JPH04130638A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH04130638A
JPH04130638A JP2253895A JP25389590A JPH04130638A JP H04130638 A JPH04130638 A JP H04130638A JP 2253895 A JP2253895 A JP 2253895A JP 25389590 A JP25389590 A JP 25389590A JP H04130638 A JPH04130638 A JP H04130638A
Authority
JP
Japan
Prior art keywords
wiring
internal
width
patterns
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2253895A
Other languages
Japanese (ja)
Inventor
Yukinori Takei
武井 征典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2253895A priority Critical patent/JPH04130638A/en
Publication of JPH04130638A publication Critical patent/JPH04130638A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Abstract

PURPOSE:To increase the allowable range of aligning accuracy when connecting and facilitate integration by independently forming a wiring pattern without providing a pad and connecting at least two wiring patterns with internal wiring. CONSTITUTION:Wiring patterns 211-21n are formed in an area close to the one side of an LSI 1 at the same intervals in the vertical direction to the side. Internal wiring 201-20m is connected with the patterns 211-21n from an internal circuit 12. The patterns 211-21n are conductive and are formed by polysilicon wiring, aluminum wiring, etc. The width and the intervals of the patterns 211-21n are permitted to be the minimum pattern width and interval that can be formed by the LSI production, and when the width of the internal wiring is wide enough, the wiring patterns are formed by the pattern width and intervals which permit the wiring pattern to be in the wiring width.

Description

【発明の詳細な説明】 〔概要〕 半導体集積回路回路、特にLSI外部との信号伝授を行
うための外部端子の構成に関し、パッド形成領域縮小方
法として、パッドを使用せずに、位置合わせ精度の許容
範囲を大きく、パッド使用時よりも集積化に向く外部配
線と内部配線の接続方法を持つ半導体集積回路装置の提
供を目的とし、 半導体チップ1上で且つチップ辺近傍の領域において、
チップ辺に対して略垂直方向に等間隔に形成された互い
に独立した複数の配線パターン211〜2Inを有し、
配線パターンは配線パターンに接続されるチップ内部の
内部配線20に対して少なくとも2本の配線パターンが
接続されてなる。
[Detailed Description of the Invention] [Summary] As a method for reducing the pad formation area in semiconductor integrated circuit circuits, especially in the configuration of external terminals for transmitting signals with the outside of an LSI, it is possible to improve alignment accuracy without using pads. The purpose of the present invention is to provide a semiconductor integrated circuit device having a connection method for external wiring and internal wiring that has a large tolerance range and is more suitable for integration than when using pads, and in an area on the semiconductor chip 1 and near the chip side.
It has a plurality of mutually independent wiring patterns 211 to 2In formed at equal intervals in a direction substantially perpendicular to the chip side,
The wiring pattern is formed by connecting at least two wiring patterns to internal wiring 20 inside the chip which is connected to the wiring pattern.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体集積回路回路(LSI)、特にLSI
外部との信号伝授を行うための外部端子の構成に関する
The present invention relates to a semiconductor integrated circuit (LSI), particularly an LSI
The present invention relates to the configuration of an external terminal for transmitting signals to the outside.

近年のLSIは、年々回路規模が増大し、集積密度も向
上している。但し、チップサイズには限界がある。この
様な中で、内部回路規模増大をはかるには、内部回路動
作に直接関与しない領域、例えばパッド形成領域等を極
力小さくする必要がある。
In recent years, the circuit scale of LSIs has increased year by year, and the integration density has also improved. However, there is a limit to the chip size. Under these circumstances, in order to increase the scale of the internal circuit, it is necessary to minimize areas that are not directly involved in internal circuit operations, such as pad formation areas.

〔従来の技術〕[Conventional technology]

第7図(a)、(b)は従来の一般的なLSI構成を示
す図である。第7図(a)に示される如く、従来のLS
IIは、外部端子としてLSII内の周囲に一列に複数
個設けられたパッド3を使用している。このパッド3は
、例えばパッケージ2の内部リード5と、ワイヤポンデ
イグによりワイヤ4を介して、又はバンプを形成してT
AB実装のリードにより介して接続されるため、LSI
内の各部品に対して非常に大きな領域が必要である。即
ち、第7図(b)に示される様に、ワイヤポンデイグを
したパッド3を例とすると、ワイヤ4の径が略35μm
でその圧着部分14が80〜90μmであり、ポンデイ
グ時の位置合わせの誤差を加味すると、パッド3の実際
使用できる領域は略100μmX100μmにもなる。
FIGS. 7(a) and 7(b) are diagrams showing conventional general LSI configurations. As shown in FIG. 7(a), the conventional LS
II uses a plurality of pads 3 arranged in a row around the LSII as external terminals. This pad 3 is connected to the internal lead 5 of the package 2, for example, via a wire 4 by wire bonding or by forming a bump.
Since it is connected via AB mounting leads, LSI
A very large area is required for each part within. That is, as shown in FIG. 7(b), taking the pad 3 with wire bonding as an example, the diameter of the wire 4 is approximately 35 μm.
The crimp portion 14 is 80 to 90 .mu.m thick, and if positioning errors at the time of bonding are taken into account, the usable area of the pad 3 is approximately 100 .mu.m.times.100 .mu.m.

この面積は、トランジスタが数μm四方であることから
、かなり大きな面積であることが分かる。
It can be seen that this area is quite large since the transistor is several μm square.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、近年のLSIの内部回路の大規模化のため、
内部回路の微細化を進めるにも限界が生じており、内部
回路動作に無関係な領域、特にパッド形成領域を縮小し
て内部回路に使用したいという要求がある。しかし、従
来では、パッドは必要不可欠であるから、そのパッドサ
イズを縮小することを考えなければならない。単純にワ
イヤの径を小さ(して圧着部分の面積を小さくすればよ
いが、そのためには、ポンデイグ精度やワイヤの径に対
応できる機械等の工夫が必要であり、これら周辺技術の
進歩を待たねばならない。また、バンプについても、リ
ード幅と間隔、バンプ、実装精度を小さくする技術の進
歩を待たねばならない。
By the way, due to the large-scale internal circuits of LSIs in recent years,
There is a limit to the advancement of miniaturization of internal circuits, and there is a demand for reducing areas unrelated to internal circuit operation, especially pad formation areas, and using them for internal circuits. However, conventionally, since pads are indispensable, consideration must be given to reducing the pad size. It would be possible to simply reduce the diameter of the wire (and thereby reduce the area of the crimped part), but this requires devising devices such as precision bonding and machinery that can handle the diameter of the wire, and we will wait for the advancement of these peripheral technologies. Regarding bumps, we must also wait for advances in technology to reduce lead width and spacing, bumps, and mounting accuracy.

よって、本発明の目的は、パッド形成領域を縮小させる
のに、従来の如く現在使用している部品をそれぞれ縮小
化して行く仕方ではなく、パッドを使用しない外部配線
と内部配線の接続方法を提案し、接続時の位置合わせ精
度の許容範囲を太きくでき、パッド使用時よりも集積化
に向く半導体集積回路装置を提供することにある。
Therefore, an object of the present invention is to propose a method for connecting external wiring and internal wiring that does not use pads, rather than reducing the size of the currently used components in order to reduce the pad formation area. However, it is an object of the present invention to provide a semiconductor integrated circuit device which can widen the tolerance range of positioning accuracy during connection and is more suitable for integration than when using pads.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理構成図である。図中、1は半導体
集積回路装置(LSIチップ)、12は内部回路、20
は内部配線、211〜21nは配線パターン、31は外
部配線である。
FIG. 1 is a diagram showing the principle configuration of the present invention. In the figure, 1 is a semiconductor integrated circuit device (LSI chip), 12 is an internal circuit, and 20
is an internal wiring, 211 to 21n are wiring patterns, and 31 is an external wiring.

本発明の半導体集積回路装置は、チップ1上で且つ該チ
ップ辺近傍の領域において、該チップ辺に対して略垂直
方向に等間隔に形成された互いに独立した複数の配線パ
ターン211〜2Inを有し、該配線パターンは該配線
パターンに接続されるチップ内部の内部配線20に対し
て少なくとも2木の配線パターンが接続されてなる。
The semiconductor integrated circuit device of the present invention has a plurality of mutually independent wiring patterns 211 to 2In formed on the chip 1 and at equal intervals in a direction substantially perpendicular to the chip side in a region near the chip side. However, the wiring pattern has at least two wiring patterns connected to the internal wiring 20 inside the chip which is connected to the wiring pattern.

〔作用〕[Effect]

本発明の半導体集積回路装置では、配線パターンを使用
し、パッドは設けない。そして、配線パターンは独立に
形成され、チップ内部の内部配線に対して少なくとも2
本の配線パターンが接続される。よって、内部配線が接
続された配線パターンに外部配線が接続されるとき、外
部配線は内部配線幅中心より最も離れて接続された配線
パターンと接続できれば電気的接続が得られるため、外
部配線と内部配線との位置ずれに対して大きなマージン
を得られる。また、外部配線と内部配線幅の和がパッド
幅よりも小さいとき、位置ずれを考慮してもパッド幅よ
りも小さい幅で外部配線と内部配線との接続が行え、パ
ッド使用時よりも集積化が可能となる。
In the semiconductor integrated circuit device of the present invention, a wiring pattern is used and no pads are provided. The wiring pattern is formed independently, and at least two wiring patterns are formed for the internal wiring inside the chip.
The wiring pattern of the book is connected. Therefore, when an external wiring is connected to a wiring pattern to which an internal wiring is connected, an electrical connection can be obtained if the external wiring can be connected to the wiring pattern that is connected furthest from the center of the internal wiring width. A large margin can be obtained against misalignment with wiring. Also, when the sum of the external wiring and internal wiring widths is smaller than the pad width, the external wiring and internal wiring can be connected with a width smaller than the pad width even if positional deviation is taken into account, resulting in greater integration than when using pads. becomes possible.

[実施例〕 第2図に本発明の実施例構成図である。図中、201〜
20mは内部配線である。尚、第1図の構成と同じ構成
には同じ符号が付けである。
[Embodiment] FIG. 2 is a block diagram of an embodiment of the present invention. In the figure, 201~
20m is internal wiring. Note that the same components as those in FIG. 1 are given the same reference numerals.

この実施例では、第2図(a)のLSIチップ上面図に
示す如く、LSIIの一辺の近傍の領域に配線パターン
211〜2Inが、該−辺に対して垂直方向に等間隔で
形成されている。そして、内部回路12から内部配線2
01〜20mが配線パターン211〜21nに接続され
ている。
In this embodiment, as shown in the top view of the LSI chip in FIG. 2(a), wiring patterns 211 to 2In are formed in a region near one side of the LSII at regular intervals in the direction perpendicular to the -side. There is. Then, from the internal circuit 12 to the internal wiring 2
01-20m are connected to wiring patterns 211-21n.

この配線パターン211〜21nは導体であり、ポリシ
リコン配線、アルミニウム配線等、このLSIを製造す
るときに使用される導体を使用して形成することができ
る。また、配線パターン211〜2In幅及び間隔は、
このLSI製造上で形成できる最小のパターン幅及び間
隔で、又は、内部配線幅が十分広いときは、その線幅内
に配線パターンが必ず少なくとも含まれるようなパター
ン幅及び間隔で形成されている。
The wiring patterns 211 to 21n are conductors, and can be formed using conductors used when manufacturing this LSI, such as polysilicon wiring or aluminum wiring. In addition, the width and spacing of the wiring patterns 211 to 2In are as follows:
They are formed with the minimum pattern width and spacing that can be formed in LSI manufacturing, or when the internal wiring width is sufficiently wide, the pattern width and spacing are such that at least the wiring pattern is always included within the internal wiring width.

