【0005】以下、本発明を記述する。本発明のセラミ
ック微粒子は公知の粉砕法、化学合成法で作られる微粉
からなり、焼結特性からはサブミクロンの領域の粒度、
好ましくは0.2μm以下の粒径を有する酸化物セラミ
ック粉体である。このセラミック微粒子を後述する第1
溶媒と異種の第2溶媒に分散する。第1溶媒が有機溶媒
であれば第2溶媒は例えば水であり、第1溶媒が水であ
れば第2溶媒は例えば有機溶液である。しかし、メタノ
ールとパラフィンオイルのように有機溶媒同士であって
も互いに不溶であれば、それぞれ第1溶媒及び第2溶媒
になり得る。この第2溶媒に第1溶媒に不溶な第1バイ
ンダを溶解するとセラミック微粒子同士の結合力が高ま
り好ましい。ここで第1溶媒と第1バインダとの関係
は、例えば第1溶媒が有機溶媒である場合には、第1バ
インダにはポリビニルアルコール、ポリアクリル酸誘導
体、ポリオール誘導体、カルボキシメチルセルロース等
の水系のバインダが用いられる。この有機溶媒として
は、炭素数が6以下のアルコール、ベンゼン、トルエ
ン、キシレン等が単独又は組合せて用いられる。また反
対に第1溶媒が水である場合には、第1バインダはポリ
ビニルブチラール、メチルセルロース、アクリル誘導
体、エポキシ系誘導体、フェノール系誘導体等の有機溶
媒系のバインダが用いられる。この第1バインダの溶液
は第1バインダが水系であれば水溶液、有機溶媒系であ
れば前記有機溶媒の溶液である。この第1バインダの溶
液又は第1バインダを含まない第2溶媒にセラミック微
粒子をスターラ、超音波、ミル等を用いて均一に分散す
る。
The present invention will be described below. The ceramic fine particles of the present invention are composed of fine powder produced by a known pulverizing method and a chemical synthesis method, and have a particle size in the submicron region from the sintering characteristics,
It is preferably an oxide ceramic powder having a particle size of 0.2 μm or less. The ceramic fine particles will be described below as the first
Disperse in a second solvent different from the solvent. If the first solvent is an organic solvent, the second solvent is, for example, water, and if the first solvent is water, the second solvent is, for example, an organic solution. However, even organic solvents such as methanol and paraffin oil can become the first solvent and the second solvent if they are insoluble in each other. It is preferable to dissolve the first binder, which is insoluble in the first solvent, in the second solvent to increase the bonding force between the ceramic fine particles. Here, the relationship between the first solvent and the first binder is, for example, when the first solvent is an organic solvent, the first binder is an aqueous binder such as polyvinyl alcohol, a polyacrylic acid derivative, a polyol derivative, or carboxymethylcellulose. Is used. As the organic solvent, alcohols having 6 or less carbon atoms, benzene, toluene, xylene and the like are used alone or in combination. On the other hand, when the first solvent is water, an organic solvent-based binder such as polyvinyl butyral, methyl cellulose, an acrylic derivative, an epoxy derivative, or a phenol derivative is used as the first binder. The solution of the first binder is an aqueous solution if the first binder is an aqueous system, and a solution of the organic solvent if it is an organic solvent system. Ceramic fine particles are uniformly dispersed in the solution of the first binder or the second solvent not containing the first binder by using a stirrer, an ultrasonic wave, a mill or the like.

【0006】この分散液からセラミック微粒子より大き
な粒径の球状粒子を造粒する。造粒方法としては、分散
液を加熱した雰囲気中にノズルにより噴霧して溶媒を除
去し球状粒子を作る噴霧乾燥法、或いは分散液とほぼ同
じ比重であって分散液の溶媒と混合せずかつセラミック
微粒子と反応しない加熱された高沸点液体中に小滴状に
分散液を更に分散させ、高沸点液体中で溶媒を除去して
球状粒子を作る方法(特公平3−24255)等があ
る。この球状粒子は最終のセラミック構造体の用途によ
り粒径が約0.6〜5μmの範囲になるように作られ
る。
From this dispersion, spherical particles having a particle size larger than that of the ceramic particles are granulated. As the granulation method, the dispersion is sprayed by a nozzle in a heated atmosphere to remove the solvent to form spherical particles, or a spray drying method which has almost the same specific gravity as the dispersion and does not mix with the solvent of the dispersion and There is a method (Japanese Patent Publication No. 3-24255) in which the dispersion liquid is further dispersed in the form of small droplets in a heated high boiling point liquid that does not react with the ceramic fine particles and the solvent is removed in the high boiling point liquid to form spherical particles. The spherical particles are made to have a particle size in the range of about 0.6-5 μm depending on the intended use of the final ceramic structure.

【0007】この球状粒子を前述した第1溶媒に分散す
ることにより、本発明のセラミックスラリーが得られ
る。ここで溶媒中で粉体がフロックを形成するときに
は、分散剤を添加した後、ミル等の混合分散機を用いて
粉体を分散させることが好ましい。水系の分散剤として
は、脂肪アミン塩類、第4アンモニウム塩類等が挙げら
れ、有機溶媒系の分散剤としては、ポリ・オキシエチレ
ン・ソルビタン・モノラウレート等が挙げられる。また
必要に応じて可塑剤を添加してもよい。可塑剤として
は、フタル酸ジオクチル、フタル酸ジブチル等のフタル
酸エステル、トリエチレングリコール、ポリアルキレン
グリコール等のグリコールエステル等が挙げられる。球
状粒子100重量%に対して分散剤は約0.1〜3重量
%、可塑剤は約1〜4重量%それぞれ添加される。
The ceramic slurry of the present invention can be obtained by dispersing these spherical particles in the above-mentioned first solvent. When the powder forms flocs in the solvent, it is preferable to add the dispersant and then disperse the powder using a mixing and dispersing machine such as a mill. Examples of the water-based dispersant include fatty amine salts and quaternary ammonium salts, and examples of the organic solvent-based dispersant include poly-oxyethylene-sorbitan monolaurate. Moreover, you may add a plasticizer as needed. Examples of the plasticizer include dioctyl phthalate, dibutyl phthalate, and other phthalate esters, triethylene glycol, polyalkylene glycol, and other glycol esters. About 0.1 to 3% by weight of a dispersant and about 1 to 4% by weight of a plasticizer are added to 100% by weight of spherical particles.

【0008】また調製されたセラミックスラリーに、セ
ラミック成形体の機械的強度を高めるために、第1バイ
ンダと異種であって第1溶媒に可溶でかつ第2溶媒に不
溶な第2バインダを加えてもよい。従って、第1溶媒が
有機溶媒である場合には、第2バインダにはポリビニル
ブチラール、メチルセルロース、アクリル誘導体、エポ
キシ系誘導体、フェノール系誘導体等の有機溶媒系のバ
インダが用いられ、第1溶媒が水である場合には、第2
バインダにはポリビニルアルコール、ポリアクリル酸誘
導体、ポリオール誘導体、カルボキシメチルセルロース
等の水系のバインダが用いられる。
A second binder, which is different from the first binder and is soluble in the first solvent and insoluble in the second solvent, is added to the prepared ceramic slurry in order to enhance the mechanical strength of the ceramic molded body. May be. Therefore, when the first solvent is an organic solvent, an organic solvent-based binder such as polyvinyl butyral, methyl cellulose, an acrylic derivative, an epoxy derivative, and a phenol derivative is used as the second binder, and the first solvent is water. Second, if
An aqueous binder such as polyvinyl alcohol, a polyacrylic acid derivative, a polyol derivative, or carboxymethyl cellulose is used as the binder.

【0009】このようにして得られたセラミックスラリ
ーは、ドクターブレード法、鋳込み成形法、押出し成形
法等によりセラミック成形体に成形され、所定の形状に
した後に、大気圧下、1200〜1600℃で焼成され
所望のセラミック構造体となる。
The ceramic slurry thus obtained is formed into a ceramic compact by a doctor blade method, a casting molding method, an extrusion molding method or the like, and after being formed into a predetermined shape, at 1200 to 1600 ° C. under atmospheric pressure. It is fired into the desired ceramic structure.

【0010】[0010]

【作用】セラミックスラリーに分散する球状粒子中にお
いては、球状粒子を構成するセラミック微粒子が微細で
あるため、これらの微粒子が凝集作用により互いに結合
し合い、これにより球状粒子は微粒子同士が空隙を生じ
ることなく密に充填される。一方、球状粒子同士はその
粒径が比較的大きいため、凝集力が弱く分散性がよい。
In the spherical particles dispersed in the ceramic slurry, since the ceramic fine particles forming the spherical particles are fine, these fine particles are bonded to each other by the aggregating action, whereby the spherical particles form voids between the fine particles. It is packed tightly without. On the other hand, since the spherical particles have a relatively large particle size, the cohesive force is weak and the dispersibility is good.

【0011】[0011]

【発明の効果】以上述べたように、本発明のセラミック
スラリーは、分散している球状粒子の凝集力が緩和され
ているため、ハンドリング性に優れ、かつ球状粒子は微
細なセラミック微粒子で構成されているため、得られた
成形体は低温焼結が可能で、しかも焼成すると、理論密
度に近い焼結密度のセラミック構造体が得られる。
As described above, the ceramic slurry of the present invention has excellent handling properties because the cohesive force of the dispersed spherical particles is relaxed, and the spherical particles are composed of fine ceramic fine particles. Therefore, the obtained green body can be sintered at a low temperature, and when fired, a ceramic structure having a sintered density close to the theoretical density can be obtained.

【0012】[0012]

【実施例】次に本発明の実施例を比較例とともに説明す
る。 <実施例>ポリビニルアルコール2gを水150mLに
溶解しポリビニルアルコール水溶液を調製した。この水
溶液に水熱合成法で作られた平均粒径が約0.06μm
のチタン酸バリウム50gを添加し、スターラにより攪
拌して微粉のチタン酸バリウムを水溶液中に均一に分散
させた。この分散液を噴霧器のノズルから120〜15
0℃の範囲に維持された乾燥室内に噴霧した。噴霧され
た粒子の水分が浮遊状態で除去され、ポリビニルアルコ
ールにより膨張した平均粒径が約1.1μmの球状粒子
が乾燥室底部に得られた。一方、トルエンとエタノール
を6:4の割合で混合した有機溶媒32gにポリビニル
ブチラール8gを溶解した、上記ポリビニルアルコール
が不溶なポリビニルブチラール有機溶液を調製した。こ
の有機溶液に上記球状粒子からなる粉体40gを分散し
て、チタン酸バリウムのスラリーを得た。このスラリー
をドクターブレード法により成膜乾燥して分散媒を除去
して厚み0.5mmのグリーンシートを成形した。この
グリーンシートの密度を測定したところ3.78g/c
3であった。更にこのグリーンシートを200〜50
0℃の温度で仮焼してポリビニルアルコール及びポリビ
ニルブチラールを完全に除去した後、大気圧下、セラミ
ック粒子が完全に焼結する1200℃の温度で1時間焼
成した。この焼結シートの密度は5.9g/cm3であ
った。
EXAMPLES Next, examples of the present invention will be described together with comparative examples. <Example> 2 g of polyvinyl alcohol was dissolved in 150 mL of water to prepare an aqueous polyvinyl alcohol solution. The average particle size produced by hydrothermal synthesis in this aqueous solution is about 0.06 μm.
50 g of barium titanate was added and stirred with a stirrer to uniformly disperse the fine barium titanate in the aqueous solution. This dispersion is passed through a nozzle of a sprayer for 120 to 15
It was sprayed into a drying chamber maintained in the 0 ° C range. The water content of the sprayed particles was removed in a floating state, and spherical particles having an average particle size of about 1.1 μm expanded by polyvinyl alcohol were obtained at the bottom of the drying chamber. On the other hand, a polyvinyl butyral organic solution in which the polyvinyl alcohol was insoluble was prepared by dissolving 8 g of polyvinyl butyral in 32 g of an organic solvent in which toluene and ethanol were mixed at a ratio of 6: 4. 40 g of the powder consisting of the spherical particles was dispersed in this organic solution to obtain a barium titanate slurry. A film of this slurry was dried by a doctor blade method to remove the dispersion medium, thereby forming a green sheet having a thickness of 0.5 mm. When the density of this green sheet was measured, it was 3.78 g / c.
It was m 3 . Furthermore, this green sheet is 200-50
After calcination at a temperature of 0 ° C. to completely remove polyvinyl alcohol and polyvinyl butyral, it was baked at a temperature of 1200 ° C. under atmospheric pressure for 1 hour at which the ceramic particles were completely sintered. The density of this sintered sheet was 5.9 g / cm 3 .

