JPH0413026B2 - - Google Patents

Info

Publication number
JPH0413026B2
JPH0413026B2 JP59146886A JP14688684A JPH0413026B2 JP H0413026 B2 JPH0413026 B2 JP H0413026B2 JP 59146886 A JP59146886 A JP 59146886A JP 14688684 A JP14688684 A JP 14688684A JP H0413026 B2 JPH0413026 B2 JP H0413026B2
Authority
JP
Japan
Prior art keywords
component
weight
catalyst
parts
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59146886A
Other languages
Japanese (ja)
Other versions
JPS6125642A (en
Inventor
Shinichi Uchida
Yojiro Takahashi
Ikuo Kurimoto
Yoji Akazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP14688684A priority Critical patent/JPS6125642A/en
Priority to CA000481767A priority patent/CA1261860A/en
Priority to NZ212129A priority patent/NZ212129A/en
Priority to EP85106175A priority patent/EP0163231B1/en
Priority to DE8585106175T priority patent/DE3576074D1/en
Publication of JPS6125642A publication Critical patent/JPS6125642A/en
Priority to US06/841,833 priority patent/US4665200A/en
Publication of JPH0413026B2 publication Critical patent/JPH0413026B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はデユレンまたは炭素数4以下のアルキ
ル基含有のテトラアルキルベンゼンを空気または
分子状酸素含有ガスにより接触気相酸化してピロ
メリツト酸またはその無水物を製造するための触
媒を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention involves catalytic gas phase oxidation of durene or tetraalkylbenzene containing an alkyl group having 4 or less carbon atoms using air or a molecular oxygen-containing gas to produce pyromellitic acid or its anhydride. The present invention provides a catalyst for manufacturing.

従来の技術 ピロメリツト酸またはその無水物を工業的に製
造する方法の1つにデユレンまたはテトラアルキ
ルベンゼンの接触酸化法があるが、当該プロセス
に提案されている触媒は数多くありながら性能的
に不満足な面が多い。すなわち、例えば、特公昭
49−20302号、特公昭49−31972号公報等には比較
的高い収率でデユレンより無水ピロメリツト酸の
得られる旨の記載があるがその反応条件をみると
0.1〜0.3容量%という非常に薄いデユレン濃度の
混合ガスを触媒層に大量に送つて酸化するという
省エネルギー観点からすれば非常に不経済な面が
あり、高濃度ガスでの反応に耐えうる改良された
触媒の望まれるところであつた。
Prior Art One of the methods for industrially producing pyromellitic acid or its anhydride is the catalytic oxidation method of durene or tetraalkylbenzene, but although there are many catalysts proposed for this process, they have some unsatisfactory performance. There are many. That is, for example, Tokko Akira
49-20302, Japanese Patent Publication No. 49-31972, etc., there is a statement that pyromellitic anhydride can be obtained from Duurene in a relatively high yield, but looking at the reaction conditions,
From an energy-saving perspective, it is very uneconomical to send a large amount of mixed gas with a very low Duurene concentration of 0.1 to 0.3% by volume to the catalyst layer for oxidation, and it is difficult to improve the ability to withstand reactions with high concentration gas. Therefore, a catalyst with a similar structure was desired.

本発明の解決しようとする問題点 上述の如き、低い濃度の被酸化物質を含有せる
ガスを触媒層に通じ無水ピロメリツト酸を得ると
いう使用条件の採用は一つには上記公知触媒の耐
熱性の低さに帰因していると考えられる。デユレ
ンまたはテトラアルキルベンゼンを接触気相酸化
して無水ピロメリツト酸を合成する場合、副次的
に起こる一酸化炭素や二酸化炭素(COx)、トリ
メリツト酸、ジメチル無水フタル酸等への反応に
よつて生じる熱も含めて計算すると非常に大きな
発熱量となる。
Problems to be Solved by the Invention One of the reasons for adopting the above-mentioned usage condition of passing a gas containing a low concentration of oxidizable substance through the catalyst layer to obtain pyromellitic anhydride is due to the heat resistance of the above-mentioned known catalyst. This is probably due to the low level. When pyromellitic anhydride is synthesized by catalytic gas phase oxidation of Durene or tetraalkylbenzene, heat is generated by the reaction with secondary carbon monoxide, carbon dioxide (COx), trimellitic acid, dimethyl phthalic anhydride, etc. If you include this in your calculations, the amount of heat generated will be extremely large.

且つ、デユレンから無水ピロメリツト酸および
副生物への反応速度は非常に速いため触媒層前半
部の一部に局所的に著しく熱点(hot spot)が生
じる。
In addition, since the reaction rate from Durene to pyromellitic anhydride and by-products is very fast, a significant hot spot locally occurs in a portion of the front half of the catalyst layer.

このように大きな熱量の発生とその発生が局所
的に集中することはその部分の触媒の熱的劣化を
促進する。
The generation of such a large amount of heat and its local concentration promotes thermal deterioration of the catalyst in that area.

かくして、本発明の目的はより高いデユレンま
たはテトラアルキルベンゼン濃度での酸化反応の
操業を可能ならしめる熱耐久性良好な触媒を提供
することにある。
It is thus an object of the present invention to provide a catalyst with good thermal durability which makes it possible to operate the oxidation reaction at higher duurene or tetraalkylbenzene concentrations.

問題点を解決するための手段 本発明者らは触媒の耐熱強度を向上させるべく
種々検討を加えた結果、酸化バナジウムと酸化ジ
ルコニウムとの混合物に助触媒として特定の添加
物を加えた触媒活性物質を不活性担体、とくに不
活性な無機質多孔性担体に担持せしめた触媒が本
発明目的に適うことを見出し本発明を完成せしめ
た。
Means for Solving the Problems The present inventors conducted various studies in order to improve the heat resistance strength of the catalyst, and as a result, they developed a catalytically active material in which a specific additive was added as a co-catalyst to a mixture of vanadium oxide and zirconium oxide. The inventors have completed the present invention by discovering that a catalyst supported on an inert carrier, particularly an inert inorganic porous carrier, is suitable for the purpose of the present invention.

そして酸化ジルコニウムの1部を酸化チタンお
よび/または酸化スズに置換しても同様にすぐれ
た作用を有することを見い出し、また、これらの
触媒系に対してさらに特定量のアンチモン酸化物
を添加することにより触媒がより低い温度で有効
に作動し触媒寿命上さらに有利となることを見い
出した。
They also discovered that replacing a portion of zirconium oxide with titanium oxide and/or tin oxide has similarly excellent effects, and also added a specific amount of antimony oxide to these catalyst systems. It has been found that the catalyst can operate effectively at a lower temperature, which is more advantageous in terms of catalyst life.

かくして、本発明は以下の如く特定される。 The invention is thus specified as follows.

(1) バナジウム成分がV2O5として1〜20重量部、
ジルコニウム成分またはジルコニウム成分とチ
タン成分および/またはスズ成分がZrO2
TiO2+SnO2として99〜80重量部、そしてこれ
らの成分合計100重量部に対しリン成分がP2O5
として0.02〜10重量部、ニオブ成分がNb2O5
して0.01〜5重量部、カリウム、セシウム、ル
ビジウムおよびタリウムよりなる群から選ばれ
た少なくとも1種の成分が酸化物として0.1〜
1.2重量部さらにアンチモン成分がSb2O5として
0〜10重量部含有されてなる触媒活性物質より
なり、ジルコニウム成分として0.01〜1ミクロ
ンの平均粒子径および5〜100m2/gの比表面
積を有するZnO2粉末を出発原料として使用し
て調整された触媒活性物質を不活性担体に担持
せしめてなるデユレンまたはテトラアルキルベ
ンゼンの接触気相酸化による無水ピロメリツト
酸製造用触媒。
(1) Vanadium component is 1 to 20 parts by weight as V 2 O 5 ,
The zirconium component or the zirconium component and the titanium component and/or tin component are Z r O 2 +
99 to 80 parts by weight as TiO 2 + SnO 2 , and the phosphorus component is P 2 O 5 for the total 100 parts by weight of these components.
0.02 to 10 parts by weight as a niobium component, 0.01 to 5 parts by weight as Nb 2 O 5 , and 0.1 to 5 parts as an oxide of at least one component selected from the group consisting of potassium, cesium, rubidium, and thallium.
It is made of a catalytically active material that further contains 0 to 10 parts by weight of an antimony component as Sb 2 O 5 , and has an average particle diameter of 0.01 to 1 micron and a specific surface area of 5 to 100 m 2 /g as a zirconium component. A catalyst for producing pyromellitic anhydride by catalytic gas phase oxidation of durene or tetraalkylbenzene, comprising a catalytically active substance prepared using ZnO 2 powder as a starting material supported on an inert carrier.

(2) ジルコニウム成分とチタン成分および/また
はスズ成分の重量比が(TiO2+SnO2)/ZrO2
=4以下であることを特徴とする上記(1)記載の
触媒。
(2) The weight ratio of zirconium component to titanium component and/or tin component is (TiO 2 +SnO 2 )/ZrO 2
The catalyst according to (1) above, characterized in that =4 or less.

本発明は以上の如く特定されているが、さらに
好ましい態様としては以下の如くである。
Although the present invention has been specified as above, more preferred embodiments are as follows.

すなわち、上述のごとくZrO2の1部がTiO2
よび/またはSnO2で置換されても高水準の触媒
がえられるのであるが、この際のTiO2種として
は粒径が実質的に0.4〜0.7ミクロンで比表面積が
10〜60m2/gである多孔性アナターゼ型TiO2が、
SnO2種としては粒径が0.01〜1ミクロン、比表
面積が5〜100m2/g、とくに8〜60m2/gのも
のがそれぞれ好ましく、TiO2および/または
SnO2は前述の触媒組成のZrO2の量の0〜80重量
%まで代替され得る。
That is, as mentioned above, even if a part of ZrO 2 is replaced with TiO 2 and/or SnO 2 , a high-quality catalyst can be obtained, but in this case, the two types of TiO have a particle size of substantially 0.4 to Specific surface area is 0.7 micron
Porous anatase TiO 2 of 10-60 m 2 /g is
The two types of SnO preferably have a particle size of 0.01 to 1 micron and a specific surface area of 5 to 100 m 2 /g, particularly 8 to 60 m 2 /g, and TiO 2 and/or
SnO2 can be substituted from 0 to 80% by weight of the amount of ZrO2 in the aforementioned catalyst composition.

さらに本発明者らは前記のV2O5−ZrO2、また
はV2O5−ZrO2/TiO2、またはV2O5−ZrO2
SnO2またはV2O5−ZrO2/TiO2/SnO2系に特定
された助触媒を加えた多成分系触媒において0〜
10重量部のとくに0.5〜5重量部のSb2O3を添加せ
しめて得られた触媒が添加しない触媒にくらべて
20〜30℃もの最適反応温度の低減を見ることので
きることを見い出し触媒寿命上すぐれて有利な触
媒を完成せしめた。
Furthermore, the present inventors prepared the above-mentioned V2O5 - ZrO2 , or V2O5 - ZrO2 / TiO2 , or V2O5 - ZrO2 /
0 to 0 in multicomponent catalysts with specified promoters added to SnO 2 or V 2 O 5 -ZrO 2 /TiO 2 /SnO 2 systems.
The catalyst obtained by adding 10 parts by weight, especially 0.5 to 5 parts by weight of Sb 2 O 3 , was compared to the catalyst without addition.
It was discovered that the optimum reaction temperature could be reduced by 20 to 30°C, and a catalyst that was advantageous in terms of catalyst life was completed.

触媒活性物質を構成する各成分は硝酸塩、炭酸
塩、硫酸塩、アンモニウム塩、ハロゲン化物有機
酸塩等加熱により分解し各々の酸化物に変化し得
る原料より適宜準備される。しかしZrO2は硝酸
ジルコニル、水酸化ジルコニウム、炭酸ジルコニ
ウム等のジルコニウム塩を予め適当な温度にて焼
成し、微粉砕して得られたZrO2粉末を出発原料
とするのが好ましい。とくに好ましくは、硝酸ジ
ルコニルを600〜900℃で2〜10時間焼成してえら
れたZrO2を微粉砕し、粒径0.01〜1ミクロン、比
表面積5〜100m2/g、とくに8〜60m2/gのも
のが触媒原料として使用される。
Each component constituting the catalytically active substance is appropriately prepared from raw materials that can be decomposed by heating and converted into the respective oxides, such as nitrates, carbonates, sulfates, ammonium salts, and organic halide salts. However, it is preferable that the starting material for ZrO 2 is a ZrO 2 powder obtained by preliminarily calcining a zirconium salt such as zirconyl nitrate, zirconium hydroxide, or zirconium carbonate at an appropriate temperature and pulverizing it. Particularly preferably, ZrO 2 obtained by firing zirconyl nitrate at 600 to 900°C for 2 to 10 hours is finely pulverized to give a particle size of 0.01 to 1 micron and a specific surface area of 5 to 100 m 2 /g, especially 8 to 60 m 2 /g is used as catalyst raw material.

SnO2源も同様に錫塩を高温にて予備焼成して
得たSnO2粉末が好ましく、とくに硫酸第一錫を
600〜900℃の温度で2〜10時間焼成して得られた
SnO2を微粉砕し粒径を0.01〜1ミクロン比表面
積を5〜100m2/g、とくに8〜60m2/gにした
ものが好適である。
Similarly, the SnO 2 source is preferably SnO 2 powder obtained by pre-calcining tin salt at high temperature, and in particular tinnous sulfate is preferably used.
Obtained by firing at a temperature of 600-900℃ for 2-10 hours
Finely pulverized SnO 2 with a particle size of 0.01 to 1 micron and a specific surface area of 5 to 100 m 2 /g, particularly 8 to 60 m 2 /g is suitable.

チタン原料も予めチタン化合物を加熱処理して
得られたTiO2粉末を使用するのが好ましく、と
くに好ましくはイルメナイトを硫酸で溶解しこれ
に加熱水蒸気を導き沈殿させて得た含水酸化チタ
ンを600〜900℃の温度にて2〜10時間焼成して得
られたTiO2を微粉砕し粒径を0.4〜0.7ミクロン、
比表面積が5〜100m2/g、とくに10〜60m2/g
にした多孔性のものが好適に使用される。
As the titanium raw material, it is preferable to use TiO 2 powder obtained by heat-treating a titanium compound in advance, and it is particularly preferable to use hydrated titanium oxide obtained by dissolving ilmenite in sulfuric acid and introducing heated steam thereto to precipitate it. The TiO 2 obtained by firing at a temperature of 900℃ for 2 to 10 hours is finely pulverized to a particle size of 0.4 to 0.7 microns.
Specific surface area is 5 to 100 m 2 /g, especially 10 to 60 m 2 /g
A porous material having a porous structure is preferably used.

担体としては通常の不活性担体であればいずれ
も使用可能であるが、好ましくは見掛気孔率5〜
50%、比表面積5m2/g以下、とくに1m2/g以
下の、アルミニウム含有量がAl2O3として10重量
%以下、好ましくは3重量%以下、SiC含有量が
50重量%以下、とくに80重量%以上の無機多孔性
担体が使用され、SiC純度98重量%程度の自焼結
担体も好適に使用される。
As the carrier, any ordinary inert carrier can be used, but preferably the apparent porosity is 5 to 5.
50%, a specific surface area of 5 m 2 /g or less, especially 1 m 2 /g or less, an aluminum content of 10 wt % or less as Al 2 O 3 , preferably 3 wt % or less, and a SiC content of
An inorganic porous carrier of 50% by weight or less, particularly 80% by weight or more is used, and a self-sintering carrier with a SiC purity of about 98% by weight is also suitably used.

担体の形状はとくに限定されないが、球、リン
グ、円柱、円錐、サドル状で見掛外径として3〜
15mm程度のものが適宜使用される。
The shape of the carrier is not particularly limited, but it may be ball, ring, cylinder, cone, or saddle shape with an apparent outer diameter of 3 to 3.
A diameter of about 15 mm is used as appropriate.

活性物質の担体への担持は従来公知の方法で、
すなわち、含浸法、噴霧担持法等で実施される
が、好ましくは150〜250℃の温度に加熱せられた
担体に触媒液またはスラリーを噴霧して活性物質
が担持される。
The active substance is supported on the carrier by a conventionally known method.
That is, the active substance is supported by an impregnation method, a spray loading method, etc., but preferably by spraying a catalyst liquid or slurry onto a carrier heated to a temperature of 150 to 250°C.

活性物質は担体の見掛体積100c.c.に対して3〜
50g、好ましくは5〜15g担持される。このよう
にして得られた担持体は空気流通下300〜650℃、
とくに400〜600℃の温度において1〜10時間、好
ましくは2〜6時間焼成して触媒が得られる。
The active substance is 3 to 3 to 100 c.c. of the apparent volume of the carrier.
50g, preferably 5-15g is supported. The support thus obtained was heated at 300 to 650°C under air circulation.
In particular, the catalyst is obtained by calcining at a temperature of 400 to 600°C for 1 to 10 hours, preferably 2 to 6 hours.

触媒層の前半部でよく発生する熱点(hot
spot)の温度の高さをできるだけ低減し選択性を
高く、触媒寿命を長くする方策としては従来公知
の方法が適宜採用される。
A hot spot often occurs in the first half of the catalyst layer.
Conventionally known methods are appropriately adopted as a measure to reduce the temperature of the catalyst as much as possible to increase selectivity and extend the catalyst life.

すなわち、触媒層前半部を担体で希釈するとか
触媒活性物質の担持量を減じるとか、触媒径を大
きくするとか、後述のごとく触媒活性を抑制する
とかの方法によりその部位での反応量を抑制し熱
点の温度の高さを低くなるようにして触媒を用い
てもよい。触媒活性のコントロールは上記の触媒
活性物質の組成範囲ではバナジウム含有量、アル
カリ金属含有量およびリン含有量を変化させ、あ
るいは使用するZrO2、SnO2、TiO2の比表面積を
小さくする等して適宜行なうことができる。
In other words, the amount of reaction at that part is suppressed by diluting the first half of the catalyst layer with a carrier, reducing the amount of catalytically active material supported, increasing the diameter of the catalyst, or suppressing the catalytic activity as described below. A catalyst may be used to reduce the temperature of the hot spot. Catalytic activity can be controlled by changing the vanadium content, alkali metal content, and phosphorus content within the above composition range of the catalytically active substance, or by reducing the specific surface area of ZrO 2 , SnO 2 , and TiO 2 used. This can be done as appropriate.

作用効果性 このようにして得られた触媒は溶融塩の如き熱
媒体に囲まれた多管式反応管に充填して使用され
るが、熱媒の温度は340〜440℃、とくに360〜400
℃に保持され、管は15〜40mm、とくに20〜30mmの
内径のものが使用される。
Function and effectiveness The catalyst obtained in this way is used by filling a multitubular reaction tube surrounded by a heat medium such as a molten salt, and the temperature of the heat medium is 340 to 440℃, especially 360 to 400℃.
℃ and the tube used has an inner diameter of 15 to 40 mm, especially 20 to 30 mm.

触媒は1〜3.5メートル、とくに1.5〜3メート
ルの層高に充填され空気または酸素濃度10〜21容
量%、水蒸気0〜15重量%、残部不活性ガスより
なる分子状酸素含有ガスにデユレンまたはテトラ
アルキルベンゼンを20〜60g/NM3の割合で混
合し120〜160℃に予熱されたガスを空間速度3000
〜6000Hr-1で導き接触酸化せしめる。無水ピロ
メリツト酸はデユレンより115〜120重量%の収率
で長期に安定して得られる。効果性について実施
例をもつてさらに詳しく説明する。
The catalyst is packed to a bed height of 1 to 3.5 meters, especially 1.5 to 3 meters, and added to a molecular oxygen-containing gas consisting of air or an oxygen concentration of 10 to 21% by volume, water vapor of 0 to 15% by weight, and the balance being an inert gas. Mix alkylbenzene at a ratio of 20 to 60 g/NM 3 and preheat the gas to 120 to 160°C at a space velocity of 3000.
Conduct catalytic oxidation at ~6000Hr -1 . Pyromellitic anhydride can be obtained stably over a long period of time from Duurene at a yield of 115 to 120% by weight. The effectiveness will be explained in more detail with examples.

実施例 1 硝酸ジルコニウムを750℃にて3時間熱分解し
て比表面積25m2/gのZrO2を得た。これを微粉
砕し平均粒子径0.2ミクロンのものを得、これを
触媒原料とした。
Example 1 Zirconium nitrate was thermally decomposed at 750°C for 3 hours to obtain ZrO 2 with a specific surface area of 25 m 2 /g. This was finely pulverized to obtain particles with an average particle diameter of 0.2 microns, which was used as a catalyst raw material.

水6400c.c.中に蓚酸200gを溶解させ、これにメ
タバナジン酸アンモニウム96.7g、第1リン酸ア
ンモニウム9.1g、塩化ニオブ22.9gおよび水酸
化カリウム3.47gを添加し十分撹拌した。これに
上記のZrO21800gを加え、乳化機により触媒ス
ラリー液とした。
200 g of oxalic acid was dissolved in 6400 c.c. of water, and 96.7 g of ammonium metavanadate, 9.1 g of monoammonium phosphate, 22.9 g of niobium chloride and 3.47 g of potassium hydroxide were added thereto and thoroughly stirred. 1800 g of the above ZrO 2 was added to this, and a catalyst slurry was prepared using an emulsifier.

外部加熱式の回転炉中に見掛気孔率45%、比表
面積0.2m2/g、平均内径4mm、平均外径6mmお
よび平均長さ6mmのAl2O3含有量2重量%、SiO2
含有量6重量%、SiC含有量92重量%よりなるリ
ング状担体2000c.c.を入れ150〜200℃の温度に予熱
した。これに上記の触媒スラリー液を散布し活性
物質を180g担持せしめたのち、空気流通下540℃
の温度にて6時間焼成して触媒を得た。
Al 2 O 3 content 2% by weight, SiO 2 with an apparent porosity of 45%, a specific surface area of 0.2 m 2 /g, an average inner diameter of 4 mm, an average outer diameter of 6 mm and an average length of 6 mm in an externally heated rotary furnace .
A ring-shaped carrier of 2000 c.c. containing 6% by weight and 92% by weight of SiC was placed and preheated to a temperature of 150 to 200°C. After spraying the catalyst slurry above to support 180g of the active substance, the mixture was heated to 540°C under air circulation.
A catalyst was obtained by firing at a temperature of 6 hours.

400℃に保持された溶融塩浴中に浸された内径
25mm、長さ3.5メートルの鉄反応管に上記触媒を
2.5メートルの層高に充填した。
Internal diameter immersed in a molten salt bath held at 400℃
The above catalyst was placed in a 25 mm, 3.5 meter long iron reaction tube.
It was filled to a bed height of 2.5 meters.

反応管上部よりデユレン/空気の割合が25g/
NM3である混合ガスを140℃に予熱し空間速度
4000Hr-1(STP)で通じたところ初期114.5重量
%の収率で無水ピロメリツト酸が得られ、熱点の
温度は465℃であつた。この条件下で反応を継続
し3ケ月および6ケ月後の熱点の温度および収率
を測定したところそれぞれ466℃、114.1重量%お
よび461℃、113.3重量%といつた安定した触媒活
性がえられた。
From the top of the reaction tube, the ratio of Duurene/air is 25g/
Preheat the mixed gas of NM 3 to 140℃ and increase the space velocity.
When the mixture was run at 4000 Hr -1 (STP), pyromellitic anhydride was obtained with an initial yield of 114.5% by weight, and the temperature of the hot spot was 465°C. The reaction was continued under these conditions and the hot spot temperature and yield were measured after 3 and 6 months, and stable catalytic activity was obtained as 466°C, 114.1% by weight and 461°C, 113.3% by weight, respectively. Ta.

実施例 2 水6400c.c.中に蓚酸450gを溶解させ、これにメ
タバナジン酸アンモニウム201.4g、五塩化ニオ
ブ23.8g、第1リン酸アンモニウム9.5gおよび
硝酸セシウム3.38gを添加し十分に撹拌した。こ
れに実施例1におけると同様な方法により得られ
た粒子径0.2ミクロンおよび比表面積25m2/gの
ZrO2980gと粒子径0.5ミクロンおよび比表面積20
m2/gの多孔性アナターゼ型TiO2820gとを加え
乳化機により触媒スラリー液とした。
Example 2 450 g of oxalic acid was dissolved in 6400 c.c. of water, and 201.4 g of ammonium metavanadate, 23.8 g of niobium pentachloride, 9.5 g of monoammonium phosphate and 3.38 g of cesium nitrate were added thereto and thoroughly stirred. In addition to this, particles with a particle diameter of 0.2 microns and a specific surface area of 25 m 2 /g obtained by the same method as in Example 1 were added.
ZrO 2 980g, particle size 0.5 micron and specific surface area 20
820 g of porous anatase-type TiO 2 of m 2 /g was added to form a catalyst slurry liquid using an emulsifier.

外部より加熱できる回転炉中に見掛気孔率43
%、比表面積0.3m2/gのAl2O3含有量が2重量
%、SiO2含有量が4重量%およびSiC含有量が94
重量%よりなる多孔性担体(平均直径6mm球)
2000c.c.を加え150〜200℃の温度に加熱した。これ
に上記触媒スラリーを噴霧し触媒活性物質を180
g担持させたのち、520℃の温度で4時間焼成し
て触媒−Aを得た。
Apparent porosity 43 in a rotary furnace that can be heated from the outside
%, specific surface area 0.3 m 2 /g, Al 2 O 3 content 2 wt %, SiO 2 content 4 wt % and SiC content 94
Porous carrier consisting of % by weight (average diameter 6 mm spheres)
2000 c.c. was added and heated to a temperature of 150-200°C. Spray the above catalyst slurry onto this to add catalytically active material to 180%
After supporting G, catalyst A was obtained by calcining at a temperature of 520° C. for 4 hours.

別に、平均粒子径0.3ミクロン、比表面積12
m2/gのZrO2および平均粒子径0.6ミクロン、比
表面積13m2/gの多孔性アナターゼ型を用いた以
外は触媒−Aと同様にして触媒−Bを得た。
Separately, average particle size 0.3 microns, specific surface area 12
Catalyst-B was obtained in the same manner as Catalyst-A except that ZrO 2 of m 2 /g and a porous anatase type having an average particle size of 0.6 microns and a specific surface area of 13 m 2 /g were used.

温度400℃に保持された溶融塩に浸された内径
25mm、長さ3.5メートルの管に先ず触媒−Aを1.5
メートルの高さに充填し、次いで1メートルの層
高に触媒−Bを充填した。
Inner diameter immersed in molten salt held at a temperature of 400℃
First, add 1.5 liters of catalyst-A to a 25 mm, 3.5 meter long tube.
A bed height of 1 meter was filled, followed by catalyst-B to a bed height of 1 meter.

反応管上部よりデユレン/空気の割合が35g/
NM3である混合ガスを空間速度4000Hr-1(STP)
で通じたところ長期に安定して115.6重量%の収
率で無水ピロメリツト酸が得られた。
From the top of the reaction tube, the ratio of Duurene/air is 35g/
A mixed gas of NM 3 has a space velocity of 4000Hr -1 (STP)
As a result, pyromellitic anhydride was obtained in a stable yield of 115.6% by weight over a long period of time.

実施例 3 水6400c.c.中に蓚酸900gを溶解させ、これにバ
ナジン酸アンモニウム408.6g、五塩化ニオブ4.3
g、第1リン酸アンモニウム27.4g、硝酸タリウ
ム21.3gおよび粉末状のSb2O342.4gを添加し十
分撹拌した。これに実施例2の触媒−Aの調整に
おいて用いられたと同じZrO2720gおよびTiO2
1080gを加え乳化機により触媒スラリー液を調製
した。
Example 3 900 g of oxalic acid was dissolved in 6400 c.c. of water, and 408.6 g of ammonium vanadate and 4.3 g of niobium pentachloride were dissolved in the solution.
g, 27.4 g of monoammonium phosphate, 21.3 g of thallium nitrate, and 42.4 g of powdered Sb 2 O 3 were added and thoroughly stirred. This was supplemented with 720 g of the same ZrO 2 and TiO 2 used in the preparation of catalyst-A in Example 2.
A catalyst slurry liquid was prepared by adding 1080 g using an emulsifier.

外部加熱式の回転炉中に見掛気孔率38%、比表
面積0.2m2/gのSiC自焼結担体(平均直径6mm
球)2000c.c.を入れ150〜200℃の温度に加熱しなが
ら上記触媒液を散布し、触媒活性物質を170g担
持せしめた。このようにして得られた担持体を空
気流通下580℃の温度で3時間焼成して触媒−C
を得た。
A self-sintered SiC carrier (average diameter 6 mm) with an apparent porosity of 38% and a specific surface area of 0.2 m 2 /g was placed in an externally heated rotary furnace.
2,000 c.c. (sphere) was put therein and the above catalyst liquid was sprayed while heating to a temperature of 150 to 200°C, so that 170 g of the catalytically active substance was supported. The support obtained in this way was calcined at a temperature of 580°C for 3 hours under air circulation to obtain catalyst-C.
I got it.

別に、硝酸タリウムの代りに硝酸ルビジウムを
6.68g添加した以外は触媒−Cと同様にして触媒
−Dを得た。
Separately, rubidium nitrate is used instead of thallium nitrate.
Catalyst-D was obtained in the same manner as Catalyst-C except that 6.68g was added.

375℃に保持された溶融塩浴中に浸された内径
25mm、長さ3.5メートルの鉄製反応管に先ず触媒
−Dを1.25メートルの高さに充填し次いでその上
に触媒−Cを1.25メートルの層高に充填した。
Internal diameter immersed in a molten salt bath held at 375°C
A 25 mm, 3.5 meter long iron reaction tube was first filled with Catalyst-D to a height of 1.25 meters, and then Catalyst-C was packed thereon to a bed height of 1.25 meters.

反応管上部よりデユレン/分子状酸素含有ガス
(酸素12容量%、水蒸気10容量%、窒素78容量%)
の割合が40g/NM3である混合ガスを空間速度
3500Hr-1(STP)で通じたところ初期117.1重量
%の収率で無水ピロメリツト酸が得られ、熱点の
温度は457℃であつた。
Duurene/molecular oxygen-containing gas (oxygen 12% by volume, water vapor 10% by volume, nitrogen 78% by volume) is introduced from the top of the reaction tube.
The space velocity of a mixed gas with a ratio of 40g/NM 3 is
When the mixture was heated at 3500 Hr -1 (STP), pyromellitic anhydride was obtained with an initial yield of 117.1% by weight, and the temperature of the hot spot was 457°C.

熱点の温度が500℃になるように故意に最適温
度より12℃高い387℃に浴温を保持し1ケ月間上
記の混合ガスの酸化反応を行なつたのち、元の
375℃に戻したところ熱点の温度は452℃で、無水
ピロメリツト酸も116.2重量%得られ、熱による
損傷は殆んど認められなかつた。
The bath temperature was intentionally maintained at 387°C, 12°C higher than the optimum temperature so that the temperature at the hot spot was 500°C, and the oxidation reaction of the above mixed gas was carried out for one month.
When the temperature was returned to 375°C, the temperature of the hot spot was 452°C, and 116.2% by weight of pyromellitic anhydride was obtained, with almost no damage caused by heat being observed.

実施例 4 水6400c.c.中に蓚酸200gを溶解させ、これにメ
タバナジン酸アンモニウム96.5g、五塩化ニオブ
7.6g、第2リン酸アンモニウム36.4g、硝酸セ
シウム20.7gおよび粉末状三酸化アンチモン18.8
gを添加し十分撹拌した。これに実施例1で得ら
れたのと同じZrO2940g、実施例2触媒−Bの調
製で用いられたと同じTiO2470gおよび硫酸第1
錫を700℃の温度で4時間熱分解した後微粉砕し
て得られた平均粒子径0.13ミクロン、比表面積26
m2/gのSnO2390gを加え乳化機により触媒スラ
リー液を調製した。
Example 4 200 g of oxalic acid was dissolved in 6400 c.c. of water, and 96.5 g of ammonium metavanadate and niobium pentachloride were added to the solution.
7.6g, diammonium phosphate 36.4g, cesium nitrate 20.7g and powdered antimony trioxide 18.8g
g was added and thoroughly stirred. To this were added 940 g of ZrO 2 as obtained in Example 1, 470 g of TiO 2 as used in the preparation of Example 2 Catalyst-B and
Average particle size 0.13 microns, specific surface area 26 obtained by pulverizing tin after thermally decomposing it at a temperature of 700℃ for 4 hours.
A catalyst slurry liquid was prepared by adding 390 g of SnO 2 of m 2 /g using an emulsifier.

外部加熱式の回転炉中に見掛気孔率45%、比表
面積0.4m2/gで外周の平均長さ12mm、内周平均
6mm、外径平均5mm、厚さ平均1mmのインターロ
ツクスサドル形状でSiC80重量%、MgO6重量%
およびSiO214重量%よりなる多孔性担体2000c.c.
を入れ150〜200℃の温度に予熱した。これに上記
触媒スラリーを散布し活性物質を160g担持させ、
空気流通下520℃の温度にて4時間焼成し、触媒
−Eを得た。
An interlocked saddle shape with an apparent porosity of 45%, a specific surface area of 0.4 m 2 /g, an average outer circumference length of 12 mm, an average inner circumference of 6 mm, an average outer diameter of 5 mm, and an average thickness of 1 mm in an externally heated rotary furnace. SiC80wt%, MgO6wt%
and a porous carrier consisting of 14% by weight of SiO 2 2000 c.c.
and preheated to a temperature of 150-200℃. Spray the above catalyst slurry onto this to support 160g of active substance,
The catalyst was calcined for 4 hours at a temperature of 520° C. under air circulation to obtain catalyst-E.

別に、硝酸セシウムを添加しない以外は触媒−
Eと同様にして触媒−Fが調製された。
Separately, except for not adding cesium nitrate, the catalyst was
Catalyst-F was prepared in the same manner as E.

380℃に保持された内径20mm、高さ4.5メートル
の管に先ず触媒−Fを2.0メートルの高さに,次
いでその上に触媒−Eを2.0メートルの高さに充
填した。
A tube with an inner diameter of 20 mm and a height of 4.5 meters maintained at 380 DEG C. was first filled with Catalyst-F to a height of 2.0 meters, and then filled with Catalyst-E to a height of 2.0 meters.

反応管上部より4−イソプロピルソイドクメ
ン/空気の割合が40g/NM3である混合ガスを
空間速度3500Hr-1で通じたところ98.7重量%の収
率で長期に安定して無水ピロメリツト酸が得られ
た。
When a mixed gas containing 4-isopropylsoid cumene/air at a ratio of 40 g/NM 3 was passed through the upper part of the reaction tube at a space velocity of 3500 Hr -1 , pyromellitic anhydride was obtained stably over a long period of time with a yield of 98.7% by weight. Ta.

発明の効果 実施例1〜4に示す如く、本発明触媒は熱点
(hot spot)での激しい熱負荷に耐え、工業的に
有利な高ガス濃度条件下でのデユレンの酸化が可
能となつた。
Effects of the Invention As shown in Examples 1 to 4, the catalyst of the present invention withstood severe heat loads at hot spots, making it possible to oxidize durene under industrially advantageous high gas concentration conditions. .

Claims (1)

【特許請求の範囲】 1 バナジウム成分がV2O5として1〜20重量部、
ジルコニウム成分またはジルコニウム成分とチタ
ン成分および/またはスズ成分がZrO2+TiO2
SnO2として99〜80重量部、そしてこれらの成分
合計100重量部に対しリン成分がP2O5として0.02
〜10重量部、ニオブ成分がNb2O5として0.01〜5
重量部、カリウム、セシウム、ルビジウムおよび
タリウムよりなる群から選ばれた少なくとも1種
の成分が酸化物として0.1〜1.2重量部さらにアン
チモン成分がSb2O5として0〜10重量部含有され
てなる触媒活性物質よりなり、ジルコニウム成分
として0.01〜1ミクロンの平均粒子径および5〜
100m2/gの比表面積を有するZnO2粉末を出発原
料として使用して調製された触媒活性物質を不活
性担体に担持せしめてなるデユレンまたはテトラ
アルキルベンゼンの接触気相酸化による無水ピロ
メリツト酸製造用触媒。 2 ジルコニウム成分とチタン成分および/また
はスズ成分の重量比が(TiO2+SnO2)/ZrO2
4以下であることを特徴とする特許請求の範囲1
記載の触媒。
[Claims] 1. The vanadium component is 1 to 20 parts by weight as V 2 O 5 ,
The zirconium component or the zirconium component and the titanium component and/or tin component are Z r O 2 + TiO 2 +
99 to 80 parts by weight as SnO 2 , and 0.02 parts by weight of phosphorus component as P 2 O 5 for a total of 100 parts by weight of these components
~10 parts by weight, niobium component is 0.01~5 as Nb 2 O 5
0.1 to 1.2 parts by weight of at least one component selected from the group consisting of potassium, cesium, rubidium and thallium as an oxide, and 0 to 10 parts by weight of an antimony component as Sb 2 O 5 . It consists of an active substance with an average particle size of 0.01 to 1 micron and a zirconium component of 5 to 1 micron.
Catalyst for producing pyromellitic anhydride by catalytic gas phase oxidation of durene or tetraalkylbenzene, comprising a catalytically active material prepared using ZnO 2 powder with a specific surface area of 100 m 2 /g as a starting material supported on an inert carrier. . 2 The weight ratio of the zirconium component to the titanium component and/or tin component is (TiO 2 +SnO 2 )/ZrO 2 =
Claim 1 characterized in that the number is 4 or less.
Catalysts as described.
JP14688684A 1984-05-21 1984-07-17 Catalyst for manufacturing pyromellitic anhydride Granted JPS6125642A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP14688684A JPS6125642A (en) 1984-07-17 1984-07-17 Catalyst for manufacturing pyromellitic anhydride
CA000481767A CA1261860A (en) 1984-05-21 1985-05-17 Method for the preparation of pyromellitic acid or its anhydride
NZ212129A NZ212129A (en) 1984-05-21 1985-05-20 Supported catalyst composition
EP85106175A EP0163231B1 (en) 1984-05-21 1985-05-20 Catalyst for use in preparation of pyromellitic acid and/or pyromellitic anhydride
DE8585106175T DE3576074D1 (en) 1984-05-21 1985-05-20 CATALYST FOR USE IN THE PRODUCTION OF PYROMELLITHIC ACID AND / OR PYROMELLITHIC ACID ANHYDRIDE.
US06/841,833 US4665200A (en) 1984-05-21 1986-03-20 Method for preparing pyromellitic acid and/or pyromellitic anhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14688684A JPS6125642A (en) 1984-07-17 1984-07-17 Catalyst for manufacturing pyromellitic anhydride

Publications (2)

Publication Number Publication Date
JPS6125642A JPS6125642A (en) 1986-02-04
JPH0413026B2 true JPH0413026B2 (en) 1992-03-06

Family

ID=15417797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14688684A Granted JPS6125642A (en) 1984-05-21 1984-07-17 Catalyst for manufacturing pyromellitic anhydride

Country Status (1)

Country Link
JP (1) JPS6125642A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2526396B2 (en) * 1992-10-19 1996-08-21 工業技術院長 Method for producing hydrogen and oxygen using semiconductor photocatalyst
JP2003055382A (en) 2001-08-08 2003-02-26 Nippon Shokubai Co Ltd Method for producing pyromellitic anhydride
DE102014203725A1 (en) * 2014-02-28 2015-09-03 Basf Se Oxidation catalyst with saddle-shaped carrier shaped body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013349A (en) * 1973-05-04 1975-02-12
JPS5411270A (en) * 1977-06-27 1979-01-27 Ariake Hamamoto Treating of konbu and like to discolor
JPS5622582A (en) * 1979-07-30 1981-03-03 Hitachi Ltd Starter for current type inverter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013349A (en) * 1973-05-04 1975-02-12
JPS5411270A (en) * 1977-06-27 1979-01-27 Ariake Hamamoto Treating of konbu and like to discolor
JPS5622582A (en) * 1979-07-30 1981-03-03 Hitachi Ltd Starter for current type inverter

Also Published As

Publication number Publication date
JPS6125642A (en) 1986-02-04

Similar Documents

Publication Publication Date Title
KR950009710B1 (en) Catalyst and process for producing phthalic anhydride
JP3248560B2 (en) Supported catalyst for gas phase oxidation reaction
US4879387A (en) Method for manufacture of phthalic anhydride
KR950008197B1 (en) Catalyst for producing phthalic anhydride
JP2011063628A (en) Method for catalytic gas-phase oxidation of propene into acrylic acid
JPS603307B2 (en) Method for producing phthalic anhydride
KR0133049B1 (en) Method for production of phthalic anhydride by vapor-phase oxidation of mixture of ortho-xylent with naphthalene
JPS5814254B2 (en) Supported catalyst for the oxidation of o-xylol and/or naphthalene to phthalic anhydride
JPH0413026B2 (en)
JPS6037108B2 (en) Method for producing phthalic anhydride
JPH0415020B2 (en)
JP2592490B2 (en) Aromatic hydrocarbon oxidation method
JPH04215843A (en) Catalyst for manufacturing phthalic anhydride
JP3130681B2 (en) Method for producing phthalic anhydride by gas phase oxidation of a mixture of orthoxylene and naphthalene
JPH0149133B2 (en)
JP3298609B2 (en) Catalyst for producing phthalic anhydride and method for producing phthalic anhydride using the same
JP2933504B2 (en) Method for producing pyromellitic anhydride
JP4263815B2 (en) Catalyst for gas phase oxidation of aromatic compounds
JPH0689002B2 (en) Method for producing pyromellitic dianhydride and catalyst used therefor
JP2563995B2 (en) Catalyst
JPS6121729A (en) Catalyst for oxidizing aromatic compound
JPH0242818B2 (en)
JPH11300206A (en) Vapor phase oxidation catalyst and production of phthalic anhydride using the same
JPS63208575A (en) Production of cyanopyridine
JPS63255274A (en) Production of phthalic anhydride