第2図(b)には、第2図(a)の配線パターン211
〜21nの形成さている領域が、LSllの辺周囲の全
てに形成されているものを示している。
FIG. 2(b) shows the wiring pattern 211 of FIG. 2(a).
The area where .about.21n is formed is shown to be formed all around the sides of LSll.

第2図(c)には、配線パターン211〜21nが平行
でなく、且つ等間隔でないものが示されている。
FIG. 2(c) shows a wiring pattern in which the wiring patterns 211 to 21n are not parallel and not equally spaced.

第2図(d)には、多角形のチップに応用した例を示さ
れている。
FIG. 2(d) shows an example of application to a polygonal chip.

第3図は、第2図A−B間の一部拡大断面図である。図
において、配線パターン21には、低濃度不純物のP型
シリコン基板6表面に形成されたシリコン酸化膜7上に
形成されている。その配線パターン21にの内部回路側
の一端は、PSG等の絶縁性保護膜24で覆われ、その
絶縁性保護膜24上から延在する内部配線20jと接続
されている。このチップは、外部配線との接続が完了し
たら、保護膜でチップ全体を覆う。
FIG. 3 is a partially enlarged sectional view taken along line A-B in FIG. In the figure, the wiring pattern 21 is formed on a silicon oxide film 7 formed on the surface of a P-type silicon substrate 6 with a low concentration of impurity. One end of the wiring pattern 21 on the internal circuit side is covered with an insulating protective film 24 such as PSG, and is connected to an internal wiring 20j extending from above the insulating protective film 24. After the chip is connected to external wiring, the entire chip is covered with a protective film.

次に、第4図、第5図を用いて本実施例の作用について
具体的に説明する。尚、第4図、第5図は第2図の領域
Zの部分の一部拡大図である。
Next, the operation of this embodiment will be specifically explained using FIGS. 4 and 5. 4 and 5 are partially enlarged views of region Z in FIG. 2.

以下に、本実施例が位置ずれに対して大きなマージンを
持つことを説明する。
Below, it will be explained that this embodiment has a large margin against positional deviation.

第4図において、本実施例の作用の説明を簡単にするた
め、配線パターンは全て、配線パターン幅がltIm、
配線パターン間隔も1μmとする。
In FIG. 4, in order to simplify the explanation of the operation of this embodiment, all wiring patterns have a wiring pattern width of ltIm,
The wiring pattern spacing is also 1 μm.

内部配線は全て、その内部配線間隔グμmであり、外部
配線は全て、その外部配線10amであるとする。
It is assumed that all internal wirings have an internal wiring interval of μm, and all external wirings have an external wiring interval of 10am.

内部配線201は、図示の如く配線パターン218〜2
110と3本が接続され、配線パターン219の中心が
内部配線201の中心と一致しているものとする。一方
、外部配線311には図示の如く配線パターン217〜
2111の5本が接続される。内部配線201は配線パ
ターンと同時に製造されるものとすると、その位置ずれ
は殆ど無く無視してよいものとなる。よって、外部配線
311は、内部配線201と外部配線311は電気的接
続を得た状態で、破線間Xの示す範囲が位置ずれ許容範
囲となる。つまり、図面上側(−W方向)に対する位置
ずれは、配線パターン204〜208まで、図面下側(
+W力方向は、2010〜2014までとなる。この結
果、外部配線の位置ずれ許容範囲は、略内部配線と外部
配線の和の2倍程度、詳細には、配線パターン208.
201Oに関して、内部配線と外部配線が共に接続され
るための接続部分を差し引いた22μm程度と見なせる
The internal wiring 201 has wiring patterns 218 to 2 as shown in the figure.
110 are connected, and the center of the wiring pattern 219 coincides with the center of the internal wiring 201. On the other hand, the external wiring 311 has wiring patterns 217 to 217 as shown in the figure.
Five wires of 2111 are connected. Assuming that the internal wiring 201 is manufactured at the same time as the wiring pattern, there will be almost no positional deviation and it can be ignored. Therefore, in a state where the internal wiring 201 and the external wiring 311 are electrically connected, the range indicated by the dashed line X is the allowable positional deviation range for the external wiring 311. In other words, the positional deviation with respect to the upper side of the drawing (-W direction) is as follows for wiring patterns 204 to 208,
The +W force direction is from 2010 to 2014. As a result, the permissible positional deviation range for the external wiring is approximately twice the sum of the internal wiring and external wiring, specifically, the wiring pattern 208.
Regarding 201O, it can be considered that the thickness is about 22 μm, excluding the connecting portion where the internal wiring and external wiring are connected together.

上述の場合、外部配線は31 1の1本であるが、 外部配線311,312・・・31mと複数等間隔で配
置するときは、2本の外部配線間は内部配線幅以上とす
る必要がある。なぜなら、許容範囲最大の位置ずれ生じ
たとき、隣接する外部配線又は内部配線とが配線パター
ンを介して接続されてしまうからである。
In the above case, there is one external wiring 311, but when multiple external wirings 311, 312...31m are arranged at equal intervals, the distance between the two external wirings must be equal to or greater than the internal wiring width. be. This is because when the maximum allowable positional deviation occurs, adjacent external wiring or internal wiring will be connected via the wiring pattern.

次に、第5図を用いて、配線パターンは、その幅と間隔
が共に同じ1μmであり、内部配線幅、内部配線間隔、
内部配線幅、外部配線間隔が任意である場合について説
明する。
Next, using FIG. 5, the wiring patterns have the same width and spacing of 1 μm, and the internal wiring width, internal wiring spacing,
A case where the internal wiring width and external wiring interval are arbitrary will be described.

第5図において、外部配線幅311.312313がそ
れぞれ10μm、6μm、8μm、内部配線幅201,
202,203がそれぞれ8μm、4μm、6μmであ
るとする。そして、外部配線311・・・と内部配線2
01・・・と配線パターンは各々ペアを構成し、共に中
心位置が一致しているものとする。
In FIG. 5, the external wiring widths 311, 312, and 313 are respectively 10 μm, 6 μm, and 8 μm, and the internal wiring widths 201,
Suppose that 202 and 203 are 8 μm, 4 μm, and 6 μm, respectively. Then, external wiring 311... and internal wiring 2
It is assumed that the wiring patterns 01, . . . constitute a pair, and their center positions coincide.

この場合、位置ずれ許容範囲は、内部配線幅と外部配線
幅の最小となるペアの値となる。つまり、外部配線31
2と内部配線202のペアとなり、破線間Yで示された
範囲となって、11μmとなる。そのときの内部配線、
外部配線の間隔については、隣接する内部配線と外部配
線の図面±W力方向間隔が、最低限上記の位置ずれ許容
範囲11μm以上必要である。
In this case, the positional deviation tolerance range is the value of the minimum pair of internal wiring width and external wiring width. In other words, the external wiring 31
2 and the internal wiring 202, and the range shown by Y between broken lines is 11 μm. Internal wiring at that time,
Regarding the spacing between external wires, the distance between adjacent internal wires and external wires in the drawing ±W force direction must be at least the above-mentioned positional deviation tolerance range of 11 μm or more.

上述の説明において、実際の例としてあげると次のよう
になる。この例は、上述の第4図の作用と同様である。
In the above explanation, the following is an actual example. This example is similar to the effect shown in FIG. 4 above.

プリント基板上に導体配線が輻50μm、導体配線間隔
が50tImの等間隔に形成さているとする。LSIチ
ップ内では、配線パターン幅、間隔が1μmであり、内
部配線幅が2.5μmであるとする。そして、導体配線
と内部配線とは共に中心を一致させて各々ペアとなって
いる。この場合、外部配線の位置ずれ許容範囲は、10
3μmとなる。外部配線間隔は第4図の説明中に記載し
たように、内部配線幅が2.5μm以上の50μmであ
り、隣接する配線との接続も十分に防止できる。
Assume that conductor wirings are formed on a printed circuit board at equal intervals with a radius of 50 μm and a conductor wiring interval of 50tIm. It is assumed that within the LSI chip, the wiring pattern width and interval are 1 μm, and the internal wiring width is 2.5 μm. The conductor wiring and the internal wiring are arranged in pairs with their centers aligned. In this case, the allowable range of positional deviation of external wiring is 10
It becomes 3 μm. As described in the explanation of FIG. 4, the external wiring interval is 50 μm, with the internal wiring width being 2.5 μm or more, and connection with adjacent wires can be sufficiently prevented.

この結果から、外部配線の位置ずれ許容範囲は103μ
mと極めて大きく、且つ、外部配線と内部配線の接続時
における最大の±W力方向幅は外部配線幅と内部配線幅
の和のみで済む。
From this result, the allowable range of positional deviation for external wiring is 103μ.
m, which is extremely large, and the maximum width in the ±W force direction when connecting the external wiring and internal wiring is only the sum of the external wiring width and the internal wiring width.

以上のことは、従来パッドを使用していたときに比べる
とその効果がはっきりする。本実施例では位置ずれ許容
範囲が103μmに対し、従来は10μm〜20μmで
あり、位置ずれに対して従来より略lO倍もの許容がで
きる。一方で、本実施例では、外部配線を設けるための
距離は導体配線幅50μmと導体配線間隔50μmの和
、100μmとなり、従来の120μmよりも短くなり
、よって高密度に配線を設けることができる。今後、プ
リント基板上に導体配線幅か、導体配線間隔の何れかが
もっと狭くなれば、さらに外部配線を設けるための距離
を小さくでき、高密度化できる。
The above effects are more obvious than when using conventional pads. In this embodiment, the allowable range of positional deviation is 103 μm, whereas in the conventional case it is 10 μm to 20 μm, and the allowable range of positional deviation is approximately 10 times larger than that of the conventional case. On the other hand, in this embodiment, the distance for providing external wiring is the sum of the conductor wiring width of 50 μm and the conductor wiring interval of 50 μm, which is 100 μm, which is shorter than the conventional distance of 120 μm, so that wiring can be provided at high density. In the future, if either the conductor wiring width or the conductor wiring spacing on a printed circuit board becomes narrower, the distance for providing external wiring can be further reduced, and higher density can be achieved.

本実施例のLSIは、第6図に示すように、例えば、プ
リント基板に回路構成面を向けて接続する。
As shown in FIG. 6, the LSI of this embodiment is connected to, for example, a printed circuit board with its circuit configuration side facing.

尚、本実施例では、配線パターンが平行且つ等間隔で設
けられているが、これには限らない。
In this embodiment, the wiring patterns are provided in parallel and at equal intervals, but the wiring patterns are not limited to this.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の半導体集積回路装置では
、パッドを使用せずに、接続時の位置合わせ精度の許容
範囲を大きく、パッド使用時よりも集積化に向くことが
できるため、半導体集積回路装置の集積化に貢献する。
As explained above, the semiconductor integrated circuit device of the present invention does not use pads and has a larger tolerance for alignment accuracy during connection, making it more suitable for integration than when pads are used. Contributes to the integration of circuit devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理構成図、 第2図は本発明の実施例構成図、 第3図は第2図A−B間の一部断面図である。 第4図、第5図は第2図の領域Zの部分の一部拡大断面
図、 第6図は本発明のLSIの実装状態図、第7図は従来の
一般的なLSI構成図である。 図において、1は半導体集積回路装置(LSIチップ)
、2はパッケージ、3はパッド、4はワイヤ、5は外部
リード、6はp−基板、7はシリコン酸化膜、8はn−
のウェル領域、9は第1のアルミニウムパターン、1o
は第2のアルミニウムパッド、11.24は絶縁性保護
膜、41はパッドの圧着部分、12は内部回路、201
〜201には内部配線、211〜21nは配線パターン
、311〜31mは外部配線である。 (α) 心2団 (b) (C) 箔2団 (rL> 菊6図 づ%、<路 名4−団 /He ’E t> Bl ll−’)2 ンr、;4
.?@第す図
FIG. 1 is a diagram showing the principle configuration of the present invention, FIG. 2 is a diagram showing the configuration of an embodiment of the invention, and FIG. 3 is a partial sectional view taken along line A-B in FIG. 4 and 5 are partially enlarged sectional views of the area Z in FIG. 2, FIG. 6 is a diagram of the mounting state of the LSI of the present invention, and FIG. 7 is a configuration diagram of a conventional general LSI. . In the figure, 1 is a semiconductor integrated circuit device (LSI chip)
, 2 is a package, 3 is a pad, 4 is a wire, 5 is an external lead, 6 is a p-substrate, 7 is a silicon oxide film, 8 is an n-
well region, 9 is the first aluminum pattern, 1o
is the second aluminum pad, 11.24 is an insulating protective film, 41 is a crimp part of the pad, 12 is an internal circuit, 201
-201 are internal wirings, 211-21n are wiring patterns, and 311-31m are external wirings. (α) Heart 2 group (b) (C) Foil 2 group (rL> Chrysanthemum 6 zu%, <Route name 4-group/He 'E t> Bll ll-') 2 nr,;4
.. ? @Fig.

Claims (1)

【特許請求の範囲】 半導体チップ1上で且つ該チップ辺近傍の領域において
、該チップ辺に対して略垂直方向に等間隔に形成された
互いに独立した複数の配線パターン211〜21nを有
し、 該配線パターンは該配線パターンに接続されるチップ内
部の内部配線20に対して少なくとも2本の配線パター
ンが接続されてなることを特徴とする半導体集積回路装
置。
[Scope of Claims] A plurality of mutually independent wiring patterns 211 to 21n formed on the semiconductor chip 1 and at equal intervals in a direction substantially perpendicular to the chip side in a region near the side of the chip, A semiconductor integrated circuit device characterized in that the wiring pattern has at least two wiring patterns connected to an internal wiring 20 inside a chip connected to the wiring pattern.
JP2253895A 1990-09-20 1990-09-20 Semiconductor integrated circuit device Pending JPH04130638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2253895A JPH04130638A (en) 1990-09-20 1990-09-20 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2253895A JPH04130638A (en) 1990-09-20 1990-09-20 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH04130638A true JPH04130638A (en) 1992-05-01

Family

ID=17257591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2253895A Pending JPH04130638A (en) 1990-09-20 1990-09-20 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH04130638A (en)

Similar Documents

Publication Publication Date Title
US7372131B2 (en) Routing element for use in semiconductor device assemblies
JP3516608B2 (en) Semiconductor device
CN1568543B (en) Semiconductor component
JP2001351983A (en) Semiconductor device and its manufacturing method
KR20180041811A (en) Semiconductor device
US7501710B2 (en) Semiconductor integrated circuit and method of manufacturing the same
JPH04130638A (en) Semiconductor integrated circuit device
US10930618B2 (en) Semiconductor package having chip stack
US5554881A (en) Constitution of an electrode arrangement in a semiconductor element
JP4175343B2 (en) Semiconductor pellet and semiconductor device
JP2002270723A (en) Semiconductor device, semiconductor chip, and mounting board
JPH06216526A (en) Thin-film multi layer printed circuit board
JP2913858B2 (en) Hybrid integrated circuit
JPH05182971A (en) Electrode structure for chip and board and multtchtp module
JP3766103B6 (en) Standardized bonding site methods and equipment
JP3766103B2 (en) Standardized bonding site methods and equipment
JP3706379B2 (en) Semiconductor pellet
JPS6132560A (en) Semiconductor device
KR100219473B1 (en) Semiconductor device the use for tab lead and method of mount of the same
JPS6341036A (en) Semiconductor device
JPS5828359Y2 (en) Semiconductor integrated circuit device
JPH02189944A (en) Semiconductor integrated circuit device
JPH012338A (en) Wafer scale semiconductor integrated circuit
JPH0645386A (en) Semiconductor circuit device
JPS63137439A (en) Integrated circuit chip