【0013】<比較例>実施例と同一の粒径を有するチ
タン酸バリウム40gを実施例と同一のポリビニルブチ
ラール有機溶液40gに分散して、チタン酸バリウムの
スラリーを得た。このスラリーを実施例と同様にしてグ
リーンシートに成形し、その密度を測定したところ2.
31g/cm3であった。更に実施例と同様にしてグリ
ーンシートを仮焼後、焼成して焼結シートを得た。この
焼結シートの密度は5.4g/cm3であった。比較例
の焼結シートの密度が理論密度6.0g/cm3に比べ
てはるかに小さかったのに対して実施例の焼結シートの
焼結密度は理論密度に近いものであった。
Comparative Example 40 g of barium titanate having the same particle size as in the example was dispersed in 40 g of the same polyvinyl butyral organic solution as in the example to obtain a barium titanate slurry. This slurry was molded into a green sheet in the same manner as in the example, and its density was measured.
It was 31 g / cm 3 . Further, the green sheet was calcined and fired in the same manner as in the example to obtain a sintered sheet. The density of this sintered sheet was 5.4 g / cm 3 . The density of the sintered sheet of the comparative example was much smaller than the theoretical density of 6.0 g / cm 3 , while the sintered density of the sintered sheet of the example was close to the theoretical density.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 第1溶媒と異種の第2溶媒にセラミック
微粒子を分散し、前記分散液から前記セラミック微粒子
より大きな粒径の球状粒子を造粒し、前記球状粒子を前
記第1溶媒に分散してなるセラミックスラリー。
1. Ceramic fine particles are dispersed in a second solvent different from the first solvent, spherical particles having a larger particle size than the ceramic fine particles are granulated from the dispersion, and the spherical particles are dispersed in the first solvent. Ceramic slurry made by.
【請求項2】 前記第2溶媒に可溶でかつ前記第1溶媒
に不溶な第1バインダを前記第2溶媒に溶解した請求項
1記載のセラミックスラリー。
2. The ceramic slurry according to claim 1, wherein a first binder that is soluble in the second solvent and insoluble in the first solvent is dissolved in the second solvent.
【請求項3】 請求項2記載のセラミックスラリー中に
前記第1バインダと異種であって前記第1溶媒に可溶で
かつ前記第2溶媒に不溶な第2バインダを溶解したセラ
ミックスラリー。
3. The ceramic slurry according to claim 2, wherein a second binder that is different from the first binder and that is soluble in the first solvent and insoluble in the second solvent is dissolved.
【請求項4】 前記球状粒子を分散剤とともに前記第1
溶媒に分散してなる請求項1又は2記載のセラミックス
ラリー。
4. The first spherical particles together with a dispersant.
The ceramic slurry according to claim 1 or 2, which is dispersed in a solvent.
【請求項5】 請求項1又は2記載のセラミックスラリ
ーからセラミック成形体を成形した後、焼成するセラミ
ック構造体の製造方法。
5. A method for producing a ceramic structure, which comprises forming a ceramic compact from the ceramic slurry according to claim 1 and then firing the compact.
JP3173060A 1991-06-18 1991-06-18 Ceramic slurry and production of ceramic structural body by using this slurry Withdrawn JPH05840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3173060A JPH05840A (en) 1991-06-18 1991-06-18 Ceramic slurry and production of ceramic structural body by using this slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3173060A JPH05840A (en) 1991-06-18 1991-06-18 Ceramic slurry and production of ceramic structural body by using this slurry

Publications (1)

Publication Number Publication Date
JPH05840A true JPH05840A (en) 1993-01-08

Family

ID=15953475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3173060A Withdrawn JPH05840A (en) 1991-06-18 1991-06-18 Ceramic slurry and production of ceramic structural body by using this slurry

Country Status (1)

Country Link
JP (1) JPH05840A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247375A (en) * 2000-03-07 2001-09-11 Murata Mfg Co Ltd Ceramic green sheet for laminated electronic parts
JP2008545610A (en) * 2005-06-06 2008-12-18 アルベマール・ネーザーランズ・ベー・ブイ Metal-doped mixed metal oxides, their preparation and use as catalyst compositions
CN101898893A (en) * 2010-04-07 2010-12-01 西南交通大学 Method for preparing dense spherical ceramic particles
CN104011479A (en) * 2012-12-17 2014-08-27 松下电器产业株式会社 Heat exchanger and sanitary cleaning device with same
DE102019103332A1 (en) 2018-02-12 2019-08-14 Jtekt Corporation Steering assistance system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247375A (en) * 2000-03-07 2001-09-11 Murata Mfg Co Ltd Ceramic green sheet for laminated electronic parts
JP2008545610A (en) * 2005-06-06 2008-12-18 アルベマール・ネーザーランズ・ベー・ブイ Metal-doped mixed metal oxides, their preparation and use as catalyst compositions
CN101898893A (en) * 2010-04-07 2010-12-01 西南交通大学 Method for preparing dense spherical ceramic particles
CN104011479A (en) * 2012-12-17 2014-08-27 松下电器产业株式会社 Heat exchanger and sanitary cleaning device with same
DE102019103332A1 (en) 2018-02-12 2019-08-14 Jtekt Corporation Steering assistance system

Similar Documents

Publication Publication Date Title
JP3675264B2 (en) Method for manufacturing ceramic slurry, ceramic green sheet and multilayer ceramic electronic component
JP4758872B2 (en) Method for producing barium titanate powder
TW381068B (en) Dispersible, metal oxide-coated, barium titanate materials
US20010048969A1 (en) Dispersible, metal oxide-coated, barium titanate materials
JP2017188441A (en) Solid electrolyte for all-solid type lithium ion secondary battery, all-solid type lithium ion secondary battery using the same, and method for manufacturing solid electrolyte for all-solid type lithium ion secondary battery
JP2009184903A (en) Process for production of aluminum titanate-based ceramic
CN1313842A (en) Barium titanate dispersions
KR100376084B1 (en) Method of producing ceramic slurry, ceramic slurry composition, ceramic green sheet and multilayer ceramic electronic part
JPH06134294A (en) Production of submicron / nanolarge-sized ceramic powder from precursor incorporated in polymer form
JP2006298677A (en) Method for synthesizing ceramic powder
JPH05840A (en) Ceramic slurry and production of ceramic structural body by using this slurry
JP3387455B2 (en) Method for producing ceramic slurry, ceramic green sheet, and multilayer ceramic electronic component
JP2010159172A (en) Method for producing aluminum titanate-based ceramic
JP2003327470A (en) MgO-SiO2 BASED OXIDE POWDER AND CERAMIC SINTERED COMPACT OBTAINED BY USING THE SAME AS RAW MATERIAL
JP2005179172A (en) Method of dispersing and coating additive on dielectric ceramic powder
CN114751728A (en) Preparation method of alumina ceramic granulation powder
KR102548437B1 (en) Complex perovskite metal oxide nanopowder and dielectric ceramics using the same
JP3675254B2 (en) Method for manufacturing ceramic slurry, ceramic green sheet and multilayer ceramic electronic component
JP2977214B2 (en) Mixing and grinding method of barium titanate-based ceramic raw materials
JP2005104818A (en) Aluminum nitride sintered powder, method of manufacturing the same, amd its application
JP2004165217A (en) Ferrite core and method of manufacturing
JP2006206379A (en) Method for producing green sheet
JP2005104782A (en) Slurry, green sheet, stacked electronic component and their manufacturing methods
JP3538706B2 (en) Method for producing ceramic slurry composition and method for producing ceramic green sheet
JP3665083B2 (en) Method for producing ceramic powder slurry and ceramic granule

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903