JPH0689002B2 - Method for producing pyromellitic dianhydride and catalyst used therefor - Google Patents

Method for producing pyromellitic dianhydride and catalyst used therefor

Info

Publication number
JPH0689002B2
JPH0689002B2 JP1040268A JP4026889A JPH0689002B2 JP H0689002 B2 JPH0689002 B2 JP H0689002B2 JP 1040268 A JP1040268 A JP 1040268A JP 4026889 A JP4026889 A JP 4026889A JP H0689002 B2 JPH0689002 B2 JP H0689002B2
Authority
JP
Japan
Prior art keywords
catalyst
oxide
pyromellitic dianhydride
reaction
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1040268A
Other languages
Japanese (ja)
Other versions
JPH01294679A (en
Inventor
憲秀 榎本
義弘 成瀬
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP1040268A priority Critical patent/JPH0689002B2/en
Publication of JPH01294679A publication Critical patent/JPH01294679A/en
Publication of JPH0689002B2 publication Critical patent/JPH0689002B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、1,2,4,5−テトラメチルベンゼン(ジュレ
ン)を分子状酸素含有ガスで気相接触酸化して無水ピロ
メリット酸を製造する方法およびこれに用いる触媒に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Field of Application> The present invention is directed to pyromellitic dianhydride by vapor-phase catalytic oxidation of 1,2,4,5-tetramethylbenzene (durene) with a gas containing molecular oxygen. The present invention relates to a manufacturing method and a catalyst used for the method.

<従来の技術> 無水ピロメリット酸(PMDA)は耐熱性樹脂や可塑剤,エ
ポキシ樹脂の硬化剤などに広範囲に使用されてきてお
り、今後、ゼオライトなどのアルキル化触媒によりジュ
レンがより安価に製造される可能性が強まったことか
ら、PMDAの工業原料としての重要性は益々高まってい
る。
<Prior Art> Pyromellitic dianhydride (PMDA) has been widely used as a heat-resistant resin, a plasticizer, and a curing agent for epoxy resins. In the future, durene will be produced at a lower cost with an alkylation catalyst such as zeolite. The importance of PMDA as an industrial raw material is increasing more and more due to the increased possibility of being processed.

PMDAの製造方法には、液相酸化法(硝酸酸化法,酢酸コ
バルト−臭化ナトリウム系による液相酸化)と触媒を用
いた気相接触酸化法があり、少量生産するには、液相酸
化法が適しており、現在ではこの液相法が主流である
が、PMDAの需要を考えると、将来、大量に生産可能な気
相接触酸化法が商業的な生産方法となると予想される。
There are liquid-phase oxidation methods (nitric acid oxidation method, liquid-phase oxidation with cobalt acetate-sodium bromide system) and gas-phase catalytic oxidation method using a catalyst in the production method of PMDA. Although the method is suitable and the liquid phase method is the mainstream at present, it is expected that the gas phase catalytic oxidation method, which can be mass-produced, will become a commercial production method in the future in view of the demand for PMDA.

気相接触酸化法でジュレンを原料としてPMDAを製造する
場合、五酸化バナジウムを主成分とした触媒成分を溶融
アルミナ(α−アルミナ)あるいは炭化珪素など表面積
が1m2/g以下の担体に担持し、触媒とする。五酸化バナ
ジウムだけを触媒成分として担体に担持した場合でも、
PMDAは製造できるが、転化率が低い上に副生物が多いの
で、PMDA収率が低いなどの問題がある。このため通常五
酸化バナジウムを主触媒成分とし、さらに数種の酸化物
(主に金属酸化物)を加えたものを触媒成分として担体
に担持し使用することが試みられている。この触媒につ
いては例えば、特公昭42−1008号,特公昭42−15925
号,特公昭43−26497号,特公昭45−4978号,特公昭45
−15018号,特公昭45−15252号,特公昭46−14332号,
特公昭49−31972号,および特公昭49−31973号などの公
報に開示されているが、いずれも通常の工業的触媒反応
装置である固定床反応装置で用いると、反応が温度に敏
感である等の以下に述べるような問題がある。
When producing PMDA from durene as a raw material by the vapor phase catalytic oxidation method, the catalyst component whose main component is vanadium pentoxide is supported on a carrier having a surface area of 1 m 2 / g or less such as fused alumina (α-alumina) or silicon carbide. , As a catalyst. Even when only vanadium pentoxide is supported on the carrier as a catalyst component,
Although PMDA can be produced, there are problems such as a low PMDA yield because the conversion rate is low and many byproducts are present. For this reason, it has been attempted to use vanadium pentoxide as a main catalyst component, and to add several kinds of oxides (mainly metal oxides) as a catalyst component on a carrier for use. Regarding this catalyst, for example, Japanese Patent Publication No. 42-1008 and Japanese Patent Publication No. 42-15925.
No. 4, Japanese Patent Publication No. 43-26497, Japanese Patent Publication No. 45-4978, Japanese Patent Publication No. 45
−15018, Japanese Patent Publication No. 45-15252, Japanese Patent Publication No. 46-14332,
Although disclosed in JP-B-49-31972 and JP-B-49-31973, the reaction is sensitive to temperature when used in a fixed bed reactor which is an ordinary industrial catalytic reactor. There are problems such as those described below.

工業的にPMDAの生産を行う場合、通常、管径が1インチ
程度の反応管に触媒を0.5〜2l程度充填し、この反応管
を溶融塩浴に浸け、反応管上部から、ジュレンを分子状
酸素含有ガス(主に空気)とともに送入する。触媒層で
は、その触媒作用により分子状酸素とジュレンが反応し
PMDAが得られる。この時、一部反応が過剰に進行し、二
酸化炭素,一酸化炭素などジュレンが完全酸化されたガ
スも発生する。
When industrially producing PMDA, a reaction tube with a diameter of about 1 inch is usually filled with about 0.5 to 2 liters of catalyst, and this reaction tube is immersed in a molten salt bath, and the durene is molecularly added from the upper part of the reaction tube. It is sent with an oxygen-containing gas (mainly air). In the catalyst layer, molecular oxygen and durene react due to the catalytic action.
Get PMDA. At this time, a part of the reaction proceeds excessively, and a gas in which durene is completely oxidized such as carbon dioxide and carbon monoxide is also generated.

上記の特許が開示した触媒を用いた場合、高い反応性を
有し、高選択率でPMDAを製造できる場合でも、二酸化炭
素,一酸化炭素へのガス化率が高く、35%以下のガス化
率にはならない。さらにこれらの触媒系では温度依存性
が強く、最適反応温度を超えるとガス化率は急激に大き
くなり、しかもその最適反応温度域は20℃から30℃と狭
い。
When the catalysts disclosed by the above patents are used, they have high reactivity and even if PMDA can be produced with high selectivity, the gasification rate to carbon dioxide and carbon monoxide is high, and the gasification rate is 35% or less. Not a rate. Furthermore, these catalyst systems have a strong temperature dependence, and the gasification rate rapidly increases above the optimum reaction temperature, and the optimum reaction temperature range is narrow at 20 to 30 ° C.

また、反応管に触媒を充填した場合、触媒層の高さは、
60cmから200cmとなり、反応熱により当然温度分布がで
きる訳であるが、本反応の反応熱は560kcal/molであ
り、オルトキシレンやナフタレンから無水フタル酸を製
造する反応に比べて相当大きく、理論的にはオルトキシ
レンから無水フタル酸を製造する時の1.8倍にもなる。
さらに、ジュレンが二酸化炭素,一酸化炭素に完全にガ
ス化した場合には、その発熱量は1100kcal/molを超える
非常に大きなものとなってしまう。
When the reaction tube is filled with a catalyst, the height of the catalyst layer is
From 60 cm to 200 cm, it is natural that the temperature can be distributed by the heat of reaction, but the reaction heat of this reaction is 560 kcal / mol, which is considerably larger than the reaction for producing phthalic anhydride from orthoxylene or naphthalene, and theoretically This is 1.8 times more than when producing phthalic anhydride from orthoxylene.
Further, when the durene is completely gasified into carbon dioxide and carbon monoxide, the calorific value becomes extremely large, exceeding 1100 kcal / mol.

従って元々反応熱が他の部分酸化反応に比べて大きい本
反応では、触媒層での温度分布がより大きくなりやすい
上、公知の触媒を用いるとガス化率が35%以上であり、
触媒層での温度分布が益々大きくなり、その結果、触媒
の最適温度域から外れ、よりガス化率が増大し、PMDA収
率が低下するといった問題がある。
Therefore, in this reaction, which originally has a larger reaction heat than other partial oxidation reactions, the temperature distribution in the catalyst layer tends to become larger, and when a known catalyst is used, the gasification rate is 35% or more,
There is a problem that the temperature distribution in the catalyst layer becomes larger and larger, and as a result, the temperature deviates from the optimum temperature range of the catalyst, the gasification rate increases, and the PMDA yield decreases.

そこで触媒層での反応熱の除去には様々な工夫がなされ
ているが、反応工学的にも限界があり、供給する原料濃
度を低くしたり、触媒層の高さを低くしたり、反応管系
を細くしたりして、生産性を低下させ、反応を行わなけ
ればならなかった。
Therefore, various efforts have been made to remove the heat of reaction in the catalyst layer, but there are limits in terms of reaction engineering, and the raw material concentration to be supplied can be lowered, the height of the catalyst layer can be lowered, and the reaction tube The system had to be narrowed to lower the productivity and the reaction had to be carried out.

この問題を基本的に解決するためには、PMDAへの選択率
が高く、ガス化率が小さく、また最適反応温度域が広い
触媒を開発することが重要であり、そのような触媒を使
用すれば、触媒層での温度制御が容易となり、生産効率
を上げることができる。
In order to basically solve this problem, it is important to develop a catalyst with a high selectivity to PMDA, a low gasification rate, and a wide optimum reaction temperature range. If this is the case, the temperature control in the catalyst layer becomes easy, and the production efficiency can be improved.

<発明が解決しようとする課題> 従って本発明の目的は、PMDA収率が高く、二酸化炭素,
一酸化炭素の発生率(ガス化率)が低く、反応熱を低
く、さらに反応の最適温度域が広い、工業的に有利な無
水ピロメリット酸の製造方法およびこれに用いる触媒を
提供しようとするものである。
<Problems to be Solved by the Invention> Therefore, the object of the present invention is to obtain a high PMDA yield, carbon dioxide,
(EN) An industrially advantageous method for producing pyromellitic dianhydride, which has a low generation rate (gasification rate) of carbon monoxide, a low reaction heat, and a wide optimum temperature range of the reaction, and a catalyst used therefor. It is a thing.

<課題を解決するための手段> すなわち本発明は、酸化バナジウム,酸化ナトリウムお
よび酸化モリブデンからなる第1成分と、さらに酸化ク
ロム,酸化マンガンおよび酸化ニオブの内から選ばれた
少なくとも一種からなる第2成分とを不活性担体に担持
せしめてなるものであって、その担持酸化物の金属元素
の原子比がNa/V=0.1/10〜1.0/10,Mo/V=0.3/10〜3.0/1
0であって前記第2成分の酸化クロム,酸化マンガンお
よび酸化ニオブの内から選ばれた少なくとも一種の元素
の原子比が、Cr/V=0.2/10〜2.0/10,Mn/V=0.1/10〜1.5
/10,Nb/V=0.5/10〜3.0/10の範囲である無水ピロメリッ
ト酸製造用触媒およびこれを用いてジュレンを接触気相
酸化する無水ピロメリット酸の製造方法を提供する。
<Means for Solving the Problems> That is, the present invention provides a first component comprising vanadium oxide, sodium oxide and molybdenum oxide, and a second component comprising at least one selected from chromium oxide, manganese oxide and niobium oxide. And an atomic ratio of metal elements of the supported oxide are Na / V = 0.1 / 10 to 1.0 / 10, Mo / V = 0.3 / 10 to 3.0 / 1.
0 and the atomic ratio of at least one element selected from the second component chromium oxide, manganese oxide and niobium oxide is Cr / V = 0.2 / 10 to 2.0 / 10, Mn / V = 0.1 / 10 to 1.5
The present invention provides a catalyst for producing pyromellitic dianhydride in the range of / 10, Nb / V = 0.5 / 10 to 3.0 / 10, and a method for producing pyromellitic dianhydride by catalytic gas phase oxidation of durene using the catalyst.

<作用> はじめに、本発明の無水ピロメリット酸の製造方法につ
いて述べる。
<Operation> First, the method for producing pyromellitic dianhydride of the present invention will be described.

本発明の製造方法は、1,2,4,5−テトラメチルベンゼン
(ジュレン)を、後述する触媒を用いて、好ましくは固
定床反応方式で、分子状酸素含有ガスで接触気相酸化し
て無水ピロメリット酸を得るものである。
In the production method of the present invention, 1,2,4,5-tetramethylbenzene (durene) is subjected to catalytic gas phase oxidation with a molecular oxygen-containing gas using a catalyst described below, preferably in a fixed bed reaction system. Pyromellitic dianhydride is obtained.

固定床方式を用いる場合は、触媒を充填する反応管は、
内径が1インチ程度でよく、工業的な規模での生産で
は、触媒は反応管に0.5lから2.0l充填し反応を行うわけ
であるが、発明者らの開発した計算機プログラムを使用
し、反応速度,物質移動速度,伝熱速度および各流体、
固体の物性値等を用いて計算することにより、工業的な
規模での反応条件の最適値を得ることが可能である。
When using the fixed bed system, the reaction tube filled with the catalyst is
The inner diameter is about 1 inch, and in industrial scale production, the reaction tube is filled with 0.5 to 2.0 liters of catalyst, but the reaction is performed using the computer program developed by the inventors. Speed, mass transfer speed, heat transfer speed and each fluid,
It is possible to obtain the optimum value of the reaction conditions on an industrial scale by calculating using the physical property values of the solid and the like.

本反応の反応条件は、空間速度では8000から15000hr-1
の高い水準で反応を行うことが可能であり、空間速度が
15000hr-1以上でも反応を行うことは可能であるが、触
媒層での圧力損失が大きくなるためあまり有利ではな
い。また空間速度が低下すると本触媒を使用した場合で
もガス化率が増加し、また時間当たりの原料供給量も低
下するため生産面で有利とはならない。従って空間速度
は10000〜14000hr-1の領域が最適である。
The reaction conditions of this reaction are 8,000 to 15,000 hr -1 in space velocity.
It is possible to carry out the reaction at a high level of
It is possible to carry out the reaction for 15,000 hr −1 or more, but it is not so advantageous because the pressure loss in the catalyst layer becomes large. Further, if the space velocity decreases, the gasification rate increases even when the present catalyst is used, and the raw material supply amount per hour also decreases, which is not advantageous in terms of production. Therefore, the space velocity is optimal in the range of 10,000 to 14000 hr -1 .

また、原料ガス中のジュレン濃度は、ジュレン(mol)
/空気(mol)で0.25%を超えると接触酸化反応による
発熱が顕著となるため、触媒層の温度上昇を抑制するた
めの特別な手段が必要となる。一方、上記の原料ガスの
空間速度範囲においては、生産性を考慮すると0.1%未
満では効率的でない。したがって、原料ガス中のジュレ
ン濃度は0.1〜0.25%の範囲が好ましい。
The concentration of durene in the source gas is durene (mol)
/ When air (mol) exceeds 0.25%, heat generation due to the catalytic oxidation reaction becomes remarkable, so that special means for suppressing the temperature rise of the catalyst layer is required. On the other hand, in the above space velocity range of the raw material gas, if productivity is taken into consideration, less than 0.1% is not efficient. Therefore, the concentration of durene in the raw material gas is preferably in the range of 0.1 to 0.25%.

触媒層の最適温度は、触媒の組成および組成比により異
なるし、また供給原料濃度が異なることにより触媒層で
の発熱量ならびに空間速度の違いによる物質移動,伝熱
等の速度も異なるため、一概には言えないが、触媒の組
成面では、酸化ニオブ添加の触媒は、触媒層加温用熱媒
体の設定温度で390℃から460℃、触媒層最高温度で435
℃から510℃の比較的高温領域が良い。また、酸化クロ
ム添加の触媒は、設定温度で400℃から440℃、触媒層最
高温度で426℃から488℃、酸化マンガン添加の触媒は、
設定温度で390℃から440℃、触媒層最高温度で425℃か
ら490℃の温度領域が良い。したがって、本発明の触媒
を使用すれば、触媒層加温用熱媒体の設定温度で390℃
から460℃、触媒層最高温度で425℃から510℃の温度範
囲で反応を行うことができる。この温度範囲以下になる
と触媒の反応活性が低下することによりPMDA収率が低下
する。また、この温度範囲以上で使用すると適正なガス
化率以上となり、やはりPMDA収率は低下してしまうので
良くない。
The optimum temperature of the catalyst layer varies depending on the composition and composition ratio of the catalyst, and because the feed material concentration also varies, the heat generation amount in the catalyst layer and the rate of mass transfer and heat transfer due to the difference in space velocity are different. However, in terms of the composition of the catalyst, the catalyst with niobium oxide added is 390 to 460 ° C at the set temperature of the heating medium for heating the catalyst layer and 435 at the maximum temperature of the catalyst layer.
A relatively high temperature range of ℃ to 510 ℃ is good. The catalyst added with chromium oxide is 400 to 440 ° C at the set temperature, the catalyst layer maximum temperature is 426 to 488 ° C, and the catalyst added with manganese oxide is
The temperature range of 390 ℃ to 440 ℃ at the set temperature and 425 ℃ to 490 ℃ at the maximum temperature of the catalyst layer is good. Therefore, when the catalyst of the present invention is used, the set temperature of the heating medium for heating the catalyst layer is 390 ° C.
It is possible to carry out the reaction in a temperature range of 460 ° C to 460 ° C and a maximum catalyst layer temperature of 425 ° C to 510 ° C. If the temperature falls below this temperature range, the reaction activity of the catalyst decreases and the PMDA yield decreases. Further, if it is used in this temperature range or higher, the gasification rate becomes appropriate or higher, and the PMDA yield also decreases, which is not good.

次に、本発明の触媒について説明する。Next, the catalyst of the present invention will be described.

本発明の触媒は、酸化バナジウム,酸化ナトリウムおよ
び酸化モリブデンからなる第1成分と、さらに酸化クロ
ム,酸化マンガンおよび酸化ニオブの内から選ばれた少
なくとも一種からなる第2成分とを不活性担体に担持せ
しめてなるものであって、その担持酸化物の金属元素の
原子比がNa/V=0.1/10〜1.0/10,Mo/V=0.3/10〜3.0/10
であって前記第2成分の酸化クロム,酸化マンガンおよ
び酸化ニオブの内から選ばれた少なくとも一種の元素の
原子比が、Cr/V=0.2/10〜2.0/10,Mn/V=0.1/10〜1.5/1
0,Nb/V=0.5/10〜3.0/10である。
The catalyst of the present invention supports a first component composed of vanadium oxide, sodium oxide and molybdenum oxide, and a second component composed of at least one selected from chromium oxide, manganese oxide and niobium oxide on an inert carrier. The atomic ratio of the metal elements of the supported oxide is Na / V = 0.1 / 10 to 1.0 / 10, Mo / V = 0.3 / 10 to 3.0 / 10.
The atomic ratio of at least one element selected from the second component chromium oxide, manganese oxide and niobium oxide is Cr / V = 0.2 / 10 to 2.0 / 10, Mn / V = 0.1 / 10. ~ 1.5 / 1
0, Nb / V = 0.5 / 10 to 3.0 / 10.

このような触媒は、本発明者らによる以下のような研究
によって得られた新規な無水ピロメリット酸製造用触媒
である。
Such a catalyst is a novel catalyst for producing pyromellitic dianhydride obtained by the following studies by the present inventors.

一般的に無水ピロメリット酸製造用触媒の活性および反
応性は五酸化バナジウムだけでは、低いため、種々の助
触媒成分(金属酸化物)を添加するが、このとき加える
助触媒成分の種類および量により、触媒の活性および反
応性は大きく影響される。
Generally, the activity and reactivity of the catalyst for producing pyromellitic dianhydride are low with vanadium pentoxide alone, so various cocatalyst components (metal oxides) are added, but the type and amount of cocatalyst component added at this time Due to this, the activity and reactivity of the catalyst are greatly affected.

V2O5/CrO3/Na2Oを触媒成分とし、α−アルミナ,炭化
珪素等比表面積が1m2/g以下で粒径が3〜6mmφの担体
に担持せしめた触媒は、バナジウム原子に対する原子比
が、Cr/V=0.2/10〜2.0/10,Na/V=0.1/10〜1.0/10の範
囲内で高活性を示し、高収率(重量収率で100wt%)
で、無水ピロメリット酸を製造することが、可能であ
る。
V 2 O 5 / CrO 3 / Na 2 O as a catalyst component, α-alumina, silicon carbide, etc. supported on a carrier with a specific surface area of 1 m 2 / g or less and a particle size of 3 to 6 mmφ are vanadium atoms. Atomic ratio shows high activity in the range of Cr / V = 0.2 / 10 to 2.0 / 10, Na / V = 0.1 / 10 to 1.0 / 10, high yield (100 wt % in weight yield)
Thus, it is possible to produce pyromellitic dianhydride.

しかし、クロムおよびナトリウム双方の原子比が、適正
範囲から逸脱すると無水ピロメリット酸の収率が低下す
るなどの欠点が現れる。さらに、適正範囲内でも、供給
したジュレンの35%以上がガス化してしまい、二酸化炭
素,一酸化炭素として検出されるが、このガス化が多い
と工業的規模で大量の触媒を用いて、生産を行う場合、
反応による発熱量が増大し、熱除去のコントロールをす
ることが困難となる。従って、大きな発熱を伴う完全燃
焼によるガス化については、出来るだけ、少ないほうが
良い。
However, if the atomic ratios of both chromium and sodium deviate from the proper ranges, defects such as a decrease in the yield of pyromellitic dianhydride appear. Furthermore, even within the proper range, 35% or more of the supplied durene will be gasified and detected as carbon dioxide and carbon monoxide. If this gasification is large, it will be produced on an industrial scale using a large amount of catalyst. If you do
The amount of heat generated by the reaction increases, making it difficult to control heat removal. Therefore, it is better to reduce the gasification by complete combustion with large heat generation as much as possible.

本発明者らはPMDAを工業的に生産するための触媒とし
て、PMDAへの反応性、選択性が同じでも、ガス化率
(%)(生成した二酸化炭素,一酸化炭素の対原料%)
を抑制することが、反応温度の制御、触媒の寿命の観点
から、有利であることに鑑み、鋭意努力した結果、V2O5
/CrO3/Na2Oの触媒組成にさらにMoO3(酸化モリブデ
ン)を加えることにより、PMDAを高収率で生産でき、か
つ反応に伴う二酸化炭素や一酸化炭素へのガス化率が低
水準であり、反応最適温度域が広い触媒を開発し、本発
明に至った。
As a catalyst for industrially producing PMDA, the inventors of the present invention have a gasification rate (%) (produced carbon dioxide, carbon monoxide vs. raw material%) even if the reactivity and selectivity to PMDA are the same.
In view of the fact that it is advantageous to suppress the reaction temperature from the viewpoint of controlling the reaction temperature and the life of the catalyst, as a result of earnest efforts, V 2 O 5
By adding MoO 3 (molybdenum oxide) to the catalyst composition of / CrO 3 / Na 2 O, PMDA can be produced in high yield, and the gasification rate to carbon dioxide and carbon monoxide accompanying the reaction is at a low level. Therefore, the present invention has been accomplished by developing a catalyst having a wide reaction optimum temperature range.

添加するモリブデンの適正量であるが、バナジウム原子
に対して原子比でMo/V=0.3/10〜3.0/10である。Mo/Vの
原子比でモリブデンの含量が0.3/10未満であるとモリブ
デンを添加した効果がみられず、PMDA収率が98重量%
(60モル%)を超す高活性触媒では原料の35%(ガス化
率35%)以上が依然としてガス化してしまう。逆に、Mo
/Vの原子比でモリブデンの含量が3.0/10より増加すると
確かにガス化率は30%以下になるが触媒活性自体も低下
し、従ってPMDA収率も低下してしまう問題点が残る。
The proper amount of molybdenum to be added is Mo / V = 0.3 / 10 to 3.0 / 10 in terms of atomic ratio with respect to vanadium atoms. If the molybdenum content is less than 0.3 / 10 in terms of Mo / V atomic ratio, the effect of adding molybdenum is not seen and the PMDA yield is 98% by weight.
With highly active catalysts exceeding (60 mol%), more than 35% (gasification rate 35%) of the raw material is still gasified. Conversely, Mo
When the content of molybdenum exceeds 3.0 / 10 in terms of the atomic ratio of / V, the gasification rate will certainly be 30% or less, but the catalytic activity itself will decrease, and therefore the PMDA yield will also decrease.

Mo/V=0.3/10〜3.0/10の範囲では、PMDA収率はモリブデ
ンを添加しない場合と同じ程度かわずかに向上する。ま
た、ガス化率が低下することにより、若干、中間的な酸
化物が増加するが、これらは、PMDAと蒸気圧など物理的
性質が異なり、容易に分離することが可能なため、殆ど
問題とはならない。
In the range of Mo / V = 0.3 / 10 to 3.0 / 10, the PMDA yield is improved to the same level or slightly increased as when no molybdenum is added. Also, as the gasification rate decreases, the amount of intermediate oxides increases slightly, but since these have different physical properties such as vapor pressure from PMDA and can be easily separated, it is almost a problem. Don't

従ってV2O5/CrO3/Na2O/MoO3系触媒の好ましい組成割
合はバナジウム原子に対する原子比でCr/V=0.2/10〜2.
0/10,Na/V=0.1/10〜1.0/10,Mo/V=0.3/10〜3.0/10であ
る。さらに酸化モリブデンは、V2O5/MnO2/Na2O,V2O5
/Nb2O5/Na2Oの触媒組成に対しても、V2O5/CrO3/Na2
O系触媒と同様、MoO3を第4成分として加えると活性の
低下は殆どなく、ガス化率が低くなり、ガス化に伴う発
熱が小さくなり、工業的に有利な触媒組成となることを
見出した。
Therefore, the preferable composition ratio of the V 2 O 5 / CrO 3 / Na 2 O / MoO 3 catalyst is Cr / V = 0.2 / 10 to 2. in terms of atomic ratio to vanadium atom.
0/10, Na / V = 0.1 / 10 to 1.0 / 10, Mo / V = 0.3 / 10 to 3.0 / 10. Furthermore, molybdenum oxide is V 2 O 5 / MnO 2 / Na 2 O, V 2 O 5
Even for the catalyst composition of / Nb 2 O 5 / Na 2 O, V 2 O 5 / CrO 3 / Na 2
It was found that, as with the O-based catalyst, when MoO 3 is added as the fourth component, there is almost no decrease in activity, the gasification rate is low, the heat generated by gasification is small, and the catalyst composition is industrially advantageous. It was

V2O5/MnO2/Na2O/MoO3,V2O5/Nb2O5/Na2O/MoO3
々の好ましい触媒組成割合は、V2O5/CrO3/Na2O/MoO3
系触媒と同様に存在し、バナジウム原子に対する原子比
が、夫々Mn/V=0.1/10〜1.5/10,Na/V=0.1/10〜1.0/10,
Mo/V=0.3/10〜3.0/10:Nb/V=0.5/10〜3.0/10,Na/V=0.
1/10〜1.0/10,Mo/V=0.3/10〜3.0/10である。
The preferable catalyst composition ratio of V 2 O 5 / MnO 2 / Na 2 O / MoO 3 and V 2 O 5 / Nb 2 O 5 / Na 2 O / MoO 3 is V 2 O 5 / CrO 3 / Na 2 O, respectively. / MoO 3
It exists in the same manner as the system catalyst, and the atomic ratio to vanadium atom is Mn / V = 0.1 / 10 to 1.5 / 10, Na / V = 0.1 / 10 to 1.0 / 10, respectively.
Mo / V = 0.3 / 10 to 3.0 / 10: Nb / V = 0.5 / 10 to 3.0 / 10, Na / V = 0.
1/10 to 1.0 / 10 and Mo / V = 0.3 / 10 to 3.0 / 10.

以上の触媒成分を担持する不活性担体は、溶融アルミナ
(α−アルミナ),炭化珪素,コーディエライト等が好
適に用いられる。
Fused alumina (α-alumina), silicon carbide, cordierite or the like is preferably used as the inert carrier carrying the above catalyst components.

触媒成分の担持量は、五酸化バナジウム(重量)/担体
(重量)で3%から15%の範囲で十分触媒活性を示す。
The supported amount of the catalyst component is in the range of 3% to 15% of vanadium pentoxide (weight) / support (weight), which shows sufficient catalytic activity.

このように酸化モリブデンは触媒成分として適切である
が、酸化バナジウム−酸化モリブデンの二元系、あるい
は酸化バナジウム−酸化モリブデン−酸化リンの三元系
では、触媒活性をほとんど示さないか、触媒活性がある
にしろ空間速度が5000hr-1以下の生産性の低い領域でし
か有効でない。
Thus, molybdenum oxide is suitable as a catalyst component, but the binary system of vanadium oxide-molybdenum oxide or the ternary system of vanadium oxide-molybdenum oxide-phosphorus oxide shows almost no catalytic activity or has a catalytic activity. In any case, it is effective only in the low productivity region where the space velocity is 5000 hr -1 or less.

モリブデンを含む本発明のPMDA製造用五酸化バナジウム
系複合酸化物系触媒の製造は以下のようにして行う。
The vanadium pentoxide-based composite oxide catalyst for producing PMDA of the present invention containing molybdenum is produced as follows.

まず、バナジウム源として五酸化バナジウムまたはメタ
バナジン酸アンモニウムを用いるが、これらは水に対し
て難溶性であるため、有機酸を加え、水に可溶な状態に
変える。有機酸の量はV原子にたいして0.5倍〜2.0倍当
量で、有機酸としてはシュウ酸および酒石酸がよい。
First, vanadium pentoxide or ammonium metavanadate is used as a vanadium source. Since these are hardly soluble in water, an organic acid is added to change them to a water-soluble state. The amount of the organic acid is 0.5 to 2.0 times equivalent to V atom, and oxalic acid and tartaric acid are preferable as the organic acid.

この水溶液に助触媒成分となる物質を添加するわけであ
るが、これらは金属酸化物,金属塩(アンモニウム塩,
炭酸塩,塩化物,硝酸塩,蓚酸塩)で、水に可溶でかつ
400℃〜500℃で金属酸化物となるものならその形態によ
る問題は殆どない。
A substance that serves as a co-catalyst component is added to this aqueous solution. These are metal oxides and metal salts (ammonium salts,
Carbonate, chloride, nitrate, oxalate), soluble in water and
If it becomes a metal oxide at 400 ℃ ~ 500 ℃, there is almost no problem due to its form.

このようにして調製した触媒水溶液は、好ましくは、粒
径が2〜5mmφの溶融アルミナ(α−アルミナ)あるい
は炭化珪素など比表面積が1m2/g以下の担体、あるいは
溶融アルミナ製またはコーディエライト製で貫通ガス流
路が1平方インチ当り100個以上のハニカム状の担体に
担持する。
The catalyst aqueous solution thus prepared is preferably a carrier having a specific surface area of 1 m 2 / g or less such as fused alumina (α-alumina) or silicon carbide having a particle size of 2 to 5 mmφ, or fused alumina or cordierite. It is manufactured by supporting 100 or more honeycomb-shaped carriers with a through gas passage per square inch.

担持法としては、触媒溶液に担体をいれ、濃縮乾固する
含浸法と、担体を予熱しておき噴霧する方法がある。α
−アルミナなど気孔率が大きい担体の場合はどちらかと
いえば、含浸法が有利であるが、気孔率の小さい炭化珪
素等の場合は、噴霧による方法が有利である。
As the supporting method, there are an impregnation method in which a carrier is put in a catalyst solution and concentrated to dryness, and a method in which the carrier is preheated and sprayed. α
In the case of a carrier having a high porosity such as alumina, the impregnation method is rather advantageous, but in the case of silicon carbide having a low porosity, the spraying method is advantageous.

このようにして触媒成分を担持したのち、空気流通下、
500℃で3〜8時間焼成し反応実験に用いた。
After supporting the catalyst component in this manner, under air circulation,
It was calcined at 500 ° C. for 3 to 8 hours and used for the reaction experiment.

触媒の評価は以下のようにして行った。The catalyst was evaluated as follows.

触媒を内径が1インチの反応管に60cc程度充填し、350
〜500℃の溶融塩浴に入れ、空間速度(SV)3000〜15000
/hr,モル比(ジュレン/空気のモル比)0.1〜0.4%で酸
化反応を行い、得られた生成物を、メタノール・三フッ
化ホウ素錯塩にてメチルエステル化物に変換したのち、
ガスクロマトグラフィーにより生成物の分析を行いさら
に、反応ガスについては注射器で反応ガスを抜き取り、
ガスクロマトグラフィーにより分析した。
Fill a reaction tube with an inner diameter of 1 inch with about 60cc of catalyst, and
Put in a molten salt bath at ~ 500 ℃, space velocity (SV) 3000 ~ 15000
/ hr, molar ratio (molar ratio of durene / air) 0.1-0.4%, oxidation reaction is performed, and the obtained product is converted into methyl ester compound with methanol / boron trifluoride complex salt,
The product is analyzed by gas chromatography, and the reaction gas is extracted with a syringe.
It was analyzed by gas chromatography.

<実施例> (実施例1) 五酸化バナジウム6.0gとシュウ酸16.6gに水200ccを加
え、温浴中に保持し、クロム酸アンモニウム0.5gと炭酸
ナトリウム174mgさらにモリブデン酸(モリブデン酸含
量80wt%)593mgを加え触媒水溶液を調製した。この水
溶液にα−アルミナ(粒径3mmφ)を60gを加え、温浴上
で注意深く攪拌しながら濃縮乾固し、ついで500℃で3
時間空気流通下焼成し、触媒を得た。
<Example> (Example 1) To 6.0 g of vanadium pentoxide and 16.6 g of oxalic acid, 200 cc of water was added and kept in a warm bath, 0.5 g of ammonium chromate and 174 mg of sodium carbonate, and molybdic acid (molybdic acid content 80 wt%). 593 mg was added to prepare an aqueous catalyst solution. To this aqueous solution was added 60 g of α-alumina (particle size: 3 mmφ), concentrated to dryness on a warm bath with careful stirring, and then at 500 ° C for 3 hours.
The mixture was calcined under flowing air for a period of time to obtain a catalyst.

得られた触媒の組成は原子比でV/Cr/Na/Mo=10/0.5/0.5
/0.5であった。この触媒を内径が1インチの反応管に60
cc充填し反応管を溶融塩に浸し、実験を行った。
The composition of the obtained catalyst is V / Cr / Na / Mo = 10 / 0.5 / 0.5 in atomic ratio.
It was /0.5. This catalyst is placed in a reaction tube with an inner diameter of 1 inch.
An experiment was conducted by cc filling and immersing the reaction tube in the molten salt.

反応は以下のようにして行った。The reaction was performed as follows.

ジュレンと空気のモル比を0.2:100の割合で混合した原
料ガスを空間速度12000hr-1で反応管上部より通じ、溶
融塩温度を400℃に保った。この時の触媒層の最高温度
は437℃であった。
A raw material gas in which the molar ratio of durene and air was mixed at a ratio of 0.2: 100 was passed from the upper part of the reaction tube at a space velocity of 12000 hr -1 , and the molten salt temperature was kept at 400 ° C. The maximum temperature of the catalyst layer at this time was 437 ° C.

反応中に反応ガスを注射器にて抜き取り、ガスクロマト
グラフィーにて分析したところ、供給原料の29%がガス
化していた。
When the reaction gas was extracted with a syringe during the reaction and analyzed by gas chromatography, 29% of the feed material was gasified.

反応実験の結果、113重量%の収率で無水ピロメリット
酸(PMDA)が得られた。得られた生成物の分析は以下の
方法で行った。
As a result of the reaction experiment, pyromellitic dianhydride (PMDA) was obtained in a yield of 113% by weight. The obtained product was analyzed by the following method.

生成物が5g程度の時、メタノール・三フッ化ホウ素錯塩
含有メタノール40ccを生成物に加えた後、1時間還流
し、無水ピロメリット酸をメチルエステル化物に変換し
たのち、クロロホルム30cc,水20ccを加え、クロロホル
ム層にメチルエステル化物を抽出しクロロホルム層をガ
スクロマトグラフィーにより分析した。
When the product is about 5 g, 40 cc of methanol / boron trifluoride complex salt-containing methanol is added to the product and then refluxed for 1 hour to convert pyromellitic dianhydride into a methyl ester compound, and then 30 cc of chloroform and 20 cc of water are added. In addition, a methyl esterified product was extracted from the chloroform layer, and the chloroform layer was analyzed by gas chromatography.

なお、PMDA収率は、製品重量/原料重量で表した。The PMDA yield was expressed as product weight / raw material weight.

(実施例2) 溶融塩の温度を430℃にした以外は、実施例1と同じよ
うにして反応実験を行った。
(Example 2) A reaction experiment was conducted in the same manner as in Example 1 except that the temperature of the molten salt was changed to 430 ° C.

(実施例3) 溶融塩の温度を440℃,原料濃度(ジュレン/空気のモ
ル比%)を0.22%とした以外は実施例1と同じようにし
て実験を行った。
Example 3 An experiment was conducted in the same manner as in Example 1 except that the temperature of the molten salt was 440 ° C. and the raw material concentration (molar ratio of durene / air) was 0.22%.

実施例1,実施例2,実施例3の結果を第1表に示す。The results of Example 1, Example 2 and Example 3 are shown in Table 1.

第1表より本触媒は設定温度を変更しても、PMDA収率の
大きな変化は殆ど見られず、工業的に優れた触媒系であ
ることがわかる。
It can be seen from Table 1 that the present catalyst is an industrially excellent catalyst system with almost no significant change in PMDA yield even when the set temperature is changed.

(比較例1) モリブデン酸を添加しない以外は、実施例1と全く同じ
ようにして触媒を調製し、実施例1と同じ条件で、反応
実験に用いた。この時、触媒層の最高温度は452℃であ
った。
(Comparative Example 1) A catalyst was prepared in exactly the same manner as in Example 1 except that molybdic acid was not added, and was used in a reaction experiment under the same conditions as in Example 1. At this time, the maximum temperature of the catalyst layer was 452 ° C.

反応中に反応ガスを注射器にて抜き取り、ガスクロマト
グラフィーにて分析したところ、供給原料の39%がガス
化していた。
During the reaction, the reaction gas was extracted with a syringe and analyzed by gas chromatography. As a result, 39% of the feedstock was gasified.

反応実験の結果、95重量%の収率で無水ピロメリット酸
が得られた。
As a result of the reaction experiment, pyromellitic dianhydride was obtained in a yield of 95% by weight.

以上の結果より、モリブデンを添加することにより、添
加しない場合に比べ触媒層での反応温度は15℃も下が
り、ガス化率も10%程度低くなった。
From the above results, by adding molybdenum, the reaction temperature in the catalyst layer was lowered by 15 ° C and the gasification rate was lowered by about 10% as compared with the case where molybdenum was not added.

(実施例4,5,6,7,比較例2) モリブデン酸添加量を変える以外は実施例1と全く同じ
ようにして触媒を調製し、反応実験を行った。実験結果
を実施例1,比較例1とともに第2表に示す。
(Examples 4, 5, 6, 7 and Comparative Example 2) A catalyst was prepared and a reaction experiment was conducted in the same manner as in Example 1 except that the addition amount of molybdic acid was changed. The experimental results are shown in Table 2 together with Example 1 and Comparative Example 1.

本結果からMoの添加によりジュレンの二酸化炭素,一酸
化炭素へのガス化が抑制され工業上問題となる触媒層で
の発熱の抑制が可能であることがわかった。また、この
場合Moの添加はMo/Vが0.3/10から3.0/10の範囲内ではPM
DA収率には殆ど影響せず、ガス化率の低下に効果を有す
ることがわかった。
From these results, it was found that the addition of Mo can suppress the gasification of durene into carbon dioxide and carbon monoxide, and can suppress the heat generation in the catalyst layer, which is an industrial problem. Also, in this case, the addition of Mo is PM when Mo / V is in the range of 0.3 / 10 to 3.0 / 10.
It was found that it had little effect on the DA yield and had an effect on lowering the gasification rate.

(実施例8) 五酸化バナジウム8.0gとシュウ酸22.1gに水200ccを加
え、温浴中に保持し、炭酸マンガン0.5gと炭酸ナトリウ
ム232mg、さらにモリブデン酸(モリブデン酸含量80wt
%)791mgを加え、触媒水溶液を調製した。この水溶液
にα−アルミナ(粒径3mmφ)を80g加え、温浴上で注意
深く攪拌しながら濃縮乾固し、ついで500℃で3時間空
気流通下焼成し、触媒を得た。
(Example 8) To 200 g of vanadium pentoxide and 22.1 g of oxalic acid was added 200 cc of water, and the mixture was kept in a warm bath, 0.5 g of manganese carbonate and 232 mg of sodium carbonate, and molybdic acid (molybdic acid content of 80 wt.
%) 791 mg was added to prepare an aqueous catalyst solution. To this aqueous solution, 80 g of α-alumina (particle size: 3 mmφ) was added, concentrated and dried on a warm bath with careful stirring, and then calcined at 500 ° C. for 3 hours under air flow to obtain a catalyst.

得られた触媒の組成は原子比でV/Mn/Na/Mo=10/0.5/0.5
/0.5であった。
The composition of the obtained catalyst is V / Mn / Na / Mo = 10 / 0.5 / 0.5 in atomic ratio.
It was /0.5.

この触媒を内径が1インチの反応管に60cc充填し反応管
を溶融塩に浸し、実験を行った。
This catalyst was filled in a reaction tube having an inner diameter of 1 inch in an amount of 60 cc, and the reaction tube was immersed in a molten salt for an experiment.

反応は以下のようにして行った。The reaction was performed as follows.

ジュレンと空気のモル比を0.2:100の割合で混合した原
料ガスを空間速度12000hr-1で反応管上部より通じ、溶
融塩温度を390℃に保った。この時の触媒層の最高温度
は425℃であった。
A raw material gas in which the molar ratio of durene and air was mixed at a ratio of 0.2: 100 was passed from the upper part of the reaction tube at a space velocity of 12000 hr -1 , and the molten salt temperature was kept at 390 ° C. The maximum temperature of the catalyst layer at this time was 425 ° C.

反応中に反応ガスを注射器にて抜き取り、ガスクロマト
グラフィーにて分析したところ、供給原料の27%がガス
化していた。
When the reaction gas was extracted with a syringe during the reaction and analyzed by gas chromatography, 27% of the feed material was gasified.

反応実験の結果、109重量%の収率で無水ピロメリット
酸が得られた。得られた生成物の分析は実施例1と同様
な方法で行った。
As a result of the reaction experiment, pyromellitic dianhydride was obtained in a yield of 109% by weight. The obtained product was analyzed in the same manner as in Example 1.

(実施例9) 溶融塩の温度を440℃,原料濃度(ジュレン/空気のモ
ル比%)を0.22%,空間速度を10000hr-1とした以外は
実施例8と同じようにして実験を行った。
Example 9 An experiment was performed in the same manner as in Example 8 except that the temperature of the molten salt was 440 ° C., the concentration of the raw materials (molar ratio of durene / air) was 0.22%, and the space velocity was 10,000 hr −1 . .

(比較例3) モリブデン酸を添加しない以外は、実施例8と全く同じ
ようにして触媒を調製し、反応実験に用いた。
(Comparative Example 3) A catalyst was prepared and used in a reaction experiment in exactly the same manner as in Example 8 except that molybdic acid was not added.

実施例9,比較例3の結果を実施例8の結果と併せて第3
表に示す。
The results of Example 9 and Comparative Example 3 were combined with the results of Example 8 to obtain a third value.
Shown in the table.

第3表よりMoを添加した触媒は設定温度を変えてもPMDA
収率に大きな変化は見られず、工業的に優れた触媒系で
あることがわかる。また実施例8,比較例3からMoを添加
することにより、添加しない場合と比べ触媒層での反応
温度は10℃も下がり、ガス化率も10%程度低くなること
がわかる。
Table 3 shows that the catalyst with Mo added has PMDA even if the set temperature is changed.
No significant change was observed in the yield, indicating that the catalyst system is industrially excellent. Further, it can be seen from Example 8 and Comparative Example 3 that by adding Mo, the reaction temperature in the catalyst layer is lowered by 10 ° C. and the gasification rate is lowered by about 10% as compared with the case where Mo is not added.

(実施例10) 五酸化バナジウム8.0gとシュウ酸18gに水200ccを加え、
温浴中に保持し、シュウ酸ニオブ(1グラム当量511)
を4.49gと炭酸ナトリウム139mgを加え、さらにモリブデ
ン酸(モリブデン酸含量80wt%)1.58mgを加え、触媒水
溶液を調製した。この水溶液を200℃に予熱しておいた
平均粒径2.5mmφの炭化ケイ素100gに噴霧することによ
り担持し、担持後500℃で3時間空気流通下で焼成し、
触媒を得た。
(Example 10) 200 g of water was added to 8.0 g of vanadium pentoxide and 18 g of oxalic acid,
Keep in a warm bath, niobium oxalate (1 gram equivalent 511)
4.49 g and sodium carbonate 139 mg were added, and molybdic acid (molybdic acid content 80 wt%) 1.58 mg was further added to prepare a catalyst aqueous solution. This aqueous solution was supported by spraying it on 100 g of silicon carbide having an average particle size of 2.5 mmφ that had been preheated to 200 ° C., and after supporting, firing at 500 ° C. for 3 hours under air flow,
A catalyst was obtained.

得られた触媒の組成は、原子比でV/Nb/Na/Mo=10/1.0/
0.3/1.0であった。
The composition of the obtained catalyst is V / Nb / Na / Mo = 10 / 1.0 /
It was 0.3 / 1.0.

この触媒を内径が1インチの反応管に60cc充填し、反応
管を溶融塩に浸し、実験を行った。
The catalyst was filled in a reaction tube having an inner diameter of 1 inch in an amount of 60 cc, and the reaction tube was immersed in a molten salt for an experiment.

反応は以下のようにして行った。The reaction was performed as follows.

ジュレンと空気のモル比を0.24:100の割合で混合した原
料ガスを空間速度で12000hr-1で反応管上部より通じ、
溶融塩温度を390℃に保った。この時の触媒層の最高温
度は435℃であった。
A raw material gas in which the molar ratio of durene and air was mixed at a ratio of 0.24: 100 was passed from the top of the reaction tube at a space velocity of 12000 hr -1 ,
The molten salt temperature was maintained at 390 ° C. The maximum temperature of the catalyst layer at this time was 435 ° C.

反応中に反応ガスを注射器にて抜き取り、ガスクロマト
グラフィーにて分析したところ、供給原料の29%がガス
化していた。
When the reaction gas was extracted with a syringe during the reaction and analyzed by gas chromatography, 29% of the feed material was gasified.

反応実験の結果、111重量%の収率で無水ピロメリット
酸が得られた。得られた生成物の分析は実施例1と同様
な方法で行った。
As a result of the reaction experiment, pyromellitic dianhydride was obtained in a yield of 111% by weight. The obtained product was analyzed in the same manner as in Example 1.

(比較例4) モリブデン酸を添加しない以外は、実施例10と全く同じ
ようにして触媒を調製し、反応実験に用いた。この時の
触媒層の最高温度は451℃であった。反応中に反応ガス
を注射器にて抜き取り、ガスクロマトグラフィーにて分
析したところ、供給原料の37%がガス化していた。
(Comparative Example 4) A catalyst was prepared in exactly the same manner as in Example 10 except that molybdic acid was not added, and was used in a reaction experiment. The maximum temperature of the catalyst layer at this time was 451 ° C. When the reaction gas was extracted with a syringe during the reaction and analyzed by gas chromatography, 37% of the feed material was gasified.

反応実験の結果、95重量%の収率で無水ピロメリット酸
が得られた。
As a result of the reaction experiment, pyromellitic dianhydride was obtained in a yield of 95% by weight.

以上の結果より、モリブデンを添加することにより、添
加しない場合に比べ触媒層での反応温度は16℃も下が
り、ガス化率も8%低くなっていることがわかる。
From the above results, it is understood that the addition of molybdenum lowers the reaction temperature in the catalyst layer by 16 ° C. and the gasification rate by 8% as compared with the case where molybdenum is not added.

(実施例11,12,13) 実施例10で調製した触媒を用いて、設定温度のみを変更
した以外は実施例10と同じ条件で反応を行った。
(Examples 11, 12, 13) Using the catalyst prepared in Example 10, the reaction was performed under the same conditions as in Example 10 except that only the set temperature was changed.

(比較例5,6,7) 比較例4で調製した触媒を用いて、設定温度のみを変更
した以外は比較例4と同じ条件で反応を行った。
(Comparative Examples 5, 6, 7) Using the catalyst prepared in Comparative Example 4, the reaction was performed under the same conditions as in Comparative Example 4 except that only the set temperature was changed.

実施例11,実施例12,実施例13および比較例5,比較例6,比
較例7の結果を実施例10および比較例4の結果と併せ
て、第4表に示す。
The results of Example 11, Example 12, Example 13 and Comparative Example 5, Comparative Example 6, and Comparative Example 7 are shown in Table 4 together with the results of Example 10 and Comparative Example 4.

また、第4表の結果を第1図に示した。The results shown in Table 4 are shown in FIG.

第4表および第1図の結果からV/Nb/Naを有しさらにモ
リブデンを添加した本発明の触媒は、設定温度を変更し
てもその影響は小さくPMDA収率の大きな変化は見られな
い等、幅広い温度範囲で安定して使用可能であり工業的
に有利な触媒といえる。しかしモリブデンを触媒成分と
して添加していない比較例のV/Nb/Na系触媒は、狭い温
度範囲ではPMDA収率は100重量%程度の値を示すが、適
正温度範囲を超えると極端に収率が低下し、工業的には
採用できない。
From the results shown in Table 4 and FIG. 1, the catalyst of the present invention having V / Nb / Na and further containing molybdenum has a small effect even if the set temperature is changed, and a large change in PMDA yield is not observed. It can be said that the catalyst can be stably used in a wide temperature range and is industrially advantageous. However, the V / Nb / Na-based catalyst of the comparative example in which molybdenum is not added as a catalyst component shows a PMDA yield of about 100% by weight in a narrow temperature range, but when the temperature exceeds the appropriate temperature range, the yield is extremely high. Deteriorates and cannot be industrially adopted.

(比較例8) 五酸化バナジウム8.0gとシュウ酸18gに水200ccを加え、
温浴中に保持し、四塩化チタン(1グラム当量190)を8
35mgと炭酸ナトリウム326mgを加えさらにモリブデン酸
(モリブデン酸含量80wt%)1.58mgを加え、触媒水溶液
を調製した。この水溶液を200℃に予熱しておいた平均
粒径2.5mmφの炭化ケイ素100gに噴霧することにより担
持し、担持後、500℃で3時間空気流通下で焼成し、触
媒を得た。
(Comparative Example 8) 200 g of water was added to 8.0 g of vanadium pentoxide and 18 g of oxalic acid,
Keep in a warm bath and add titanium tetrachloride (1 gram equivalent 190) to 8
35 mg and sodium carbonate 326 mg were added, and molybdic acid (molybdic acid content 80 wt%) 1.58 mg was further added to prepare an aqueous catalyst solution. This aqueous solution was supported by spraying it on 100 g of silicon carbide having an average particle diameter of 2.5 mmφ that had been preheated to 200 ° C., and after supporting, it was calcined at 500 ° C. for 3 hours under air flow to obtain a catalyst.

得られた触媒の組成は、原子比でV/Ti/Na/Mo=10/0.5/
0.7/1.0であった。
The composition of the obtained catalyst is V / Ti / Na / Mo = 10 / 0.5 /
It was 0.7 / 1.0.

この触媒を内径が1インチの反応管に60cc充填し、反応
管を溶融塩に浸し、実験を行った。
The catalyst was filled in a reaction tube having an inner diameter of 1 inch in an amount of 60 cc, and the reaction tube was immersed in a molten salt for an experiment.

反応は以下のようにして行った。The reaction was performed as follows.

ジュレンと空気のモル比を0.24:100の割合で混合した原
料ガスを空間速度14000hr-1で反応管上部より通じ、溶
融塩温度を370℃に保った。この時の触媒層の最高温度
は415℃であった。
A raw material gas in which the molar ratio of durene and air was mixed at a ratio of 0.24: 100 was passed from the upper part of the reaction tube at a space velocity of 14000 hr -1 , and the molten salt temperature was kept at 370 ° C. The maximum temperature of the catalyst layer at this time was 415 ° C.

反応中に反応ガスを注射器にて抜き取り、ガスクロマト
グラフィーにて分析したところ、供給原料の27%がガス
化していた。
When the reaction gas was extracted with a syringe during the reaction and analyzed by gas chromatography, 27% of the feed material was gasified.

反応実験の結果、116重量%の収率で無水ピロメリット
酸が得られた。得られた生成物の分析は実施例1と同様
な方法で行った。
As a result of the reaction experiment, pyromellitic dianhydride was obtained in a yield of 116% by weight. The obtained product was analyzed in the same manner as in Example 1.

(比較例9,10,11,12) 比較例8で調製した触媒を用いて、設定温度のみを変更
した以外は比較例8と同じ条件で反応を行った。
(Comparative Examples 9, 10, 11, 12) Using the catalyst prepared in Comparative Example 8, the reaction was carried out under the same conditions as in Comparative Example 8 except that only the set temperature was changed.

比較例8〜12の結果を併せて、第5表に示す。第2図は
第5表をグラフ化したものである。
The results of Comparative Examples 8 to 12 are also shown in Table 5. FIG. 2 is a graph of Table 5.

(実施例14)〜(実施例18) 五酸化バナジウム8.0g,シュウ酸22.1gに水200ccを加
え、温浴中に保持し、炭酸ナトリウム,モリブデン酸
(MoO3として80wt%),シュウ酸ニオブ(1グラム当量
511),四塩化チタン,炭酸マンガン,クロム酸アンモ
ニウムを第6表に示した量を添加し触媒溶液を調製し
た。この水溶液にα−アルミナ(粒径3mmφ)を80g加
え、湯浴上で注意深く攪拌しながら濃縮乾固し、ついで
6時間空気流通下焼成し、触媒を得た。得られた触媒を
内径が1インチの反応管に60cc充填し、反応管を溶融塩
に浸し、実験を行った。
(Example 14) to (Example 18) 200 g of water was added to 8.0 g of vanadium pentoxide and 22.1 g of oxalic acid, and the mixture was kept in a warm bath, and sodium carbonate, molybdic acid (80 wt% as MoO 3 ), niobium oxalate ( 1 gram equivalent
511), titanium tetrachloride, manganese carbonate and ammonium chromate were added in the amounts shown in Table 6 to prepare a catalyst solution. To this aqueous solution, 80 g of α-alumina (particle size: 3 mmφ) was added, concentrated to dryness while carefully stirring in a hot water bath, and then calcined for 6 hours under air flow to obtain a catalyst. The obtained catalyst was filled in a reaction tube having an inner diameter of 1 inch in an amount of 60 cc, and the reaction tube was immersed in a molten salt for an experiment.

実験結果を第7表および第8表に示す。The experimental results are shown in Tables 7 and 8.

第2成分である、酸化ニオブ,酸化マンガン,酸化クロ
ムを触媒成分として、混合して使用しても、その複合的
な作用で触媒活性が低下する、あるいは、ガス化率が増
加する現象もなく、第2成分を単独で使用した場合と同
様に高収率でPMDAを製造することができた。
Even if the second component, niobium oxide, manganese oxide, or chromium oxide is mixed and used as a catalyst component, there is no phenomenon that the catalytic activity is lowered or the gasification rate is increased due to its composite action. , PMDA could be produced in a high yield as in the case of using the second component alone.

(比較例13) 四塩化チタン,炭酸ナトリウム,モリブデン酸を添加し
ない以外は、比較例8と同じ条件で触媒を調製し、反応
実験に使用した。
(Comparative Example 13) A catalyst was prepared under the same conditions as in Comparative Example 8 except that titanium tetrachloride, sodium carbonate, and molybdic acid were not added, and used for the reaction experiment.

(比較例14) 四塩化チタン,炭酸ナトリウムを添加しない以外は、比
較例8と同じ条件で触媒を調製し、反応実験に使用し
た。
(Comparative Example 14) A catalyst was prepared under the same conditions as in Comparative Example 8 except that titanium tetrachloride and sodium carbonate were not added, and was used in a reaction experiment.

(比較例15) リン酸2水素アンモニウム2gを添加した以外は、比較例
14と同じ条件で触媒を調製し、反応実験に使用した。
(Comparative example 15) Comparative example except that 2 g of ammonium dihydrogen phosphate was added
A catalyst was prepared under the same conditions as 14 and used in the reaction experiment.

比較例13,比較例14,比較例15の反応実験の結果を第9表
に示す。比較例13,比較例14,比較例15の反応結果は、い
ずれもPMDA収率が低く問題があった。
Table 9 shows the results of the reaction experiments of Comparative Example 13, Comparative Example 14, and Comparative Example 15. The reaction results of Comparative Example 13, Comparative Example 14, and Comparative Example 15 all had a problem that the PMDA yield was low.

<発明の効果> 本発明の触媒により石油化学工業の発展に伴って大量に
供給されるようになった安価なデュレンを原料として、
触媒層での発熱を抑制しつつかつ幅広い最適反応温度領
域で工業上有利に無水ピロメリット酸(PMDA)を高収率
で生産することが可能となり、その効果は大なるものが
ある。
<Effects of the Invention> As a raw material, inexpensive durene, which has been supplied in large quantities with the development of the petrochemical industry by the catalyst of the present invention,
It is possible to industrially advantageously produce pyromellitic dianhydride (PMDA) in a high yield in a wide range of optimum reaction temperature regions while suppressing heat generation in the catalyst layer, and the effect is significant.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図はそれぞれ触媒層加温用熱媒体の設
定温度とガス化率およびPMDA収率との関係を示すグラフ
である。
FIG. 1 and FIG. 2 are graphs showing the relationship between the set temperature of the heating medium for heating the catalyst layer, the gasification rate, and the PMDA yield, respectively.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】酸化バナジウム,酸化ナトリウムおよび酸
化モリブデンからなる第1成分と、さらに酸化クロム,
酸化マンガンおよび酸化ニオブの内から選ばれた少なく
とも一種からなる第2成分とを不活性担体に担持せしめ
てなるものであって、その担持酸化物の金属元素の原子
比がNa/V=0.1/10〜1.0/10,Mo/V=0.3/10〜3.0/10であ
って前記第2成分の酸化クロム,酸化マンガンおよび酸
化ニオブの内から選ばれた少なくとも一種の元素の原子
比が、Cr/V=0.2/10〜2.0/10,Mn/V=0.1/10〜1.5/10,Nb
/V=0.5/10〜3.0/10の範囲である触媒を使用し、ジュレ
ンを分子状酸素含有ガスで接触気相酸化することを特徴
とする無水ピロメリット酸の製造方法。
1. A first component comprising vanadium oxide, sodium oxide and molybdenum oxide, and chromium oxide,
A second component comprising at least one selected from manganese oxide and niobium oxide is supported on an inert carrier, and the atomic ratio of metal elements of the supported oxide is Na / V = 0.1 / 10-1.0 / 10, Mo / V = 0.3 / 10-3.0 / 10, and the atomic ratio of at least one element selected from the second component chromium oxide, manganese oxide and niobium oxide is Cr / V = 0.2 / 10 to 2.0 / 10, Mn / V = 0.1 / 10 to 1.5 / 10, Nb
A method for producing pyromellitic dianhydride, which comprises subjecting durene to catalytic gas phase oxidation with a gas containing molecular oxygen, using a catalyst having a ratio of /V=0.5/10 to 3.0 / 10.
【請求項2】請求項1記載の製造方法において、前記接
触気相酸化反応が固定床で行われる無水ピロメリット酸
の製造方法。
2. The method for producing pyromellitic dianhydride according to claim 1, wherein the catalytic gas phase oxidation reaction is carried out in a fixed bed.
【請求項3】請求項1記載の製造方法において、前記接
触気相反応が、原料ガスの空間速度=SV(1/hr)が1000
0〜14000でかつジュレン濃度がジュレン(mol)/空気
(mol)で0.1〜0.25%で行われる無水ピロメリット酸の
製造方法。
3. The production method according to claim 1, wherein the catalytic gas phase reaction has a space velocity of raw material gas = SV (1 / hr) of 1000.
A method for producing pyromellitic dianhydride, which is carried out at 0 to 14000 and a durene concentration of 0.1 to 0.25% durene (mol) / air (mol).
【請求項4】請求項1記載の製造方法において、前記接
触気相反応時の触媒層加熱用熱媒体温度が390〜460℃で
ある無水ピロメリット酸の製造方法。
4. The method for producing pyromellitic dianhydride according to claim 1, wherein the heat medium temperature for heating the catalyst layer during the catalytic gas phase reaction is 390 to 460 ° C.
【請求項5】請求項1記載の製造方法において、前記第
2成分が酸化ニオブである無水ピロメリット酸の製造方
法。
5. The method for producing pyromellitic dianhydride according to claim 1, wherein the second component is niobium oxide.
【請求項6】請求項1記載の製造方法において、前記第
2成分が酸化ニオブであり、前記接触気相反応時の触媒
層加温用熱媒体温度が390〜460℃である無水ピロメリッ
ト酸の製造方法。
6. The production method according to claim 1, wherein the second component is niobium oxide, and the heating medium temperature for heating the catalyst layer during the catalytic gas phase reaction is 390 to 460 ° C. Manufacturing method.
【請求項7】酸化バナジウム,酸化ナトリウムおよび酸
化モリブデンからなる第1成分と、さらに酸化クロム,
酸化マンガンおよび酸化ニオブの内から選ばれた少なく
とも一種からなる第2成分とを不活性担体に担持せしめ
てなるものであって、その担持酸化物の金属元素の原子
比がNa/V=0.1/10〜1.0/10,Mo/V=0.3/10〜3.0/10であ
って前記第2成分の酸化クロム,酸化マンガンおよび酸
化ニオブの内から選ばれた少なくとも一種の元素の原子
比が、Cr/V=0.2/10〜2.0/10,Mn/V=0.1/10〜1.5/10,Nb
/V=0.5/10〜3.0/10の範囲であるジュレンを気相酸化し
て無水ピロメリット酸を製造する際に用いられることを
特徴とする無水ピロメリット酸製造用触媒。
7. A first component comprising vanadium oxide, sodium oxide and molybdenum oxide, and further chromium oxide,
A second component comprising at least one selected from manganese oxide and niobium oxide is supported on an inert carrier, and the atomic ratio of metal elements of the supported oxide is Na / V = 0.1 / 10-1.0 / 10, Mo / V = 0.3 / 10-3.0 / 10, and the atomic ratio of at least one element selected from the second component chromium oxide, manganese oxide and niobium oxide is Cr / V = 0.2 / 10 to 2.0 / 10, Mn / V = 0.1 / 10 to 1.5 / 10, Nb
A catalyst for producing pyromellitic dianhydride, which is used in the case of producing pyromellitic dianhydride by vapor-phase oxidation of durene having a range of /V=0.5/10 to 3.0 / 10.
【請求項8】前記不活性担体がα−アルミナまたは炭化
ケイ素である請求項7記載の無水ピロメリット酸製造用
触媒。
8. The catalyst for producing pyromellitic dianhydride according to claim 7, wherein the inert carrier is α-alumina or silicon carbide.
【請求項9】前記不活性担体への触媒成分の担持量が五
酸化バナジウム(重量)/担体(重量)で3〜15%であ
る請求項7記載の無水ピロメリット酸製造用触媒。
9. The catalyst for producing pyromellitic dianhydride according to claim 7, wherein the amount of the catalyst component supported on the inert carrier is 3 to 15% of vanadium pentoxide (weight) / carrier (weight).
【請求項10】請求項7記載の触媒において、第2成分
が酸化ニオブである無水ピロメリット酸製造用触媒。
10. The catalyst for producing pyromellitic dianhydride according to claim 7, wherein the second component is niobium oxide.
JP1040268A 1988-02-24 1989-02-22 Method for producing pyromellitic dianhydride and catalyst used therefor Expired - Lifetime JPH0689002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1040268A JPH0689002B2 (en) 1988-02-24 1989-02-22 Method for producing pyromellitic dianhydride and catalyst used therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-39472 1988-02-24
JP3947288 1988-02-24
JP1040268A JPH0689002B2 (en) 1988-02-24 1989-02-22 Method for producing pyromellitic dianhydride and catalyst used therefor

Publications (2)

Publication Number Publication Date
JPH01294679A JPH01294679A (en) 1989-11-28
JPH0689002B2 true JPH0689002B2 (en) 1994-11-09

Family

ID=26378870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1040268A Expired - Lifetime JPH0689002B2 (en) 1988-02-24 1989-02-22 Method for producing pyromellitic dianhydride and catalyst used therefor

Country Status (1)

Country Link
JP (1) JPH0689002B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5663114A (en) * 1993-10-22 1997-09-02 Nippon Shokubai Co., Ltd. Catalyst for production of pyromellitic anhydride and method for production of pyromellitic anhydride
US5504218A (en) * 1994-04-05 1996-04-02 Nippon Shokubai Co., Ltd. Method for production pyromellitic anhydride
JP2003055382A (en) 2001-08-08 2003-02-26 Nippon Shokubai Co Ltd Method for producing pyromellitic anhydride
CN115591565B (en) * 2022-10-23 2024-03-19 浙江安诺芳胺化学品有限公司 Method for continuously synthesizing pyromellitic dianhydride and catalyst used in method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930821A (en) * 1972-07-04 1974-03-19

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ChemicalAbstracts,92[15,(1977),抄録番号128584k

Also Published As

Publication number Publication date
JPH01294679A (en) 1989-11-28

Similar Documents

Publication Publication Date Title
US4151116A (en) Preparation of maleic anhydride
US4339355A (en) Catalytic oxide of molybdenum, vanadium, niobium and optional 4th metal
JP2654315B2 (en) Catalyst for producing phthalic anhydride and method for producing phthalic anhydride using the same
EP0286448B1 (en) Process for the preparation of phthalic anhydride
US3775474A (en) Process for the preparation of acrylic acid
AU650796B2 (en) Method for production of phthalic anhydride by vapor-phase oxidation of mixture of ortho-xylene with naphthalene
US4767739A (en) Catalyst system for ammoxidation of paraffins
JPH0582261B2 (en)
US4244878A (en) Preparation of maleic anhydride
US4219484A (en) Production of maleic anhydride from four-carbon hydrocarbons using catalysts prepared by water reflux techniques
US4877764A (en) Catalyst system for ammoxidation of paraffins
CA2112140C (en) Process for preparing pyromellitic dianhydride
US4552978A (en) Oxidation of unsaturated aldehydes
US4415752A (en) Process for preparing unsaturated acids with Mo, V, Nb, Fe-containing catalysts
US4925957A (en) Process for producing pyromellitic dianhydride
JPH0689002B2 (en) Method for producing pyromellitic dianhydride and catalyst used therefor
JPS6037108B2 (en) Method for producing phthalic anhydride
US4218382A (en) Production of maleic anhydride from four-carbon hydrocarbons using catalysts prepared by water reflux techniques
US3351565A (en) Catalyst for the preparation of dicarboxylic acid anhydrides
US4810803A (en) Process for improving phosphorus-vanadium oxide and phosphorus vanadium-co-metal oxide catalysts in the oxidation of -butane to maleic anhydride
US4560673A (en) Catalyst for the oxidation of unsaturated aldehydes
JP2592490B2 (en) Aromatic hydrocarbon oxidation method
JP3130681B2 (en) Method for producing phthalic anhydride by gas phase oxidation of a mixture of orthoxylene and naphthalene
US3546139A (en) Molybdenum,niobium,tantalum,arsenic in catalysts for vapor phase production of alpha,beta-unsaturated acids
US3853792A (en) Catalytic metal oxide