JPS61100543A - Production of anthraquinone - Google Patents

Production of anthraquinone

Info

Publication number
JPS61100543A
JPS61100543A JP59220591A JP22059184A JPS61100543A JP S61100543 A JPS61100543 A JP S61100543A JP 59220591 A JP59220591 A JP 59220591A JP 22059184 A JP22059184 A JP 22059184A JP S61100543 A JPS61100543 A JP S61100543A
Authority
JP
Japan
Prior art keywords
catalyst
weight
parts
anthracene
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59220591A
Other languages
Japanese (ja)
Other versions
JPH0242818B2 (en
Inventor
Yoji Akazawa
赤沢 陽治
Tasuku Nanba
難波 翼
Yoshiyuki Nakanishi
中西 良之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP59220591A priority Critical patent/JPS61100543A/en
Publication of JPS61100543A publication Critical patent/JPS61100543A/en
Publication of JPH0242818B2 publication Critical patent/JPH0242818B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To produce anthraquinone, in high yield and efficiency, in an industrial scale, by the catalytic oxidation of anthracene with a molecular O2 at a specific increased ratio using a laminated catalyst having sufficiently high activity and selectivity even under an O2 concentration to avoid the explosion. CONSTITUTION:The objective compound can be produced by the catalytic oxidation of anthracene with molecular O2, by contacting a mixture of anthracene and O2 having high anthracene concentration, an anthracene/O2 ratio of >=60g/NM<3> and an O2 concentration of 5-15vol% with a laminated catalyst consisting of the former catalyst having a height corresponding to 30-70% of the total height of the catalyst and obtained by supporting a catalytic active substance composed mainly of V2O5 and TiO2 as main components and added with an oxide of at least one element selected from Li, Na, K, Rb, Cs and Tl and containing P2O5 and Nb2O5 on an inert carrier, and the latter catalyst having a height corresponding to the remaining part of the total height and having the same composition as the former catalyst provided that the oxide content is lower than the former catalyst. EFFECT:The height of the hot spot in the contacting layer is suppressed remarkably, the thermal deterioration of the catalyst can be mitigated, and the catalyst life can be prolonged.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアントラセンを分子状酸素含有ガスにより接触
気相酸化してアントラキノンを製造する方法に関するも
のである。とくに、より高められたアシドラセン/分子
状酸素含有ガスの比のもとて接触酸化反応を行なわしめ
効率よくアントラキノンを製造する方法を提供するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing anthraquinone by catalytic gas phase oxidation of anthracene with a molecular oxygen-containing gas. In particular, the present invention provides a method for efficiently producing anthraquinone by carrying out a catalytic oxidation reaction at a higher ratio of acidracene/molecular oxygen-containing gas.

〔従来の技術〕[Conventional technology]

アントラキノンはアントラセンの接触気相酸化により古
くより製造されており、またその収率も例えば特公昭5
0−24305号の実施例に示されている如く理論収率
の90モルチ以上が達成されており触媒としての技術的
到達度は非常に高いといえる。
Anthraquinone has been produced for a long time by catalytic gas phase oxidation of anthracene, and the yield is also low.
As shown in the example of No. 0-24305, a theoretical yield of 90 molt or more was achieved, and it can be said that the technical level of achievement as a catalyst is extremely high.

しかしながら、同号実施例からも明らかな如くアントラ
センの接触酸化は触媒性能上これまで非常に低いアント
ラセン/空気比および非常に高い空間速度の条件のもと
に行なわれてきた。
However, as is clear from the Examples of the same issue, the catalytic oxidation of anthracene has hitherto been carried out under conditions of a very low anthracene/air ratio and a very high space velocity in terms of catalytic performance.

なぜなら、この低いアントラセン/空気比は反応器入口
側のガス組成を燃焼範囲外とするために止むを得なかっ
た方策であると考えられるからである。
This is because this low anthracene/air ratio is considered to be an unavoidable measure to keep the gas composition on the inlet side of the reactor out of the flammable range.

この低いアントラセン/空気比濃度での接触酸化は、そ
の工業的実施において熱量的に反応器温度の自立し難い
という問題点がある。これ 。
Catalytic oxidation at a low anthracene/air ratio concentration has a problem in that it is difficult to maintain the reactor temperature calorically in its industrial implementation. this .

は上記触媒の選択性がすぐれているため、二酸化炭素や
一酸化炭素すなわちCoxへの燃焼等の副反応による発
熱量が小さいこと、アントラセンよりアントラキノンへ
の生成熱がt41kca11モル程度と小さいことにも
よるが、大きな理由としては被酸化物質の絶対濃度が低
いことおよび高い空間速度のため大量の反応ガスが反応
器での生成熱を反応器外に持ち去ることによるものであ
る。このため実際の工業的実施においては、反応器での
発熱量を確保する目的で、カルバゾール、フェナンスレ
ン等の不純物を多く含むアントラセンが原料として用い
られており、それら不純物の燃焼反応熱等によって反応
器温度が自立可能な程度の熱量が確保されている。
Because of the excellent selectivity of the above-mentioned catalyst, the amount of heat generated by side reactions such as combustion to carbon dioxide and carbon monoxide (Cox) is small, and the heat of formation to anthraquinone is smaller than that of anthracene at about t41kca11 mol. However, the major reasons are that the absolute concentration of the oxidized substance is low and the high space velocity causes a large amount of reaction gas to carry away the heat generated in the reactor to the outside of the reactor. For this reason, in actual industrial practice, anthracene containing many impurities such as carbazole and phenanthrene is used as a raw material in order to ensure the calorific value in the reactor, and the heat of combustion reaction of these impurities causes the reactor to react. A sufficient amount of heat is ensured to maintain a self-sustaining temperature.

このような対応策のため、生成したアントラキノンに多
くの不純物が混入してき、その精製処理に多くの工程を
必要とする欠点があった。
Due to such countermeasures, many impurities are mixed into the anthraquinone produced, and the purification process requires many steps.

酸化反応器を熱量的に自立させるためにはガス顕熱量を
抑えるべく導通空気量を低下させるのが好ましい。しか
し、生産量を確保するためにはその分アントラセン/空
気比を高めることが必要となろう しかし、そのような条件の下では従来公知の触媒では過
度酸化反応が生じ、例えば特公昭50−24305号開
示の触媒ではアント2セン/空気比33.9/NM’で
105重量重量上の収率でアントラキノンが得られてい
るもののその比を8017NM3にすると触媒層の発熱
点(hot 5pot )が非常に高くなり84重量%
程度の収率でしかアントラキノンが得られないことが知
見されている(後述比較例1参照)。
In order to make the oxidation reactor calorically independent, it is preferable to reduce the amount of conducting air in order to suppress the amount of sensible heat of the gas. However, in order to secure the production amount, it will be necessary to increase the anthracene/air ratio accordingly. However, under such conditions, conventionally known catalysts will cause excessive oxidation reactions. With the catalyst disclosed in the No. 2 issue, anthraquinone was obtained at a yield of 105% by weight at an anthraquinone/air ratio of 33.9/NM', but when the ratio was increased to 8017NM3, the heating point (hot 5pot) of the catalyst layer was extremely high. increased to 84% by weight
It is known that anthraquinone can be obtained only with a moderate yield (see Comparative Example 1 below).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従って、本発明の目的は、第1には、アントラセン/空
気または分子状酸素含有ガスの比が60I/NMs以上
、とくに80g/NM3以上のアントラセン濃度の高い
ガスを接触せしめて高収率でアントラキノンを得る触媒
を提供すること、第2には、それにより反応器入口ガス
組成が燃焼範囲に入り、その爆発を回避するため採用す
る酸素濃度が5〜15容量チと低い場合でも十分高い活
性と選択率とを具備せる触媒を提供することおよび第3
には、第1および第2の目的を達成するための実際の工
業的実施方法を提供することである。
Therefore, the object of the present invention is, first, to produce anthraquinone in high yield by contacting a gas with a high anthracene concentration in which the ratio of anthracene/air or molecular oxygen-containing gas is 60 I/NMs or more, particularly 80 g/NM3 or more. secondly, it provides a catalyst with sufficiently high activity even when the oxygen concentration employed is as low as 5 to 15 volumes to avoid explosion when the reactor inlet gas composition enters the combustible range; a third aspect of the present invention is to provide a catalyst having a selectivity;
The purpose of this invention is to provide a practical industrial implementation method for achieving the first and second objectives.

〔問題点を解決するための手段〕 先ず、低い酸素濃度においても十分高い活性を有する触
媒組成について検討を加えた結果、五酸化バナジウムお
よび二酸化チタンを主成分とする物質にアルカリ金属、
タリウム、リン、ニオブを助触媒として加えた活性物質
をシリコンカーバイドを主成分とする多孔性担体に担持
せしめた触媒が原料ガス中の酸素濃度を15容量チ以下
、とくに10容量チ以下に低下せしめられた条件におい
ても非常に高い活性の有することが見いだされた。また
、このような触媒系において触媒層の前段部分(反応ガ
スの入口側)にアルカリ金属やタリウム分の添加量を多
くした触媒を、後段部分に前段部分にくらべてアルカリ
金属やタリウム分の添加量を減少せしめた触媒を使用し
た積層触媒システムにすることにより、従来、の触媒に
おいて実施されているのにくらべて非常に高いアントラ
セン/分子状酸素含有ガスの割合の高濃度条件において
も高収率でアントラキノンの得られることが見い出され
た。
[Means for solving the problem] First, as a result of investigating a catalyst composition that has sufficiently high activity even at low oxygen concentrations, we found that a substance whose main components are vanadium pentoxide and titanium dioxide, an alkali metal,
A catalyst in which an active material containing thallium, phosphorus, and niobium as co-catalysts is supported on a porous carrier mainly composed of silicon carbide reduces the oxygen concentration in the raw gas to 15 vol. or less, especially 10 vol. ti or less. It was found that it has very high activity even under the following conditions. In addition, in such a catalyst system, a catalyst with a higher amount of alkali metal or thallium added to the front part of the catalyst layer (on the inlet side of the reaction gas), and a catalyst with a higher amount of alkali metal or thallium added to the rear part than in the front part. By using a stacked catalyst system with a reduced amount of catalyst, high yields can be achieved even at high concentration conditions with much higher anthracene/molecular oxygen-containing gas ratios than are achieved with conventional catalysts. It has been found that anthraquinones can be obtained at a relatively low concentration.

より具体的には、本発明は以下の如く特定されうる。More specifically, the present invention can be specified as follows.

け) アントラセンを分子状酸素含有ガスにより接触伝
相酸化してアントラキノンを製造するに際し、前段触媒
として、全触媒層高の30〜70%の高さに1バナジウ
ム成分を五酸化バナジウム(V2O,)として1〜20
重量部およびチタン成分を二酸化チタン(TiOz)と
して99〜80重量部さらにv20.とTi0zの合計
100重量部に対して、リチウム、ナトリウム、カリウ
ム、ルビジウム、セシウムおよびタリウムよりなる群か
ら選ばれた少くとも1種の元素(X)成分を酸化物(X
20)として5.0〜12.0重量部、リン成分を五酸
化リン(P2O3)として0.05〜5.0重量部およ
びニオブ成分を五酸化ニオブ(Nbt05)として0.
05〜5.0重量部それぞれの範囲含有してなる触媒活
性物質を不活性担体に担持せしめてなるものを配し、後
段触媒として、全触媒層高の残部70〜30%の高さに
、バナジウム成分を■20゜として1〜20重量%およ
びチタン成分をTiO2として99〜80重量部さらに
v20.とTiO2の合計100重量部に対して、X成
分をX、0として0.05〜3.0重量部、リン成分を
P2O5として0.05〜5.0重量部およびニオブ成
分をNb、0.として0.05〜50重量部それぞれの
範囲含有してなる触媒活性物質を不活性担体に担持せし
めてなるものを配してなることを特徴とするアントラキ
ノンの製造方法。
When producing anthraquinone by catalytic phase oxidation of anthracene with a molecular oxygen-containing gas, one vanadium component is added to vanadium pentoxide (V2O,) at a height of 30 to 70% of the total catalyst layer height as a first stage catalyst. as 1-20
parts by weight and titanium component as titanium dioxide (TiOz), 99 to 80 parts by weight, and v20. and Ti0z, at least one element (X) selected from the group consisting of lithium, sodium, potassium, rubidium, cesium, and thallium is added as an oxide (X).
20), 5.0 to 12.0 parts by weight as the phosphorus component, 0.05 to 5.0 parts by weight as phosphorus pentoxide (P2O3), and 0.05 to 5.0 parts as the niobium component as niobium pentoxide (Nbt05).
05 to 5.0 parts by weight of a catalytically active material supported on an inert carrier is arranged as a subsequent catalyst at a height of the remaining 70 to 30% of the total catalyst layer height, The vanadium component is ■1 to 20% by weight based on 20°, the titanium component is 99 to 80 parts by weight as TiO2, and v20. and TiO2, the X component is 0.05 to 3.0 parts by weight as X, 0, the phosphorus component is 0.05 to 5.0 parts by weight as P2O5, and the niobium component is Nb, 0. 1. A method for producing anthraquinone, comprising: supporting an inert carrier with a catalytically active substance containing 0.05 to 50 parts by weight of each anthraquinone.

(2)分子状酸素含有ガスとして、酸素5〜15容量%
、水分5〜10容量%、二酸化炭素O〜4容量容量−酸
化炭素θ〜2容量チ残部実質的に窒素よりなる組成のガ
スを使用することを特徴とする上記(1)記載の方法。
(2) 5 to 15% oxygen by volume as molecular oxygen-containing gas
, 5 to 10% by volume of moisture, O to 4 volumes of carbon dioxide, θ to 2 volumes of carbon oxide, and the remainder essentially nitrogen.

(3)不活性担体として、アルミニウム分が酸化アルミ
ニウム(kites)として10重量%以下、シリコン
カーバイド含量が少くとも500重量部らに見掛気孔率
が少くとも10%である多孔性担体を使用することを特
徴とする上記(11またけ(2)記載の方法。
(3) As an inert carrier, use a porous carrier having an aluminum content of not more than 10% by weight as aluminum oxide (kites), a silicon carbide content of at least 500 parts by weight, and an apparent porosity of at least 10%. The method described in item (11) (2) above, characterized in that:

以下、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明において触媒原料である二酸化チタンの結晶形は
とくに限定されず、比表面積1〜50d / g、とく
に1〜30 nl / 9のアナターゼ形、ルチル形−
または両者の混合物の微粉末状のものが使用される。他
の触媒原料、すなわち、バナジウム、リチウム、ナトリ
ウム、カリウム、ルビジウム、セシウム等のアルカリ金
属、タリウム、リンおよびニオブの出発原料は加熱によ
り分解して酸化物に変化するものであればいずれでもよ
くアンモニウム塩、硝酸塩、硫酸塩、炭酸塩、有機酸塩
等より適宜選択される。
In the present invention, the crystal form of titanium dioxide, which is a catalyst raw material, is not particularly limited, and may be anatase form or rutile form with a specific surface area of 1 to 50 d/g, particularly 1 to 30 nl/9.
Alternatively, a finely powdered mixture of the two may be used. Other catalyst materials, i.e., alkali metals such as vanadium, lithium, sodium, potassium, rubidium, cesium, thallium, phosphorus, and niobium, may be any starting materials that decompose into oxides when heated. It is appropriately selected from salts, nitrates, sulfates, carbonates, organic acid salts, etc.

また、本発明にかかわる触媒成分のうち、二酸化チタン
についてはそのO〜60チが比表面積1〜50ぜ7g、
とくに1〜30ぜ/Iの微粉末状の二酸化ジルコニウム
、二酸化錫または両者の混合物で置換されてもよく、そ
の他五酸化バナジウムと二酸化チタンの両者の合計10
0重量部に対して酸化物換算で3重量部までの合計量の
アルミニウム、ケイ素、鉛、アンチモンクロム、タング
ステン、コバルト、鉄、ニッケルおよび/またはマンガ
ンを添加することができる。
Further, among the catalyst components related to the present invention, titanium dioxide has a specific surface area of 1 to 50 cm, 7 g,
In particular, it may be substituted with 1 to 30 z/I of finely powdered zirconium dioxide, tin dioxide or a mixture of both, and a total of 10% of both vanadium pentoxide and titanium dioxide.
Aluminum, silicon, lead, antimony chromium, tungsten, cobalt, iron, nickel and/or manganese can be added in a total amount of up to 3 parts by weight in terms of oxides based on 0 parts by weight.

不活性担体としては、アルファーアルミナ、珪石、石英
、シリコンカーバイド、アルミニウムおよびマグネシウ
ムの珪酸塩が用いられるが、好適にはアルミニウム分が
k120.として10重量%以下、とくに5重t%以下
およびシリコンカーバイドが50重量−以上、とくに8
0重量%以上含有しかつ気孔率が10%以上、とくに2
0チ以上の多孔性担体が使用される。担体の大きさは3
〜10m1Eの平均直径を有する球、リング、サドル状
のものが好ましい。
As the inert carrier, alpha alumina, silica, quartz, silicon carbide, silicates of aluminum and magnesium are used, preferably with an aluminum content of k120. 10% by weight or less, especially 5% by weight or less, and silicon carbide is 50% by weight or more, especially 8
Contains 0% by weight or more and has a porosity of 10% or more, especially 2
A porous carrier of 0 or more is used. The size of the carrier is 3
Preference is given to spheres, rings, saddle shapes with an average diameter of ~10 m1E.

触媒活性物質の不活性担体への担持は従来公知の方法で
行なわれるが、好適には、触媒活性物質を溶解せしめた
蓚酸または他の有機酸溶液に二酸化チタンを乳化させス
ラリーとしたものを150〜2,50℃に加熱せられた
担体上に噴霧して行なわれる。このようにして得られた
担持体は空気流通下、400〜550℃の温度で1〜1
0時間暁時間完成触媒とされる。完成触媒として、触媒
活性物質の担持量は3〜150JF、好ましくは8〜5
0 Ji’ / 10 G cc−担体の範囲である。
The catalytically active substance is supported on the inert carrier by a conventionally known method, but preferably titanium dioxide is emulsified in an oxalic acid or other organic acid solution in which the catalytically active substance is dissolved to form a slurry. It is carried out by spraying onto a carrier heated to ~2,50°C. The support obtained in this way was heated at a temperature of 400 to 550°C under air circulation to
It is considered as a completed catalyst at 0 hours and dawn hours. As a finished catalyst, the supported amount of catalytically active material is 3 to 150 JF, preferably 8 to 5 JF.
The range is 0 Ji'/10 G cc-carrier.

アントラセンの酸化反応は、内径20〜40罷、とくに
25〜3o11!、長さ1〜5rn1とくに3〜3.5
 ffiの管に前段触媒と後段触媒の総層高が2〜3m
となるように充填して行なわれる。
The oxidation reaction of anthracene is effective for internal diameters of 20 to 40, especially 25 to 3o11! , length 1~5rn1, especially 3~3.5
The total height of the front and rear catalysts in the ffi tube is 2 to 3 m.
This is done by filling it so that it becomes .

が充填される。反応管は溶融塩の如き熱媒槽に浸せきさ
れ、これに分子状酸素含有ガスにアントラセンを混合し
たガスを120〜150℃に予熱して酸化反応を行なわ
しめる。
is filled. The reaction tube is immersed in a heating medium tank such as molten salt, and a gas containing anthracene mixed with a molecular oxygen-containing gas is preheated to 120 to 150° C. to carry out an oxidation reaction.

分子状酸素含有ガスとしては空気が一般的であるが、そ
れ以外に酸素5〜15容量%、水蒸気0〜10容量%、
残部がCO□CO,アルゴンおよびN7等よりなる不活
性ガスからなる混合ガスが使用される。
Air is generally used as the molecular oxygen-containing gas, but other gases include 5 to 15% by volume of oxygen, 0 to 10% by volume of water vapor,
A mixed gas is used, the balance of which is an inert gas such as CO□CO, argon, and N7.

そのような空気または分子状酸素含有ガスINM”に対
してアントラセンは20〜100g、とくに60〜80
9負荷せられ、空間速度1000〜8000Hr’とく
に1000〜4000Hr″で触媒層に導入される。反
応管は溶融塩により350〜450℃保持される。
For such air or molecular oxygen-containing gas INM, the amount of anthracene is 20 to 100 g, especially 60 to 80 g.
9 and introduced into the catalyst layer at a space velocity of 1000 to 8000 Hr', particularly 1000 to 4000 Hr''.The reaction tube is maintained at 350 to 450°C by the molten salt.

高いアントラセン/分子状酸素含有ガス比で酸化反応を
行なうには、アントラキノンを捕集器または洗滌基で捕
集したのちの廃ガスの一部を除湿または除湿しないで反
応器入口側にリサイクルしブロアーにより吸引された新
しい空気と混合し酸素濃度を5〜15容量%、とくに8
〜12容量チに調節せしめた分子状酸素含有ガスとして
使用するのが工業プロセスとして安全、で且り経済的で
ある。
In order to carry out the oxidation reaction with a high anthracene/molecular oxygen-containing gas ratio, a part of the waste gas after collecting anthraquinone with a collector or washing group is dehumidified or recycled to the reactor inlet side without dehumidification. Mix with fresh air sucked in to increase the oxygen concentration to 5 to 15% by volume, especially 8
It is safe and economical for industrial processes to use the molecular oxygen-containing gas adjusted to a volume of ~12 cm.

このような条件下でアントラセンよりアントラキノンは
100重量%以上の収率で得られる。
Under such conditions, anthraquinone can be obtained from anthracene in a yield of 100% by weight or more.

以下実施例を以ってさらに詳しく説明する。A more detailed explanation will be given below with reference to Examples.

実施例1 蓚酸450gを水6400ccに溶解させ蓚酸水溶液と
し、これにバナジウム酸アンモニウム201.2.f、
硫酸セシウム150.6.?、硫酸カリウ410B、5
.9.リン酸二水素アンモニウム31.7gおよび塩化
ニオブ19.9.9を加え溶解せしめた。
Example 1 450 g of oxalic acid was dissolved in 6400 cc of water to obtain an oxalic acid aqueous solution, and 201.2. f,
Cesium sulfate 150.6. ? , potassium sulfate 410B, 5
.. 9. 31.7 g of ammonium dihydrogen phosphate and 19.9.9 g of niobium chloride were added and dissolved.

これに比表面積2o、(7gのアナターゼ型Ti02i
sooIIを加え撹拌機で乳化し触媒スラリー液とした
。外部加熱式の直径3ocIIK、長さ50mの回転ド
ラム中にアルミナ含有量が3重量%、シリコンカーバイ
ド含有量が92重量%、残部5i02よりなる見掛気孔
率37チの平均直径5朋の球状の多孔性担体2000c
cを入れ200℃に予熱した。次いでドラムを回転させ
ながら上記の触媒スラリー液を噴霧し触媒活性物質を1
01 / 1o o cc−担体の割合で担持せしめた
。この担持体を空気流通下、540℃の温度で6時間電
気炉中で焼成を行ない完成触媒とした。これを前段触媒
−人とする。
This has a specific surface area of 2o, (7g of anatase type Ti02i
sooII was added and emulsified using a stirrer to obtain a catalyst slurry liquid. In an externally heated rotary drum with a diameter of 3oc IIK and a length of 50 m, a spherical material with an apparent porosity of 37 cm and an average diameter of 5 mm, consisting of an alumina content of 3% by weight, a silicon carbide content of 92% by weight, and the balance 5i02 was placed. porous carrier 2000c
c and preheated to 200°C. Next, while rotating the drum, the above catalyst slurry liquid was sprayed to form a catalyst active substance of 1
It was supported at a ratio of 01/1 o o cc-carrier. This support was calcined in an electric furnace at a temperature of 540° C. for 6 hours under air circulation to obtain a completed catalyst. This is referred to as the front stage catalyst - person.

前記触媒において硫酸セシウム25.1 N 、硫酸カ
リウム1 B、 1.9とした以外は同様にして得られ
た触媒を後段触媒−B(担持量1011/100CC−
担体)とした。前段および後段触媒の組成はそれぞれ以
下の通りであった。
A catalyst obtained in the same manner except that the catalyst was changed to 25.1 N of cesium sulfate, 1 B of potassium sulfate, and 1.9 to
carrier). The compositions of the front and rear catalysts were as follows.

V2O3−T t02− Cs2O−に20−P2O3
−Nb205前段触媒−A   8  92   6 
 3  1   o、s(重数比)後段触媒−B   
8  92   1  0.5  1  0.5(#)
溶融塩浴に浸された内径25間、長さ3mの管に先ず触
媒−Bを1.5mの層高に充填し、次いでその上に1m
の高さに触媒−Aを充填し温度を360℃に保った。こ
れに酸素10容量%、水蒸気5容量%、窒素85容量チ
よりなる混合ガスI NM’にアントラセン(純度98
.5チ)85Iを負荷させtSO℃に予熱された混合ガ
スを空間速度2000 Hr−’で導き反応を行なわし
めたところ、108.5重t%の収率でアントラキノン
が得られた。
V2O3-T t02- Cs2O- to 20-P2O3
-Nb205 front stage catalyst-A 8 92 6
3 1 o, s (weight ratio) latter stage catalyst-B
8 92 1 0.5 1 0.5 (#)
A tube with an inner diameter of 25 mm and a length of 3 m, immersed in a molten salt bath, was first filled with catalyst-B to a bed height of 1.5 m, and then 1 m of catalyst-B was added on top of it.
Catalyst-A was filled to a height of 360° C. and the temperature was maintained at 360°C. To this, a mixed gas INM' consisting of 10% by volume of oxygen, 5% by volume of water vapor, and 85% by volume of nitrogen was added to anthracene (purity 98%).
.. 5 h) When a mixed gas loaded with 85I and preheated to tSO°C was introduced at a space velocity of 2000 Hr-' to carry out a reaction, anthraquinone was obtained with a yield of 108.5% by weight.

実施例2 二酸化チタンとして比表面積57Fl′/Ilのルチル
形結晶品を用いたこと、アルカリ金属化合物として炭酸
ルビジウムおよび硝酸カリウムを用いたこと、担体とし
て酸化マグネシウム(MgO)4重量%、5i027重
t%、シリコンカーバイド89重量%よりなる見掛気孔
率42チの直径6趨の球状の多孔性担体を用いたことお
よび触媒活性物質の担持量を121 / 100 cc
−担体としたこと以外は実施例1と同様にして以下の触
媒CおよびDを調製した。
Example 2 A rutile crystal with a specific surface area of 57Fl'/Il was used as titanium dioxide, rubidium carbonate and potassium nitrate were used as the alkali metal compounds, and 4% by weight of magnesium oxide (MgO) and 5i027% by weight were used as carriers. , a spherical porous carrier with an apparent porosity of 42 cm and six diameters, made of 89% by weight of silicon carbide, and a supported amount of catalytically active material of 121/100 cc were used.
-The following catalysts C and D were prepared in the same manner as in Example 1 except that they were used as carriers.

V2O5−T i02− Rb2O−B20− P2O
5−Nb、o。
V2O5-T i02- Rb2O-B20- P2O
5-Nb,o.

前段触媒−059510221 後段触媒−05950,50,532 溶融塩浴に浸された内径27mm、長さ3mの管に後段
触媒−Dを1.25 m、その上に前段触媒−Cを1.
2577L積層に充填し410℃に保持した反応管上部
より酸素濃度8容量%、水蒸気10容量%、二酸化炭素
3容量%、−酸化炭素1容量チおよび窒素78容量チよ
りなる混合ガスを98.5 %純度のアントラセンを1
ooy/NM3の割合で負荷させ150℃に予熱したの
ち空間速度2000Hr’で導き反応を行なわしめたと
ころ% 107.6重−t%の収率でアントラキノンが
得られた。
First stage catalyst - 059510221 Second stage catalyst - 05950,50,532 1.25 m of second stage catalyst - D was placed in a tube with an inner diameter of 27 mm and a length of 3 m immersed in a molten salt bath, and 1.25 m of first stage catalyst - C was placed on top of it.
From the upper part of the reaction tube packed in a 2577L stack and maintained at 410°C, a mixed gas of 8% by volume of oxygen, 10% by volume of water vapor, 3% by volume of carbon dioxide, 1 volume of -carbon oxide and 78 volumes of nitrogen was added at 98.5%. % purity of anthracene
After preheating to 150 DEG C. and carrying out the reaction at a space velocity of 2000 Hr', anthraquinone was obtained with a yield of 107.6 wt%.

実施例3 実施例1におけると同様な方法で触媒構成原料として比
表面積が4 i / Iでアナターゼ/ルチルの比が3
2 / 68である二酸化チタン、比・表面積が3. 
s m” / 9の二酸化錫、バナジン酸アンモニウム
、リン酸二水素アンモニウム、塩化ニオブ、硝酸ナトリ
ウム、硝酸タリウムおよび見掛気孔率35%、純度98
1sのSiC自焼結担体を用いて以下の触媒を調製した
。なお、担持率は前後段触媒ともK 1511 / 1
00 CC−担体であった。
Example 3 Using the same method as in Example 1, using catalyst constituent raw materials with a specific surface area of 4 i / I and an anatase/rutile ratio of 3
Titanium dioxide with a ratio of 2/68 and a surface area of 3.
s m”/9 tin dioxide, ammonium vanadate, ammonium dihydrogen phosphate, niobium chloride, sodium nitrate, thallium nitrate and apparent porosity 35%, purity 98
The following catalyst was prepared using a 1s SiC self-sintering carrier. The loading ratio for both the front and rear catalysts is K 1511/1.
00 CC-carrier.

v、o、 :’l” to、 : 8nO1:Na2O
:’rz、o :p、o、 :Nb 2O。
v, o, :'l'' to, : 8nO1:Na2O
:'rz,o :p,o, :Nb2O.

前段触媒−B1258  30  1  10  1 
  1後段触媒−F1258  30  1   2 
 1  1溶融塩浴に浸された内径27順、長さ3mの
管に後段触媒−Fを1m、その上に前段触媒−Eを1.
577Lの高さに積層に充填し415℃に保持した。
Front stage catalyst-B1258 30 1 10 1
1 Post-stage catalyst-F1258 30 1 2
1 1 Into a tube with an inner diameter of 27 and a length of 3 m immersed in a molten salt bath, 1 m of post-catalyst-F was placed, and 1 m of pre-catalyst-E was placed on top of it.
The stack was packed to a height of 577L and maintained at 415°C.

反応管上部より酸素濃度8容量%、水蒸気5容量チおよ
び窒素87容量チよりなる合成ガスに1純度98.5チ
のアント2センを7017NM’の割合で負荷させたガ
スを150’clC予熱したのち空間速度2500 H
r−”で触媒層に導き反応を行なわしめたところ105
.3重量%の収率でアントラキノンが得られた。
From the upper part of the reaction tube, a synthesis gas consisting of an oxygen concentration of 8% by volume, 5 volumes of water vapor, and 87 volumes of nitrogen was loaded with 98.5% of ant-2-cene at a ratio of 7017 NM', and the gas was preheated to 150' ClC. Later space velocity 2500H
r-" to the catalyst layer and the reaction was carried out, 105
.. Anthraquinone was obtained with a yield of 3% by weight.

実施例4 二酸化チタンとして比表面積9d/yのルチ゛ ル含有
率60%、アナターゼ含有量40%のものを使用したこ
と、アルカリ金属化合物として炭酸リチウム、炭酸ナト
リウム、硫酸セシウムおよび硫酸カリウムを使用したこ
と、担体として外径8朋、内径4罷および長さ8nのリ
ング状の気孔率35チのシリコンカーバイド自焼結品を
使用したことおよび担持率を8.51/ 100CC−
担体にしたこと以外は実施例1におけるのと同じ触媒原
料を使用し、また同じ方法で以下の触媒GおよびHを調
製した。
Example 4 Titanium dioxide with a specific surface area of 9 d/y, rutile content of 60%, and anatase content of 40% was used, and the alkali metal compounds were lithium carbonate, sodium carbonate, cesium sulfate, and potassium sulfate. In particular, a ring-shaped self-sintered silicon carbide product with an outer diameter of 8 mm, an inner diameter of 4 lines, and a length of 8 nm with a porosity of 35 mm was used as the carrier, and the support rate was 8.51/100 CC-.
The following catalysts G and H were prepared using the same catalyst raw materials as in Example 1 and using the same method except that they were used as carriers.

V20* −T 10H” Na to −B20− 
P tOs −Nb、05前段触媒−GIO90180
,50,lV2O1−Ti02−Li20−Ca20−
 P2O5−Nb205後段触媒−H10900,51
0,50,1に後段触媒−Hを177!の層高に、次い
でその上に前後触媒−Gを1.5 mの層高に積層充填
し、温度を385℃に保った。
V20* -T 10H" Na to -B20-
P tOs -Nb, 05 front stage catalyst - GIO90180
,50,lV2O1-Ti02-Li20-Ca20-
P2O5-Nb205 latter stage catalyst-H10900,51
0,50,1 with rear stage catalyst-H at 177! Next, the front and rear catalysts-G were stacked and packed on top of each other to a bed height of 1.5 m, and the temperature was maintained at 385°C.

反応管上部より空気にアントラセン80I/NM3で負
荷させ空間速度3000Hr’で導き、生成ガスは水洗
滌塔に送りアントラキノンを捕集した。洗滌塔の塔頂温
度を30℃に保ち、それより出た廃ガスの71. s 
t4を空気ブロアーにリサイクルしその分空間速度が3
000Hr’になるように空気吸引量を減じた。平衡状
態では入口ガスの組成は酸素10容量%、水蒸気5容量
%、炭酸ガス5.6容量%、一酸化炭素0.4容量チお
よび9素79容量チであり、アントラセン/(空気+循
環ガス)比はs o y / NM3に保たれた。その
平衡状態でのアントラキノン収率は110.5重量%で
あった。
Air was loaded with anthracene 80I/NM3 from the upper part of the reaction tube and led at a space velocity of 3000 Hr', and the generated gas was sent to a water washing column to collect anthraquinone. The top temperature of the washing tower was maintained at 30°C, and the waste gas discharged from it was heated to 71. s
t4 is recycled to the air blower, and the space velocity is 3.
The amount of air suction was reduced to 000 Hr'. At equilibrium, the composition of the inlet gas is 10% by volume of oxygen, 5% by volume of water vapor, 5.6% by volume of carbon dioxide, 0.4% by volume of carbon monoxide, and 79% by volume of nine elements; ) ratio was kept at soy/NM3. The anthraquinone yield at equilibrium was 110.5% by weight.

比較例1 特公昭50−24305号実施例1に従って、次の触媒
を調製した。
Comparative Example 1 The following catalyst was prepared according to Example 1 of Japanese Patent Publication No. 50-24305.

すなわち、水6400ccに蓚酸450Iを溶解して蓚
酸水溶液としメタバナジン酸アンモニウム201.6.
9を加えて加温下溶解した。
That is, oxalic acid 450I was dissolved in 6400 cc of water to prepare an oxalic acid aqueous solution of ammonium metavanadate 201.6.
9 was added and dissolved under heating.

これに硫酸セシウム46.2.9 、硫酸カリウム33
、 O、pを少量の水にとかし上記バナジウム溶液に加
え、50〜60°Cで30分間撹拌した。
This includes cesium sulfate 46.2.9, potassium sulfate 33
, O, and p were dissolved in a small amount of water, added to the above vanadium solution, and stirred at 50 to 60°C for 30 minutes.

この溶液にTi02(ルチル型結晶:アナターゼ型種晶
=95:5重量比でBBT法による表面積7、tm/I
 )xsooiを加え、乳化機を用いて充分混和乳化し
て触媒スラリーを作った。
Add Ti02 (rutile type crystal: anatase type seed crystal = 95:5 weight ratio, surface area 7, tm/I by BBT method) to this solution.
) xsooi was added and thoroughly mixed and emulsified using an emulsifier to prepare a catalyst slurry.

外部より加熱できる直径30c++t、長さ50cIr
Lのステンレス製回転体中に直径3〜5間のSiC担体
2000ccを加え、加熱しながら上記触媒スラリーを
噴霧焼付け、担体上に触媒物質を約91 / 1o o
 cc担体担持させた。つbでマツフル炉内で空気を通
しつつ500℃で8時間焼成した。コノ触媒の組成は、
V2O5: TiO2’ Ca20 ’された内径25
1!1m、長さ377Lの管に2扉の高さに充填し42
0oCK保った。これにアントラセン/空気比が33.
31 / NM”である混合ガスを空間速度5000 
Hr−’で導き反応せしめたところ、110.1重量%
の収率でアントラキノンが得られた。
Diameter 30c++t, length 50cIr that can be heated from the outside
Add 2,000 cc of SiC carrier with a diameter of 3 to 5 into a stainless steel rotating body of L, and spray and bake the catalyst slurry while heating to coat the catalyst material on the carrier at a rate of about 91/1 o
It was supported on a cc carrier. It was baked at 500° C. for 8 hours in a Matsufuru furnace with air passing through. The composition of Kono catalyst is
V2O5: TiO2'Ca20' inner diameter 25
1! A 1m long 377L pipe was filled to the height of 2 doors and 42
Maintained 0oCK. This has an anthracene/air ratio of 33.
31 / NM” at a space velocity of 5000
When induced and reacted with Hr-', 110.1% by weight
Anthraquinone was obtained in a yield of .

次にアントラセン/空気比を801 / NM”と・し
て空間速度2000Hr’で反応を行なわしめたところ
84.5重量%の収率でアントラセンが得られたにすぎ
なかった。空気の替りに実施例3におけると同じ組成の
合成ガスを用いたところ81.3重量%の収率となった
Next, when the anthracene/air ratio was set to 801/NM'' and the reaction was carried out at a space velocity of 2000 Hr', anthracene was obtained with a yield of only 84.5% by weight. Using the same composition of synthesis gas as in Example 3, the yield was 81.3% by weight.

〔発明の効果〕〔Effect of the invention〕

本発明方法により実施例1〜4に示す如くアントラセン
の濃度を従来の2倍以上に高めて操業することが可能に
なり収率も低ガス濃度の場合にくらべてほぼ同程度達成
されており、小量の空気または分子状酸素含有ガスの送
風により大量のアントラセンの酸化が行なわれるため、
高い省エネルギーメリットが得られるようになった。ま
た、酸素濃度が15容量チ以下である分子状酸素含有ガ
スを酸化剤としても高い活性の有する触媒が使用される
ため、アントラセン層含有量を高めると同時に、その混
合ガスの燃焼の危険性を回避するための、不活性ガスで
ある廃ガスをリサイクルするプロセスの採用も可能とな
った。
As shown in Examples 1 to 4, the method of the present invention makes it possible to operate with an anthracene concentration more than twice that of the conventional method, and the yield is almost the same as in the case of a low gas concentration. Since a large amount of anthracene is oxidized by blowing a small amount of air or molecular oxygen-containing gas,
High energy saving benefits can now be obtained. In addition, since a catalyst with high activity is used as an oxidizer for molecular oxygen-containing gas with an oxygen concentration of 15 volumes or less, it increases the anthracene layer content and at the same time reduces the risk of combustion of the mixed gas. To avoid this, it has become possible to adopt a process that recycles waste gas, which is an inert gas.

・また、このような積層化触媒により触媒層の熱点(h
ot 5pot )の高さが大きく抑制されるため、触
媒の熱劣化が軽減され、触媒寿命が長くなる利点がある
。例えば特公昭50−24305号実施例による触媒は
、本発明触媒よりは温和な条件で使用されるのにも拘ら
ず、その一定期間後の収率低下度を1とした場合、本発
明触媒のそれの約1.5〜2となる。
・Also, such a stacked catalyst can reduce the heat point (h) of the catalyst layer.
Since the height of ot 5pot ) is greatly suppressed, there is an advantage that thermal deterioration of the catalyst is reduced and the life of the catalyst is extended. For example, although the catalyst according to the example of Japanese Patent Publication No. 50-24305 is used under milder conditions than the catalyst of the present invention, if the degree of yield decrease after a certain period of time is 1, the catalyst of the present invention is It will be about 1.5 to 2 of that.

特許出願人     日本触媒化学工業株式会社手続補
正書(自発) 昭和39年/7月2グ日 特許庁長官 志 賀   学 厳 1、事件の表示 昭和59年特許H第220591号 2、発明の名称 アントラキノンの製造方法 3、補正をする者
Patent applicant Nippon Shokubai Kagaku Kogyo Co., Ltd. Procedural amendment (voluntary) July 2, 1960 Commissioner of the Japan Patent Office Manabu Shiga 1, Indication of the case 1982 Patent H No. H220591 2, Name of the invention Anthraquinone Manufacturing method 3, person making the correction

Claims (3)

【特許請求の範囲】[Claims] (1)アントラセンを分子状酸素含有ガスにより接触気
相酸化してアントラキノンを製造するに際し、前段触媒
として、全触媒層高の30〜70%の高さに、バナジウ
ム成分を五酸化バナジウム(V_2O_5)として1〜
20重量部およびチタン成分を二酸化チタン(TiO_
2)として99〜80重量部さらにV_2O_5とTi
O_2の合計100重量部に対して、リチウム、ナトリ
ウム、カリウム、ルビジウム、セシウムおよびタリウム
よりなる群から選ばれた少くとも1種の元素(X)成分
を酸化物(X_2O)として5.0〜12.0重量部、
リン成分を五酸化リン(P_2O_5)として0.05
〜5.0重量部およびニオブ成分を五酸化ニオブ(Nb
_2O_5)として0.05〜5.0重量部それぞれの
範囲含有してなる触媒活性物質を不活性担体に担持せし
めてなるものを配し、後段触媒として、全触媒層高の残
部70〜30%の高さに、バナジウム成分をV_2O_
5として1〜20重量%およびチタン成分をTiO_2
として99〜80重量部さらにV_2O_5とTiO_
2の合計100重量部に対して、X成分をX_2Oとし
て0.05〜3.0重量部、リン成分をP_2O_5と
して0.05〜5.0重量部およびニオブ成分をNb_
2O_5として0.05〜5.0重量部それぞれの範囲
含有してなる触媒活性物質を不活性担体に担持せしめて
なるものを配してなることを特徴とするアントラキノン
の製造方法。
(1) When producing anthraquinone by catalytic gas phase oxidation of anthracene with a molecular oxygen-containing gas, the vanadium component is replaced with vanadium pentoxide (V_2O_5) at a height of 30 to 70% of the total catalyst layer height as a first-stage catalyst. As 1~
20 parts by weight and the titanium component were added to titanium dioxide (TiO_
2) as 99 to 80 parts by weight, and further V_2O_5 and Ti
With respect to a total of 100 parts by weight of O_2, at least one element (X) selected from the group consisting of lithium, sodium, potassium, rubidium, cesium, and thallium is added as an oxide (X_2O) of 5.0 to 12 .0 parts by weight,
Phosphorus component is 0.05 as phosphorus pentoxide (P_2O_5)
~5.0 parts by weight and the niobium component were added to niobium pentoxide (Nb
A catalytically active material containing 0.05 to 5.0 parts by weight of each of _2O_5) is supported on an inert carrier, and the remaining 70 to 30% of the total catalyst layer height is used as a subsequent catalyst. Add the vanadium component to the height of V_2O_
5 as 1 to 20% by weight and titanium component as TiO_2
99 to 80 parts by weight as well as V_2O_5 and TiO_
2, the X component is 0.05 to 3.0 parts by weight as X_2O, the phosphorus component is 0.05 to 5.0 parts by weight as P_2O_5, and the niobium component is Nb_
1. A method for producing anthraquinone, which comprises disposing a catalytically active material containing 0.05 to 5.0 parts by weight of 2O_5 on an inert carrier.
(2)分子状酸素含有ガスとして、酸素5〜15容量%
、水分5〜10容量%、二酸化炭素0〜4容量%、一酸
化炭素0〜2容量%残部実質的に窒素よりなる組成のガ
スを使用することを特徴とする特許請求の範囲(1)記
載の方法。
(2) 5 to 15% oxygen by volume as molecular oxygen-containing gas
Claim (1) is characterized in that a gas having a composition of 5 to 10% by volume of water, 0 to 4% by volume of carbon dioxide, and 0 to 2% by volume of carbon monoxide with the remainder substantially nitrogen is used. the method of.
(3)不活性担体として、アルミニウム分が酸化アルミ
ニウム(Al_2O_3)として10重量%以下、シリ
コンカーバイド含量が少くとも50重量%さらに見掛気
孔率が少くとも10%である多孔性担体を使用すること
を特徴とする特許請求の範囲(1)または(2)記載の
方法。
(3) As an inert carrier, use a porous carrier having an aluminum content of 10% by weight or less as aluminum oxide (Al_2O_3), a silicon carbide content of at least 50% by weight, and an apparent porosity of at least 10%. The method according to claim (1) or (2), characterized in that:
JP59220591A 1984-10-22 1984-10-22 Production of anthraquinone Granted JPS61100543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59220591A JPS61100543A (en) 1984-10-22 1984-10-22 Production of anthraquinone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59220591A JPS61100543A (en) 1984-10-22 1984-10-22 Production of anthraquinone

Publications (2)

Publication Number Publication Date
JPS61100543A true JPS61100543A (en) 1986-05-19
JPH0242818B2 JPH0242818B2 (en) 1990-09-26

Family

ID=16753374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59220591A Granted JPS61100543A (en) 1984-10-22 1984-10-22 Production of anthraquinone

Country Status (1)

Country Link
JP (1) JPS61100543A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7658937B2 (en) 2004-05-11 2010-02-09 Board Of Trustees Of Michigan State University Anthraquinones and process for the preparation and method of use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7658937B2 (en) 2004-05-11 2010-02-09 Board Of Trustees Of Michigan State University Anthraquinones and process for the preparation and method of use thereof

Also Published As

Publication number Publication date
JPH0242818B2 (en) 1990-09-26

Similar Documents

Publication Publication Date Title
US4879387A (en) Method for manufacture of phthalic anhydride
JPS603307B2 (en) Method for producing phthalic anhydride
JP5006507B2 (en) Acrylic acid production method
US4665200A (en) Method for preparing pyromellitic acid and/or pyromellitic anhydride
JPS591378B2 (en) Catalyst for phthalic anhydride production
US3870655A (en) Catalyst for the preparation of anthraquinone
JPS6037108B2 (en) Method for producing phthalic anhydride
US4469878A (en) Method for manufacture of phthalic anhydride
JPS61100543A (en) Production of anthraquinone
JP4557378B2 (en) Method for producing phthalic anhydride
JPH0415020B2 (en)
JPS608860B2 (en) Catalyst for phthalic anhydride production
JPH04114745A (en) Catalyst for preparing phthalic anhydride and preparation of phthalic anhydride using the catalyst
JPH0354944B2 (en)
JPS58188834A (en) Preparation of anthraquinone
JPH01245857A (en) Catalyst
JP2933504B2 (en) Method for producing pyromellitic anhydride
JPH0413026B2 (en)
JP3130681B2 (en) Method for producing phthalic anhydride by gas phase oxidation of a mixture of orthoxylene and naphthalene
JP3298609B2 (en) Catalyst for producing phthalic anhydride and method for producing phthalic anhydride using the same
KR830000350B1 (en) Catalyst for the production of futal anhydride
JPH0248299B2 (en)
JPH04215843A (en) Catalyst for manufacturing phthalic anhydride
JP2003012664A (en) Method for producing acid anhydride
CN115591565A (en) Method for continuously synthesizing pyromellitic dianhydride and catalyst used in method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees