JPH0242818B2 - - Google Patents

Info

Publication number
JPH0242818B2
JPH0242818B2 JP59220591A JP22059184A JPH0242818B2 JP H0242818 B2 JPH0242818 B2 JP H0242818B2 JP 59220591 A JP59220591 A JP 59220591A JP 22059184 A JP22059184 A JP 22059184A JP H0242818 B2 JPH0242818 B2 JP H0242818B2
Authority
JP
Japan
Prior art keywords
weight
parts
catalyst
component
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59220591A
Other languages
Japanese (ja)
Other versions
JPS61100543A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59220591A priority Critical patent/JPS61100543A/en
Publication of JPS61100543A publication Critical patent/JPS61100543A/en
Publication of JPH0242818B2 publication Critical patent/JPH0242818B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

〔産業䞊の利甚分野〕 本発明はアントラセンを分子状酞玠含有ガスに
より接觊気盞酞化しおアントラキノンを補造する
方法に関するものである。ずくに、より高められ
たアントラセン分子状酞玠含有ガスの比のもず
で接觊酞化反応を行なわしめ効率よくアントラキ
ノンを補造する方法を提䟛するものである。 〔埓来の技術〕 アントラキノンはアントラセンの接觊気盞酞化
により叀くより補造されおおり、たたその収率も
䟋えば特公昭50−24305号の実斜䟋に瀺されおい
る劂く理論収率の90モル以䞊が達成されおおり
觊媒ずしおの技術的到達床は非垞に高いずいえ
る。 しかしながら、同号実斜䟋からも明らかな劂く
アントラセンの接觊酞化は觊媒性胜䞊これたで非
垞に䜎いアントラセン空気比および非垞に高い
空間速床の条件のもずに行なわれおきた。なぜな
ら、この䜎いアントラセン空気比は反応噚入口
偎のガス組成を燃焌範囲倖ずするために止むを埗
なか぀た方策であるず考えられるからである。 この䜎いアントラセン空気比濃床での接觊酞
化は、その工業的実斜においお熱量的に反応噚枩
床の自立し難いずいう問題点がある。これは䞊蚘
觊媒の遞択性がすぐれおいるため、二酞化炭玠や
䞀酞化炭玠すなちCOxぞの燃焌等の副反応によ
る発熱量が小さいこず、アントラセンよりアント
ラキノンぞの生成熱が141kcalモル皋床ず小さ
いこずにもよるが、倧きな理由ずしおは被酞化物
質の絶察濃床が䜎いこずおよび高い空間速床のた
め倧量の反応ガスが反応噚での生成熱を反応噚倖
に持ち去るこずによるものである。このため実際
の工業的実斜においおは、反応噚での発熱量を確
保する目的で、カルバゟヌル、プナンスレン等
の䞍玔物を倚く含むアントラセンが原料ずしお甚
いられおおり、それら䞍玔物の燃焌反応熱等によ
぀お反応噚枩床が自立可胜な皋床の熱量が確保さ
れおいる。このような察応策のため、生成したア
ントラキノンに倚くの䞍玔物が混入しおき、その
粟補凊理に倚くの工皋を必芁ずする欠点があ぀
た。 酞化反応噚を熱量的に自立させるためにはガス
顕熱量を抑えるべく導通空気量を䜎䞋させるのが
奜たしい。しかし、生産量を確保するためにはそ
の分アントラセン空気比を高めるこずが必芁ず
なる。 しかし、そのような条件の䞋では埓来公知の觊
媒では過床酞化反応が生じ、䟋えば特公昭50−
24305号開瀺の觊媒ではアントラセン空気比33
NM3で105重量以䞊の収率でアントラキノ
ンが埗られおいるもののその比を80NM3に
するず觊媒局の発熱点hot spotが非垞に高く
なり84重量皋床の収率でしかアントラキノンが
埗られないこずが知芋されおいる埌述比范䟋
参照。 〔発明が解決しようずする問題点〕 埓぀お、本発明の目的は、第には、アントラ
セン空気たたは分子状酞玠含有ガスの比が60
NM3以䞊、ずくに80NM3以䞊のアント
ラセン濃床の高いガスを接觊せしめお高収率でア
ントラキノンを埗る觊媒を提䟛するこず、第に
は、それにより反応噚入口ガス組成が燃焌範囲に
入り、その爆発を回避するため採甚する酞玠濃床
が〜15容量ず䜎い堎合でも十分高い掻性ず遞
択率ずを具備せる觊媒を提䟛するこずおよび第
には、第および第の目的を達成するための実
際の工業的実斜方法を提䟛するこずである。 〔問題点を解決するための手段〕 先ず、䜎い酞玠濃床においおも十分高い掻性を
有する觊媒組成に぀いお怜蚎を加えた結果、五酞
化バナゞりムおよび二酞化チタンを䞻成分ずする
物質にアルカリ金属、タリりム、リン、ニオブを
助觊媒ずしお加えた掻性物質をシリコンカヌバむ
トを䞻成分ずする倚孔性担䜓に担持せしめた觊媒
が原料ガス䞭の酞玠濃床を15容量以䞋、ずくに
10容量以䞋に䜎䞋せしめられた条件においおも
非垞に高い掻性の有するこずが芋いだされた。た
た、このような觊媒系においお觊媒局の前段郚分
反応ガスの入口偎にアルカリ金属やタリりム
分の添加量を倚くした觊媒を、埌段郚分に前段郚
分にくらべおアルカリ金属やタリりム分の添加量
を枛少せしめた觊媒を䜿甚した積局觊媒システム
にするこずにより、埓来の觊媒においお実斜され
おいるのにくらべお非垞に高いアントラセン分
子状酞玠含有ガスの割合の高濃床条件においおも
高収率でアントラキノンの埗られるこずが芋い出
された。 より具䜓的には、本発明は以䞋の劂く特定され
うる。 (1) アントラセンを分子状酞玠含有ガスにより接
觊気盞酞化しおアントラキノンを補造するに際
し、前段觊媒ずしお、党觊媒局高の30〜70の
高さに、バナゞりム成分を五酞化バナゞりム
V2O5ずしお〜20重量郚およびチタン成分
を二酞化チタンTiO2ずしお99〜80重量郹
さらにV2O5ずTiO2の合蚈100重量郚に察しお、
リチりム、ナトリりム、カリりム、ルビゞり
ム、セシりムおよびタリりムよりなる矀から遞
ばれた少くずも皮の元玠成分を酞化物
X2Oずしお5.0〜12.0重量郚、リン成分を五
酞化リンP2O5ずしお0.05〜5.0重量郚およ
びニオブ成分を五酞化ニオブNb2O5ずしお
0.05〜5.0重量郚それぞれの範囲含有しおなる
觊媒掻性物質を䞍掻性担䜓に担持せしめおなる
ものを配し、埌段觊媒ずしお、党觊媒局高の残
郚70〜30の高さに、バナゞりム成分をV2O5
ずしお〜20およびチタン成分をTiO2ずし
お99〜80重量郚さらにV2O5ずTiO2の合蚈100
重量郚に察しお、成分をX2Oずしお0.05〜3.0
重量郚、リン成分をP2O5ずしお0.05〜5.0重量
郚およびニオブ成分をNb2O5ずしお0.05〜5.0重
量郚それぞれの範囲含有しおなる觊媒掻性物質
を䞍掻性担䜓に担持せしめおなるものを配しお
なるこずを特城ずするアントラキノンの補造方
法。 (2) 分子状酞玠含有ガスずしお、酞玠〜15容量
、氎分〜10容量、二酞化炭玠〜容量
、䞀酞化炭玠〜重量残郚実質的に窒玠
よりなる組成のガスを䜿甚するこずを特城ずす
る䞊蚘(1)蚘茉の方法。 (3) 䞍掻性担䜓ずしお、アルミニりム分が酞化ア
ルミニりムAl2O3ずしお10重量以䞋、シ
リコンカヌバむド含量が少くずも50重量さら
に芋掛気孔率が少くずも10である倚孔性担䜓
を䜿甚するこずを特城ずする䞊蚘(1)たたは(2)蚘
茉の方法。 以䞋、本発明をさらに詳现に説明する。 本発明においお觊媒原料である二酞化チタンの
結晶圢はずくに限定されず、比衚面積〜50m2
、ずくに〜30m2のアナタヌれ圢、ルチル
圢たたは䞡者の混合物の埮粉末状のものが䜿甚さ
れる。他の觊媒原料、すなわち、バナゞりム、リ
チりム、ナトリりム、カリりム、ルビゞりム、セ
シりム等のアルカリ金属、タリりム、リンおよび
ニオブの出発原料は加熱により分解しお酞化物に
倉化するものであればいずれでもよくアンモニり
ム塩、硝酞塩、硫酞塩、炭酞塩、有機酞塩等より
適宜遞択される。 たた、本発明にかかわる觊媒成分のうち、二酞
化チタンに぀いおはその〜60が比衚面積〜
50m2、ずくに〜30m2の埮粉末状の二酞
化ゞルコニりム、二酞化錫たたは䞡者の混合物で
眮換されおもよく、その他五酞化バナゞりムず二
酞化チタンの䞡者の合蚈100重量郚に察しお酞化
物換算で重量郚たでの合蚈量のアルミニりム、
ケむ玠、鉛、アンチモンクロム、タングステン、
コバルト、鉄、ニツケルおよびたたはマンガン
を添加するこずができる。 䞍掻性担䜓ずしおは、アルフアヌアルミナ、珪
石、石英、シリコンカヌバむド、アルミニりムお
よびマグネシりムの珪酞塩が甚いられるが、奜適
にはアルミニりム分がAl2O3ずしお10重量以
䞋、ずくに重量以䞋およびシリコンカヌバむ
トが50重量以䞊、ずくに80重量以䞊含有しか
぀気孔率が10以䞊、ずくに20以䞊の倚孔性担
䜓が䜿甚される。担䜓の倧きさは〜10mmの平均
盎埄を有する球、リング、サドル状のものが奜た
しい。 觊媒掻性物質の䞍掻性担䜓ぞの担持は埓来公知
の方法で行なわれるが、奜適には、觊媒掻性物質
を溶解せしめた蓚酞たたは他の有機酞溶液に二酞
化チタンを乳化させスラリヌずしたものを150〜
250℃に加熱せられた担䜓䞊に噎霧しお行なわれ
る。このようにしお埗られた担持䜓は空気流通
䞋、400〜550℃の枩床で〜10時間焌成し完成觊
媒ずされる。完成觊媒ずしお、觊媒掻性物質の担
持量は〜150、奜たしくは〜50100c.c.−
担䜓の範囲である。 アントラセンの酞化反応は、内埄20〜40mm、ず
くに25〜30mm、長さ〜、ずくに〜3.5
の管に前段觊媒ず埌段觊媒の総局高が〜ず
なるように充填しお行なわれる。この際、前段觊
媒の局長は党觊媒局高の30〜70が奜たしく残郚
70〜30には埌段觊媒が充填される。反応管は溶
融塩の劂き熱媒槜に浞せきされ、これに分子状酞
玠含有ガスにアントラセンを混合したガスを120
〜150℃に予熱しお酞化反応を行なわしめる。 分子状酞玠含有ガスずしおは空気が䞀般的であ
るが、それ以倖に酞玠〜15容量、氎蒞気〜
10容量、残郚がCO2CO、アルゎンおよびN2
等よりなる䞍掻性ガスからなる混合ガスが䜿甚さ
れる。 そのような空気たたは分子状酞玠含有ガス
1NM3に察しおアントラセンは20〜100、ずく
に60〜80負荷せられ、空間速床1000〜
8000Hr-1ずくに1000〜4000Hr-1で觊媒局に導入
される。反応管は溶融塩により350〜450℃保持さ
れる。 高いアントラセン分子状酞玠含有ガス比で酞
化反応を行なうには、アントラキノンを捕集噚た
たは掗滌塔で捕集したのちの廃ガスの䞀郚を陀湿
たたは陀湿しないで反応噚入口偎にリサむクルし
ブロアヌにより吞匕された新しい空気ず混合し酞
玠濃床を〜15容量、ずくに〜12容量に調
節せしめた分子状酞玠含有ガスずしお䜿甚するの
が工業プロセスずしお安党で䞔぀経枈的である。 このような条件䞋でアントラセンよりアントラ
キノンは100重量以䞊の収率で埗られる。以䞋
実斜䟋を以぀おさらに詳しく説明する。 実斜䟋  è“šé…ž450を氎6400c.c.に溶解させ蓚酞氎溶液ず
し、これにバナゞりム酞アンモニりム201.2、
硫酞セシりム150.6、硫酞カリりム108.5、リ
ン酞二氎玠アンモニりム31.7および塩化ニオブ
19.9を加え溶解せしめた。これに比衚面積20
m2のアナタヌれ型TiO21800を加え撹拌機
で乳化し觊媒スラリヌ液ずした。倖郚加熱匏の盎
埄30cm、長さ50cmの回転ドラム䞭にアルミナ含有
量が重量、シリコンカヌバむド含有量が92重
量、残郚SiO2よりなる芋掛気孔率37の平均
盎埄mmの球状の倚孔性担䜓2000c.c.を入れ200℃
に予熱した。次いでドラムを回転させながら䞊蚘
の觊媒スラリヌ液を噎霧し觊媒掻性物質を10
100c.c.−担䜓の割合で担持せしめた。この担持䜓
を空気流通䞋、540℃の枩床で時間電気炉䞭で
焌成を行ない完成觊媒ずした。これを前段觊媒−
ずする。 前蚘觊媒においお硫酞セシりム25.1、硫酞カ
リりム18.1ずした以倖は同様にしお埗られた觊
媒を埌段觊媒−担持量10100c.c.−担䜓ず
した。前段および埌段觊媒の組成はそれぞれ以䞋
の通りであ぀た。
[Industrial Application Field] The present invention relates to a method for producing anthraquinone by catalytic gas phase oxidation of anthracene with a molecular oxygen-containing gas. In particular, the present invention provides a method for efficiently producing anthraquinone by carrying out a catalytic oxidation reaction at a higher ratio of anthracene/molecular oxygen-containing gas. [Prior art] Anthraquinone has been produced for a long time by catalytic gas phase oxidation of anthracene, and its yield is 90 mol% or more of the theoretical yield, as shown in the example of Japanese Patent Publication No. 50-24305. has been achieved, and it can be said that the technological level of achievement as a catalyst is extremely high. However, as is clear from the Examples of the same issue, the catalytic oxidation of anthracene has hitherto been carried out under conditions of a very low anthracene/air ratio and a very high space velocity in terms of catalytic performance. This is because this low anthracene/air ratio is considered to be an unavoidable measure to keep the gas composition on the inlet side of the reactor out of the flammable range. Catalytic oxidation at a low anthracene/air ratio concentration has a problem in that it is difficult to maintain the reactor temperature calorically in its industrial implementation. This is due to the excellent selectivity of the catalyst, which means that the amount of heat generated by side reactions such as combustion to carbon dioxide and carbon monoxide (COx) is small, and the heat of formation of anthraquinone is approximately 141 kcal/mol rather than anthracene. Although it depends on the small size, the main reason is that the absolute concentration of the substance to be oxidized is low and the high space velocity allows a large amount of reaction gas to carry away the heat generated in the reactor out of the reactor. For this reason, in actual industrial practice, anthracene containing many impurities such as carbazole and phenanthrene is used as a raw material in order to ensure the calorific value in the reactor, and the heat of combustion reaction of these impurities is used as a raw material. A sufficient amount of heat is ensured to allow the reactor temperature to become self-sustaining. Due to such countermeasures, many impurities were mixed into the anthraquinone produced, and the purification process required many steps. In order to make the oxidation reactor calorically independent, it is preferable to reduce the amount of conducting air in order to suppress the amount of sensible heat of the gas. However, in order to ensure production volume, it is necessary to increase the anthracene/air ratio accordingly. However, under such conditions, excessive oxidation reactions occur with conventionally known catalysts, for example,
The catalyst disclosed in No. 24305 has an anthracene/air ratio of 33.
Although anthraquinone was obtained at a yield of 105% by weight or more at g/ NM3 , when the ratio was increased to 80g/ NM3 , the hot spot of the catalyst layer became extremely high, resulting in a yield of about 84% by weight. It is known that anthraquinone can only be obtained using
reference). [Problems to be Solved by the Invention] Therefore, the object of the present invention is, firstly, to provide an anthracene/air or molecular oxygen-containing gas ratio of 60
To provide a catalyst for obtaining anthraquinone in high yield by contacting a gas with a high anthracene concentration of 80 g/NM or more , especially 80 g/NM To provide a catalyst which has sufficiently high activity and selectivity even when the oxygen concentration employed is as low as 5 to 15% by volume in order to avoid explosion.
The purpose of this invention is to provide a practical industrial implementation method for achieving the first and second objectives. [Means for solving the problem] First, as a result of investigating a catalyst composition that has sufficiently high activity even at low oxygen concentrations, we found that alkali metals, thallium, and phosphorus were added to a substance whose main components are vanadium pentoxide and titanium dioxide. , a catalyst in which an active substance containing niobium as a co-catalyst is supported on a porous carrier mainly composed of silicon carbide reduces the oxygen concentration in the raw material gas to 15% by volume or less, especially
It was found that the activity was extremely high even under conditions where the concentration was reduced to 10% by volume or less. In addition, in such a catalyst system, it is possible to add a catalyst with a higher amount of alkali metal or thallium added to the front part of the catalyst layer (the inlet side of the reaction gas), and add a catalyst with a higher amount of alkali metal or thallium added to the rear part than in the front part. By using a stacked catalyst system with a reduced amount of catalyst, high yields can be obtained even in high concentration conditions with much higher anthracene/molecular oxygen-containing gas ratios than is achieved with conventional catalysts. It was discovered that anthraquinone can be obtained by More specifically, the present invention can be specified as follows. (1) When producing anthraquinone by catalytic gas phase oxidation of anthracene with a molecular oxygen-containing gas, the vanadium component is replaced with vanadium pentoxide (V 2 1 to 20 parts by weight as O 5 ), 99 to 80 parts by weight as titanium dioxide (TiO 2 ), and 100 parts by weight of V 2 O 5 and TiO 2 in total,
5.0 to 12.0 parts by weight of at least one element (X) selected from the group consisting of lithium, sodium, potassium, rubidium, cesium, and thallium as an oxide (X 2 O), and phosphorus component as phosphorus pentoxide ( 0.05 to 5.0 parts by weight as P 2 O 5 ) and niobium component as niobium pentoxide (Nb 2 O 5 )
A catalytically active material containing 0.05 to 5.0 parts by weight of each catalyst is supported on an inert carrier, and a vanadium component is placed as a subsequent catalyst at a height of 70 to 30% of the total catalyst layer height. V 2 O 5
1 to 20% as titanium component and 99 to 80 parts by weight as TiO 2 and a total of 100 parts of V 2 O 5 and TiO 2
Based on weight part, X component is 0.05 to 3.0 as X 2 O
A catalytically active substance containing a phosphorus component in the range of 0.05 to 5.0 parts by weight as P 2 O 5 and a niobium component in the range of 0.05 to 5.0 parts by weight as Nb 2 O 5 is supported on an inert carrier. A method for producing anthraquinone, characterized by arranging. (2) As a molecular oxygen-containing gas, a gas having a composition consisting of 5 to 15% by volume of oxygen, 5 to 10% by volume of water, 0 to 4% by volume of carbon dioxide, and 0 to 2% by weight of carbon monoxide, the balance being essentially nitrogen. The method described in (1) above, which is characterized by using. (3) As an inert support, a porous support having an aluminum content of not more than 10% by weight as aluminum oxide (Al 2 O 3 ), a silicon carbide content of at least 50% by weight, and an apparent porosity of at least 10%. The method described in (1) or (2) above, which is characterized in that the method is used. The present invention will be explained in more detail below. In the present invention, the crystal form of titanium dioxide, which is a catalyst raw material, is not particularly limited, and has a specific surface area of 1 to 50 m 2 /
g, especially from 1 to 30 m 2 /g of anatase form, rutile form or a mixture of both in fine powder form. Other catalyst materials, i.e., alkali metals such as vanadium, lithium, sodium, potassium, rubidium, cesium, thallium, phosphorus, and niobium, may be any starting materials that decompose into oxides when heated. It is appropriately selected from salts, nitrates, sulfates, carbonates, organic acid salts, etc. Furthermore, among the catalyst components related to the present invention, 0 to 60% of titanium dioxide has a specific surface area of 1 to 1.
50 m 2 /g, in particular from 1 to 30 m 2 /g, may be substituted with finely powdered zirconium dioxide, tin dioxide or a mixture of both, based on a total of 100 parts by weight of both vanadium pentoxide and titanium dioxide. Aluminum in a total amount of up to 3 parts by weight calculated as oxides,
silicon, lead, antimony chromium, tungsten,
Cobalt, iron, nickel and/or manganese can be added. As the inert carrier, alpha alumina, silica, quartz, silicon carbide, silicates of aluminum and magnesium are used, but aluminum content is preferably 10% by weight or less, especially 5% by weight or less as Al 2 O 3 and A porous carrier containing 50% by weight or more, especially 80% by weight or more of silicon carbide and having a porosity of 10% or more, especially 20% or more is used. The size of the carrier is preferably spherical, ring or saddle shaped with an average diameter of 3 to 10 mm. The catalytically active substance is supported on the inert carrier by a conventionally known method, but preferably titanium dioxide is emulsified in an oxalic acid or other organic acid solution in which the catalytically active substance is dissolved, and a slurry is prepared. ~
It is carried out by spraying onto a carrier heated to 250°C. The support thus obtained is calcined under air circulation at a temperature of 400 to 550°C for 1 to 10 hours to obtain a finished catalyst. As a finished catalyst, the supported amount of catalytically active material is 3 to 150 g, preferably 8 to 50 g/100 c.c.
carrier range. The oxidation reaction of anthracene is carried out with an inner diameter of 20 to 40 mm, especially 25 to 30 mm, and a length of 1 to 5 m, especially 3 to 3.5 m.
The first stage catalyst and the second stage catalyst are packed in a tube so that the total bed height is 2 to 3 m. At this time, the layer length of the front catalyst is preferably 30 to 70% of the total catalyst layer height.
70-30% is filled with post-catalyst. The reaction tube is immersed in a heat medium tank such as molten salt, and a gas containing anthracene mixed with a molecular oxygen-containing gas is added at 120° C.
Preheat to ~150°C to carry out the oxidation reaction. Air is generally used as the molecular oxygen-containing gas, but other gases include 5-15% by volume of oxygen and 0-15% water vapor.
10% by volume, balance CO 2 , CO, argon and N 2
A mixed gas consisting of an inert gas consisting of, etc. is used. such air or molecular oxygen-containing gases;
20 to 100 g of anthracene, especially 60 to 80 g, is loaded to 1NM3 , and the space velocity is 1000 to 1000 g.
It is introduced into the catalyst layer at 8000 Hr -1 , especially from 1000 to 4000 Hr -1 . The reaction tube is maintained at 350-450°C with molten salt. In order to carry out the oxidation reaction with a high anthracene/molecular oxygen-containing gas ratio, a part of the waste gas after collecting anthraquinone in a collector or washing tower is dehumidified or recycled to the reactor inlet side without dehumidification. It is safe and economical as an industrial process to mix it with fresh air drawn in and use it as a molecular oxygen-containing gas whose oxygen concentration is adjusted to 5 to 15% by volume, particularly 8 to 12% by volume. Under such conditions, anthraquinone can be obtained from anthracene in a yield of over 100% by weight. The present invention will be explained in more detail below using examples. Example 1 450 g of oxalic acid was dissolved in 6400 c.c. of water to make an oxalic acid aqueous solution, and to this was added 201.2 g of ammonium vanadate,
150.6 g of cesium sulfate, 108.5 g of potassium sulfate, 31.7 g of ammonium dihydrogen phosphate and niobium chloride
19.9g was added and dissolved. This has a specific surface area of 20
1800 g of anatase type TiO 2 of m 2 /g was added and emulsified using a stirrer to obtain a catalyst slurry. In an externally heated rotating drum with a diameter of 30 cm and a length of 50 cm, a spherical material with an average diameter of 5 mm and an apparent porosity of 37%, consisting of 3% by weight of alumina, 92% by weight of silicon carbide, and the balance SiO 2 was placed. Add porous carrier 2000c.c. and heat to 200℃
preheated to. Next, while rotating the drum, the above catalyst slurry liquid was sprayed to add 10g/10g of the catalytically active material.
It was loaded at a ratio of 100 c.c.-carrier. This support was calcined in an electric furnace at a temperature of 540° C. for 6 hours under air circulation to obtain a completed catalyst. This is the front stage catalyst
Let it be A. A catalyst obtained in the same manner as above, except that 25.1 g of cesium sulfate and 18.1 g of potassium sulfate were used in the above catalyst, was used as post-catalyst-B (carrying amount: 10 g/100 c.c.-carrier). The compositions of the front and rear catalysts were as follows.

【衚】 溶融塩济に浞された内埄25mm、長さの管に
先ず觊媒−を1.5の局高に充填し、次いでそ
の䞊にの高さに觊媒−を充填し枩床を360
℃に保぀た。これに酞玠10容量、氎蒞気容量
、窒玠85容量よりなる混合ガス1NM3にアン
トラセン玔床98.585を負荷させ150℃に
予熱された混合ガスを空間速床2000Hr-1で導き
反応を行なわしめたずころ、108.5重量の収率
でアントラキノンが埗られた。 実斜䟋  二酞化チタンずしお比衚面積m2のルチル
圢結晶品を甚いたこず、アルカリ金属化合物ずし
お炭酞ルビゞりムおよび硝酞カリりムを甚いたこ
ず、担䜓ずしお酞化マグネシりムMgO重
量、SiO27重量、シリコンカヌバむド89重量
よりなる芋掛気孔率42の盎埄mmの球状の倚
孔性担䜓を甚いたこずおよび觊媒掻性物質の担持
量を12100c.c.−担䜓ずしたこず以倖は実斜䟋
ず同様にしお以䞋の觊媒およびを調補し
た。
[Table] A tube with an inner diameter of 25 mm and a length of 3 m immersed in a molten salt bath was first filled with catalyst-B to a bed height of 1.5 m, and then catalyst-A was packed on top of it to a height of 1 m, and the temperature was increased. 360
It was kept at ℃. To this, 85 g of anthracene (purity 98.5%) was loaded onto a mixed gas of 1 NM 3 consisting of 10 volume % oxygen, 5 volume % water vapor, and 85 volume % nitrogen, and the mixed gas preheated to 150°C was introduced at a space velocity of 2000 Hr -1 for reaction. As a result, anthraquinone was obtained with a yield of 108.5% by weight. Example 2 A rutile crystal with a specific surface area of 5 m 2 /g was used as titanium dioxide, rubidium carbonate and potassium nitrate were used as alkali metal compounds, 4% by weight of magnesium oxide (MgO) and 7% by weight of SiO 2 were used as carriers. %, silicon carbide 89% by weight, a spherical porous carrier with an apparent porosity of 42% and a diameter of 6 mm, and the amount of catalytically active material supported was 12 g/100 c.c. Catalysts C and D below were prepared in the same manner as in Example 1.

【衚】 溶融塩济に浞された内埄27mm、長さの管に
埌段觊媒−を1.25、その䞊に前段觊媒−を
1.25積局に充填し410℃に保持した反応管䞊郚
より酞玠濃床容量、氎蒞気10容量、二酞化
炭玠容量、䞀酞化炭玠容量および窒玠78
容量よりなる混合ガスを98.5玔床のアントラ
センを100NM3の割合で負荷させ150℃に予
熱したのち空間速床2000Hr-1で導き反応を行な
わしめたずころ、107.6重量の収率でアントラ
キノンが埗られた。 実斜䟋  実斜䟋におけるず同様な方法で觊媒構成原料
ずしお比衚面積がm2でアナタヌれルチル
の比が3268である二酞化チタン、比衚面積が
3.5m2の二酞化錫、バナゞン酞アンモニりム、
リン酞二氎玠アンモニりム、塩化ニオブ、硝酞ナ
トリりム、硝酞タリりムおよび芋掛気孔率35、
玔床98のSiC自焌結担䜓を甚いお以䞋の觊媒を
調補した。なお、担持率は前埌段觊媒ずもに15
100c.c.−担䜓であ぀た。
[Table] In a tube with an inner diameter of 27 mm and a length of 3 m immersed in a molten salt bath, 1.25 m of post-catalyst D was placed, and above that, pre-catalyst C was placed.
Oxygen concentration 8% by volume, water vapor 10% by volume, carbon dioxide 3% by volume, carbon monoxide 1% by volume and nitrogen 78% from the top of the reaction tube packed in a 1.25m stack and maintained at 410°C.
% by volume was loaded with 98.5% pure anthracene at a ratio of 100 g/NM 3 , preheated to 150°C, and then introduced at a space velocity of 2000 Hr -1 to carry out the reaction. As a result, anthraquinone was produced with a yield of 107.6% by weight. was gotten. Example 3 In the same manner as in Example 1, titanium dioxide with a specific surface area of 4 m 2 /g and an anatase/rutile ratio of 32/68 and a specific surface area of
3.5 m 2 /g of tin dioxide, ammonium vanadate,
Ammonium dihydrogen phosphate, niobium chloride, sodium nitrate, thallium nitrate and apparent porosity 35%,
The following catalyst was prepared using a SiC self-sintering carrier with a purity of 98%. The loading rate is 15 for both the front and rear stage catalysts.
g/100 c.c.-carrier.

【衚】 溶融塩济に浞された内埄27mm、長さの管に
埌段觊媒−を、その䞊に前段觊媒−を
1.5の高さに積局に充填し415℃に保持した。 反応管䞊郚より酞玠濃床容量、氎蒞気容
量および窒玠87容量よりなる合成ガスに、玔
床98.5のアントラセンを70NM3の割合で
負荷させたガスを150℃に予熱したのち空間速床
2500Hr-1で觊媒局に導き反応を行なわしめたず
ころ105.3重量の収率でアントラキノンが埗ら
れた。 実斜䟋  二酞化チタンずしお比衚面積m2のルチル
含有率60、アナタヌれ含有量40のものを䜿甚
したこず、アルカリ金属化合物ずしお炭酞リチり
ム、炭酞ナトリりム、硫酞セシりムおよび硫酞カ
リりムを䜿甚したこず、担䜓ずしお倖埄mm、内
埄mmおよび長さmmのリング状の気孔率35の
シリコンカヌバむド自焌結品を䜿甚したこずおよ
び担持率を8.5100c.c.−担䜓にしたこず以倖は
実斜䟋におけるのず同じ觊媒原料を䜿甚し、た
た同じ方法で以䞋の觊媒およびを調補した。
[Table] In a tube with an inner diameter of 27 mm and a length of 3 m immersed in a molten salt bath, 1 m of post-catalyst F was placed, and above that, pre-catalyst E was placed.
It was packed in layers at a height of 1.5 m and maintained at 415°C. From the upper part of the reaction tube, a synthesis gas containing 8% by volume of oxygen, 5% by volume of water vapor, and 87% by volume of nitrogen was loaded with anthracene with a purity of 98.5% at a ratio of 70 g/NM 3 and was preheated to 150°C and then poured into the space. speed
When the mixture was introduced into a catalyst layer and reacted at 2500 Hr -1 , anthraquinone was obtained with a yield of 105.3% by weight. Example 4 Titanium dioxide with a specific surface area of 9 m 2 /g, 60% rutile content, and 40% anatase content was used, and the alkali metal compounds used were lithium carbonate, sodium carbonate, cesium sulfate, and potassium sulfate. , except that a ring-shaped self-sintered silicon carbide product with an outer diameter of 8 mm, an inner diameter of 4 mm, and a length of 8 mm with a porosity of 35% was used as the carrier, and the support rate was set to 8.5 g/100 c.c. Catalysts G and H below were prepared using the same catalyst raw materials and in the same manner as in Example 1.

〔発明の効果〕〔Effect of the invention〕

本発明方法により実斜䟋〜に瀺す劂くアン
トラセンの濃床を埓来の倍以䞊に高めお操業す
るこずが可胜になり収率も䜎ガス濃床の堎合にく
らべおほが同皋床達成されおおり、小量の空気た
たは分子状酞玠含有ガスの送颚により倧量のアン
トラセンの酞化が行なわれるため、高い省゚ネル
ギヌメリツトが埗られるようにな぀た。たた、酞
玠濃床が15容量以䞋である分子状酞玠含有ガス
を酞化剀ずしおも高い掻性の有する觊媒が䜿甚さ
れるため、アントラセン含有量を高めるず同時
に、その混合ガスの燃焌の危険性を回避するため
の、䞍掻性ガスである廃ガスをリサむクルするプ
ロセスの採甚も可胜ずな぀た。 たた、このような積局化觊媒により觊媒局の熱
点hot spotの高さが倧きく抑制されるため、
觊媒の熱劣化が軜枛され、觊媒寿呜が長くなる利
点がある。䟋えば特公昭50−24305号実斜䟋によ
る觊媒は、本発明觊媒よりは枩和な条件で䜿甚さ
れるのにも拘らず、その䞀定期間埌の本発明觊媒
の収率䜎䞋床をずした堎合、特公昭50−24305
号実斜䟋觊媒の収率䜎䞋床は、本発明觊媒のそれ
の玄1.5〜ずなる。
As shown in Examples 1 to 4, the method of the present invention makes it possible to operate with an anthracene concentration more than twice that of the conventional method, and the yield is almost the same as in the case of a low gas concentration. Since a large amount of anthracene can be oxidized by blowing a small amount of air or molecular oxygen-containing gas, a high energy saving advantage can be obtained. In addition, a catalyst with high activity is used as an oxidizing agent for molecular oxygen-containing gas with an oxygen concentration of 15% by volume or less, thereby increasing the anthracene content and at the same time avoiding the danger of combustion of the mixed gas. It has also become possible to adopt a process that recycles waste gas, which is an inert gas. In addition, because such a stacked catalyst greatly suppresses the height of the hot spot in the catalyst layer,
This has the advantage of reducing thermal deterioration of the catalyst and extending the life of the catalyst. For example, although the catalyst according to the example of Japanese Patent Publication No. 50-24305 is used under milder conditions than the catalyst of the present invention, if the degree of yield reduction of the catalyst of the present invention after a certain period of time is 1, Tokuko Showa 50-24305
The degree of yield reduction of the catalyst of Example No. is about 1.5 to 2 times that of the catalyst of the present invention.

Claims (1)

【特蚱請求の範囲】  アントラセンを分子状酞玠含有ガスにより接
觊気盞酞化しおアントラキノンを補造するに際
し、前段觊媒ずしお、党觊媒局高の30〜70の高
さに、バナゞりム成分を五酞化バナゞりム
V2O5ずしお〜20重量郚およびチタン成分を
二酞化チタンTiO2ずしお99〜80重量郚さら
にV2O5ずTiO2の合蚈100重量郚に察しお、リチ
りム、ナトリりム、カリりム、ルビゞりム、セシ
りムおよびタリりムよりなる矀から遞ばれた少く
ずも皮の元玠成分を酞化物X2Oずし
お5.0〜12.0重量郚、リン成分を五酞化リン
P2O5ずしお0.05〜5.0重量郚およびニオブ成分
を五酞化ニオブNb2O5ずしお0.05〜5.0重量郹
それぞれの範囲含有しおなる觊媒掻性物質を䞍掻
性担䜓に担持せしめおなるものを配し、埌段觊媒
ずしお、党觊媒局高の残郚70〜30の高さに、バ
ナゞりム成分をV2O5ずしお〜20重量および
チタン成分をTiO2ずしお99〜80重量郚さらに
V2O5ずTiO2の合蚈100重量郚に察しお、成分
をX2Oずしお0.05〜3.0重量郚、リン成分をP2O5
ずしお0.05〜5.0重量郚およびニオブ成分をNb2O5
ずしお0.05〜5.0重量郚それぞれの範囲含有しお
なる觊媒掻性物質を䞍掻性担䜓に担持せしめおな
るものを配しおなるこずを特城ずするアントラキ
ノンの補造方法。  分子状酞玠含有ガスずしお、酞玠〜15容量
、氎分〜10容量、二酞化炭玠〜容量
、䞀酞化炭玠〜容量残郚実質的に窒玠よ
りなる組成のガスを䜿甚するこずを特城ずする特
蚱請求の範囲蚘茉の方法。  䞍掻性担䜓ずしお、アルミニりム分が酞化ア
ルミニりムAl2O3ずしお10重量以䞋、シリ
コンカヌバむド含量が少くずも50重量さらに芋
掛気孔率が少くずも10である倚孔性担䜓を䜿甚
するこずを特城ずする特蚱請求の範囲たたは
蚘茉の方法。
[Claims] 1. When producing anthraquinone by catalytic gas phase oxidation of anthracene with a molecular oxygen-containing gas, a vanadium component is pentoxidized as a pre-stage catalyst at a height of 30 to 70% of the total catalyst layer height. 1 to 20 parts by weight of vanadium (V 2 O 5 ) and 99 to 80 parts by weight of titanium component as titanium dioxide (TiO 2 ), and lithium, sodium, 5.0 to 12.0 parts by weight of at least one element (X) selected from the group consisting of potassium, rubidium, cesium, and thallium as an oxide (X 2 O), and the phosphorus component as phosphorus pentoxide (P 2 O 5 ) and 0.05 to 5.0 parts by weight of a niobium component as niobium pentoxide (Nb 2 O 5 ) are supported on an inert carrier, As a post-catalyst, a vanadium component of 1 to 20% by weight as V 2 O 5 and a titanium component as TiO 2 of 99 to 80 parts by weight are added to the height of the remaining 70 to 30% of the total catalyst layer height.
For a total of 100 parts by weight of V 2 O 5 and TiO 2 , the X component is 0.05 to 3.0 parts by weight as X 2 O, and the phosphorus component is P 2 O 5
As 0.05~5.0 parts by weight and niobium component Nb 2 O 5
1. A method for producing anthraquinone, comprising: supporting an inert carrier with a catalytically active substance containing 0.05 to 5.0 parts by weight of anthraquinone. 2. As the molecular oxygen-containing gas, use a gas with a composition consisting of 5 to 15% by volume of oxygen, 5 to 10% by volume of water, 0 to 4% by volume of carbon dioxide, and 0 to 2% by volume of carbon monoxide, the balance being essentially nitrogen. The method according to claim 1, characterized in that: 3. As an inert support, use a porous support having an aluminum content of not more than 10% by weight as aluminum oxide (Al 2 O 3 ), a silicon carbide content of at least 50% by weight, and an apparent porosity of at least 10%. Claim 1 or 2 characterized in that
Method described.
JP59220591A 1984-10-22 1984-10-22 Production of anthraquinone Granted JPS61100543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59220591A JPS61100543A (en) 1984-10-22 1984-10-22 Production of anthraquinone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59220591A JPS61100543A (en) 1984-10-22 1984-10-22 Production of anthraquinone

Publications (2)

Publication Number Publication Date
JPS61100543A JPS61100543A (en) 1986-05-19
JPH0242818B2 true JPH0242818B2 (en) 1990-09-26

Family

ID=16753374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59220591A Granted JPS61100543A (en) 1984-10-22 1984-10-22 Production of anthraquinone

Country Status (1)

Country Link
JP (1) JPS61100543A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7658937B2 (en) 2004-05-11 2010-02-09 Board Of Trustees Of Michigan State University Anthraquinones and process for the preparation and method of use thereof

Also Published As

Publication number Publication date
JPS61100543A (en) 1986-05-19

Similar Documents

Publication Publication Date Title
US4879387A (en) Method for manufacture of phthalic anhydride
US4481304A (en) Catalyst for producing phthalic anhydride
JP2654315B2 (en) Catalyst for producing phthalic anhydride and method for producing phthalic anhydride using the same
US4356112A (en) Catalyst for production of phthalic anhydride
US4077984A (en) Manufacture of phthalic anhydride from o-xylene or naphthalene
US4665200A (en) Method for preparing pyromellitic acid and/or pyromellitic anhydride
JP2001513091A (en) Method for producing phthalic anhydride and shell catalyst containing titanium-vanadium-cesium therefor
US4046780A (en) Preparation of phthalic anhydride
US3870655A (en) Catalyst for the preparation of anthraquinone
US4469878A (en) Method for manufacture of phthalic anhydride
JPS6037108B2 (en) Method for producing phthalic anhydride
JPH0242818B2 (en)
JP2001064274A (en) Production of phthalic anhydride
JPH0354944B2 (en)
JPS608860B2 (en) Catalyst for phthalic anhydride production
JPH0415020B2 (en)
JP3130681B2 (en) Method for producing phthalic anhydride by gas phase oxidation of a mixture of orthoxylene and naphthalene
JP2933504B2 (en) Method for producing pyromellitic anhydride
JP3298609B2 (en) Catalyst for producing phthalic anhydride and method for producing phthalic anhydride using the same
JPH0413026B2 (en)
JPH04215843A (en) Catalyst for manufacturing phthalic anhydride
JPH0689002B2 (en) Method for producing pyromellitic dianhydride and catalyst used therefor
KR830000350B1 (en) Catalyst for the production of futal anhydride
JP2003012664A (en) Method for producing acid anhydride
JPH0218900B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees