JPH04130082A - Single crystal growing device - Google Patents
Single crystal growing deviceInfo
- Publication number
- JPH04130082A JPH04130082A JP25032590A JP25032590A JPH04130082A JP H04130082 A JPH04130082 A JP H04130082A JP 25032590 A JP25032590 A JP 25032590A JP 25032590 A JP25032590 A JP 25032590A JP H04130082 A JPH04130082 A JP H04130082A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- material rod
- single crystal
- microwave
- grow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 46
- 239000002994 raw material Substances 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 16
- 238000004857 zone melting Methods 0.000 claims description 10
- 238000002844 melting Methods 0.000 abstract description 8
- 230000008018 melting Effects 0.000 abstract description 8
- 239000008246 gaseous mixture Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 239000000843 powder Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000011109 contamination Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000003331 infrared imaging Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- PXXKQOPKNFECSZ-UHFFFAOYSA-N platinum rhodium Chemical compound [Rh].[Pt] PXXKQOPKNFECSZ-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B13/00—Single-crystal growth by zone-melting; Refining by zone-melting
- C30B13/16—Heating of the molten zone
- C30B13/22—Heating of the molten zone by irradiation or electric discharge
- C30B13/24—Heating of the molten zone by irradiation or electric discharge using electromagnetic waves
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Lasers (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、浮遊帯域溶融法に用いる単結晶成長装置に関
し、特に、固体レーザ材料、光学材料等の導電率の小さ
な材料、例えば、AIto3. Zr0y、 riot
等のイオン結合性の強い材料への適用を可能にしたもの
である。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a single crystal growth apparatus used in a floating zone melting method, and particularly relates to a single crystal growth apparatus for use in a floating zone melting method, and particularly for materials with low conductivity such as solid-state laser materials and optical materials, such as AIto3. Zr0y,riot
This makes it possible to apply it to materials with strong ionic bonding properties, such as
(従来の技術)
単結晶を原料融液から成長させる代表的な方法としては
、チョクラルスキー法と縦型浮遊帯域溶融法(フローテ
ィングシー7法)がある。(Prior Art) Typical methods for growing a single crystal from a raw material melt include the Czochralski method and the vertical floating zone melting method (floating sea 7 method).
縦型浮遊帯域溶融法は、原料棒の一端を溶融して溶融帯
域を形成し、該溶融帯域を徐々に移動させることにより
、該一端から単結晶を成長させるものである。この方法
は、るつぼを使用しないので、るつぼに起因する問題を
回避することができ、また、分解溶融性の材料も単結晶
化できるという特徴がある。溶融帯域を形成するための
加熱源としては、ハロゲンランプ、キセノンランプ、高
周波誘導加熱、抵抗発熱体などがある。In the vertical floating zone melting method, one end of a raw material rod is melted to form a melted zone, and the melted zone is gradually moved to grow a single crystal from the one end. Since this method does not use a crucible, it is possible to avoid problems caused by crucibles, and it is also characterized in that decomposable and meltable materials can be turned into single crystals. Heat sources for forming the molten zone include halogen lamps, xenon lamps, high frequency induction heating, resistance heating elements, and the like.
第3図は、ハロゲンランプを加熱源とする赤外線イメー
ジ炉を用いた浮遊帯域溶融方式の単結晶成長装置の断面
図である。内面に金メツキを施した回転楕円鏡19の一
方の焦点にハロゲンランプ20を設置し、他方の焦点に
原料棒及び種結晶を位置するように支持する上方シャフ
ト21及び下方シャフト22を設け、該シャフトには、
回転速度及び移動速度を独立に制御できる制御機構を付
設し、かつ、原料棒及び種結晶を包むように石英管23
を配置することにより、結晶成長中の雰囲気を保持する
とともに、奈発する原料か回転楕円鏡に付rfすること
を防1.t:I Lでいる。FIG. 3 is a sectional view of a floating zone melting type single crystal growth apparatus using an infrared image furnace using a halogen lamp as a heating source. A halogen lamp 20 is installed at one focal point of a spheroidal mirror 19 whose inner surface is gold-plated, and an upper shaft 21 and a lower shaft 22 are installed at the other focal point to position and support a raw material rod and a seed crystal. The shaft has
A quartz tube 23 is equipped with a control mechanism that can independently control the rotation speed and movement speed, and is arranged to enclose the raw material rod and seed crystal.
By arranging the spheroid mirror, the atmosphere during crystal growth can be maintained, and RF radiation can be prevented from being applied to the spheroidal mirror.1. t: I'm in L.
この装置は、石英管23内に雰囲気ガスを一定流量で流
した後、ノ・ロケンランプ20から放射される赤外線を
回転楕円鏡19により種結晶と原料棒の境に集中させて
溶融帯域を形成し、ラップの出力、上下の/ヤフトの回
転数を調整してから、溶融帯域を安定に保ちながら、上
下シャフトをそれぞれの移動速度で徐々に下方に移動し
て、種結晶の一端から単結晶を成長させる。This device flows atmospheric gas at a constant flow rate into a quartz tube 23, and then focuses infrared rays emitted from a no-lock lamp 20 onto the boundary between the seed crystal and the raw material rod using a spheroidal mirror 19 to form a molten zone. After adjusting the output of the lap and the rotation speed of the upper and lower shafts, the upper and lower shafts are gradually moved downward at their respective speeds while keeping the melting zone stable, and the single crystal is grown from one end of the seed crystal. Make it grow.
(発明が解決しようとする課題)
チョクラルスキー法及び従来の縦型浮遊帯域溶融法は、
次のような問題点がある。(Problem to be solved by the invention) The Czochralski method and the conventional vertical floating zone melting method are
There are the following problems.
(1)チョクラルスキー法
■るつぼ(通常はイリジウム、白金など使用される)の
融点以上の融点を有する材料を育成できない。(1) Czochralski method ■ Materials with a melting point higher than the melting point of the crucible (usually used for iridium, platinum, etc.) cannot be grown.
■るつぼからの不純物の混入が避けられす0゜■分解溶
融性の材料の育成が困難である。■Contamination of impurities from the crucible is avoided.0゜■Difficult to grow decomposable and meltable materials.
(2)ランプ加熱による縦型浮遊帯域溶融法■回転楕円
鏡の焦点付近の温19勾配か非常に大きいため、大きな
直径の結晶を育成することができない。例えば、ZrO
,や^I、(Lなとの酸化物の結晶の場合は、成長可能
な直径は高々0.6cm程度である。(2) Vertical floating zone melting method using lamp heating - The temperature 19 gradient near the focal point of the spheroidal mirror is extremely large, making it impossible to grow crystals with large diameters. For example, ZrO
In the case of oxide crystals such as , and ^I, (L, the diameter that can be grown is about 0.6 cm at most.
■溶融帯の温度は、ランプ側で高く、反対側では低くな
り易い。このような溶融帯域の温度の不均一性は、固液
界面の不安定性の原因となるため、育成される結晶にク
ラックや内部歪みを生じやすい。■The temperature of the melting zone tends to be high on the lamp side and low on the opposite side. Such temperature non-uniformity in the melting zone causes instability of the solid-liquid interface, and therefore tends to cause cracks and internal distortion in the grown crystal.
■ランプの寿命に伴うランプ交換の際の焦点合わせや、
回転楕円鏡の反射率の維持など、保守が煩雑である。■Focusing when replacing the lamp due to its lifespan,
Maintenance is complicated, such as maintaining the reflectance of the spheroidal mirror.
(3)高周波加熱による縦型浮遊帯域溶融性導電率の低
い材料は、直接高周波加熱で溶融することが困難である
ため、特定の単結晶しか成長できないという不都合があ
る。なお、ここで使用される高周波は、2(10kHz
〜5MHz程度である。(3) Vertical floating zone melting property by high-frequency heating Materials with low electrical conductivity are difficult to melt directly by high-frequency heating, so there is a disadvantage that only specific single crystals can be grown. Note that the high frequency used here is 2 (10kHz
~5MHz.
そこで、本発明は、上記の問題点を解消し、導電率の低
い材料も含めて、大口径の単結晶を浮遊帯域溶融法で育
成することのできる単結晶成長装置を提供しようとする
ものである。Therefore, the present invention aims to solve the above-mentioned problems and provide a single crystal growth apparatus that can grow large-diameter single crystals, including materials with low conductivity, by the floating zone melting method. be.
(課題を解決するための手段)
本発明は、を手遊帯域iz耐融法用いる単結晶成長装置
において、原料棒を両端で支持する支持手段と、原料棒
の周囲に配置した空洞共振器と、該空洞共振器に接続さ
れたマイクロ彼発振器と、該空洞共振器と原料棒とを相
対的に移動する手段とを有することを特徴とする単結晶
成長装置である。(Means for Solving the Problems) The present invention provides a single crystal growth apparatus using a free zone iz melting method, which includes a supporting means for supporting a raw material rod at both ends, a cavity resonator disposed around the raw material rod, and a support means for supporting a raw material rod at both ends. , a single-crystal growth apparatus characterized by having a microscopic oscillator connected to the cavity resonator, and means for relatively moving the cavity resonator and the raw material rod.
なお、マイクロ波の吸収率は、材料の温度に依存するの
で、例えば、原料棒を最大800℃まで加熱するブレヒ
ータを空洞共振器の直前に配置することが好ましい。Note that, since the absorption rate of microwaves depends on the temperature of the material, it is preferable to arrange, for example, a break heater that heats the raw material rod to a maximum of 800° C. immediately before the cavity resonator.
(作用)
第1図は、本発明の1具体例である単結晶成長装置の概
念図である。真空排気装置に接続されたステンレス製の
チャンバー1の下部に成長雰囲気を形成するためのガス
を導入する導入口2を設け、上方シャフト3で原料棒5
を支持し、下方シャフト4で種結晶6を支持し、上下の
シャフトを独立に回転数及び移動速度を設定することの
できる回転移動機構に接続されている。原料棒5の周囲
にはマイクロ波共振器12を配置し、その直前にブレヒ
ータ14を付設する。そして、最大出力IOH程度のマ
イクロ彼発振器7で発振させたマイクロ波は、導波管8
、整合器9及び導波管・同軸ケーブル変換器10及び同
軸ケーブル11を介して空洞共振器12に伝送される。(Operation) FIG. 1 is a conceptual diagram of a single crystal growth apparatus that is a specific example of the present invention. An inlet 2 for introducing gas to form a growth atmosphere is provided at the bottom of a stainless steel chamber 1 connected to a vacuum evacuation device, and a raw material rod 5 is connected to an upper shaft 3.
The lower shaft 4 supports the seed crystal 6, and the upper and lower shafts are connected to a rotational movement mechanism that can independently set the rotational speed and movement speed. A microwave resonator 12 is arranged around the raw material rod 5, and a break heater 14 is attached immediately in front of it. The microwave oscillated by the micro oscillator 7 with a maximum output of about IOH is transmitted through the waveguide 8.
, is transmitted to the cavity resonator 12 via the matching box 9, the waveguide/coaxial cable converter 10, and the coaxial cable 11.
導波管8にはパワーモニタ13が設置されている。空洞
共振器12は同軸円筒形とすることができ、材質は銅を
使用する。また、空洞共振器12の高さのチャンバー1
の側壁に、観測窓を設けて溶融帯域を観測することもで
きる。ブレヒータ14は空洞共振器12のすく上に設け
て原料棒5を予熱する。第2図は、ブレヒータの拡大図
であり、高純度アルミナ焼結管15の周りに白金ロジウ
ム線の発熱体16を巻いてアルミナセメント17で固定
し、外側を高純度アルミナ焼結管18で覆ったものであ
る。そして、ブレヒータ14と空洞共振器12との間隔
は、5〜15m+aの範囲に設定することが好ましtλ
。A power monitor 13 is installed in the waveguide 8. The cavity resonator 12 can have a coaxial cylindrical shape and is made of copper. Also, the height of the chamber 1 of the cavity resonator 12 is
It is also possible to observe the molten zone by providing an observation window on the side wall of the tube. The preheater 14 is provided above the cavity resonator 12 to preheat the raw material rod 5. FIG. 2 is an enlarged view of the breheater. A platinum-rhodium wire heating element 16 is wrapped around a high-purity alumina sintered tube 15 and fixed with alumina cement 17, and the outside is covered with a high-purity alumina sintered tube 18. It is something that It is preferable that the interval between the break heater 14 and the cavity resonator 12 is set in the range of 5 to 15 m+a.
.
本発明の単結晶成長装置は、上記の構成を備えることに
より、次のような作用を得ることができる。By having the above configuration, the single crystal growth apparatus of the present invention can obtain the following effects.
■原料棒の直径に応じた空洞口径のマイクロ波共振器を
使用することにより、溶融帯の直径を変化させることが
でき、従来の赤外線イメージ炉を用いる場合に比べて相
当に大きな直径の単結晶を成長することが可能である。■By using a microwave resonator with a cavity diameter that corresponds to the diameter of the raw material rod, the diameter of the melting zone can be changed, making it possible to produce single crystals with a considerably larger diameter than when using a conventional infrared imaging furnace. It is possible to grow.
■空洞共振器は、円周方向の温度分布が極めて均一であ
るため、固液界面を安定に保つことができ、高品質の単
結晶を得ることができる。■Since the cavity resonator has an extremely uniform temperature distribution in the circumferential direction, the solid-liquid interface can be kept stable and high-quality single crystals can be obtained.
■マイクロ波を吸収しにくい材料についても、ブレヒー
タをマイクロ波共振器の直前に設けて予熱することによ
り、マイクロ波の吸収率を増大させることができ、溶融
帯を安定に保つことが容易になる。■Even for materials that are difficult to absorb microwaves, by preheating them by installing a break heater just before the microwave resonator, it is possible to increase the microwave absorption rate and make it easier to keep the molten zone stable. .
一般に、結晶成長中に固液界面が揺動すると、成長速度
が変化し、組成のずれ、転位、歪み、気泡などの欠陥が
発生しやすくなるが、本発明は、上記のように溶融帯を
安定に保つことができるのて、このような問題は解消さ
れ、導電率の小さな材料からも高品質の+41結晶を成
長させることが可能になった。Generally, when the solid-liquid interface oscillates during crystal growth, the growth rate changes and defects such as composition shifts, dislocations, distortions, and bubbles are likely to occur. Since it can be kept stable, such problems have been resolved, and it has become possible to grow high-quality +41 crystals even from materials with low conductivity.
(実施例)
第1図の装置を用いてイアドリア安定化ジルコニア単結
晶を作製した。(Example) Iadria-stabilized zirconia single crystal was produced using the apparatus shown in FIG.
マイクロ波共振器は同軸円筒形で、外径120mm、高
す20mm、口径30mmの銅製であり、ブレヒータは
外径30mm、内径26mm、長さ40mmの高純度ア
ルミナ焼結管の周りに直径0.6mmの白金ロノウム線
を巻いてアルミナセメントで固定し、さらに外側を高純
度アルミナ焼結管で覆ったものを使用した。The microwave resonator has a coaxial cylindrical shape and is made of copper with an outer diameter of 120 mm, a height of 20 mm, and a diameter of 30 mm.The breecher is a high-purity alumina sintered tube with an outer diameter of 30 mm, an inner diameter of 26 mm, and a length of 40 mm. A 6 mm platinum-ronium wire was wound and fixed with alumina cement, and the outside was further covered with a high-purity alumina sintered tube.
原料棒は純度9999%のZr0t粉末と純度9999
%のY、03粉末を、Y、03粉末がIOmo1%とな
るように秤量し、エタノール中で湿式混合した。混合粉
末を棒状ゴム袋に封入し、等方静水圧プレスで圧力1t
On/cIll!で成形した。成形体は、大気中で12
00°Cで15時間焼成した。得られた焼結体は直径約
20mm、長さ約100)で、密度は理論密度の約60
%であった。また、同時に作製した直径20mm、長さ
約30mmの焼結体を種結晶として使用した。The raw material rod is 9999% pure Zr0t powder and 9999% pure Zr0t powder.
% Y,03 powder was weighed and wet mixed in ethanol so that the Y,03 powder had an IOmo of 1%. The mixed powder is sealed in a rod-shaped rubber bag, and a pressure of 1 t is applied using an isostatic press.
On/cIll! Molded with. The molded body is heated in air for 12
It was baked at 00°C for 15 hours. The obtained sintered body has a diameter of about 20 mm, a length of about 100 mm, and a density of about 60 mm, which is the theoretical density.
%Met. Further, a sintered body having a diameter of 20 mm and a length of about 30 mm, which was produced at the same time, was used as a seed crystal.
この原料棒は白金線でト方ンヤフトに偏心しないように
固定し、種結晶は下方/ヤフトに同様に固定した。This raw material rod was fixed to the shaft with a platinum wire so as not to be eccentric, and the seed crystal was similarly fixed to the lower part of the shaft.
次いで、チャンバーを5XIO−5Torrまで排気し
た後、雰囲気ガスとして^r−L混合ガス(o、−3o
v01%)を流fio、51/minて流し、原料棒と
種結晶の先端がマイクロ波共振器の中央に位置するよう
に上下のンヤフトを移動して両者を押し付けるように接
合し、両者を回転数30rpmで互いに逆回転させた。Next, after evacuating the chamber to 5XIO-5 Torr, ^r-L mixed gas (o, -3o
v01%) at a flow rate of 51/min, move the upper and lower shafts so that the tips of the raw material rod and the seed crystal are located in the center of the microwave resonator, press them together to join them, and rotate both. They were rotated in opposite directions at several 30 rpm.
この間に、プレヒータを用いて原料棒を約8oo℃まで
予熱し、マイクロ波発振器の出力を徐々に上げて21)
(IWとし、溶融帯を形成して約15分間保持し、溶融
帯を安定化させた。その後、上下のシャフトを連続的に
引き下げて単結晶を成長速度40mm/hrで育成した
。約80a+m成長させた時点で上方のシャフトの移動
を停止して、成長結晶を溶融帯から切り離し、マイクロ
波発振器の出力を徐々に低下させた。During this time, preheat the raw material rod to about 80°C using a preheater, and gradually increase the output of the microwave oscillator21)
(IW was used to form a molten zone and hold it for about 15 minutes to stabilize the molten zone. After that, the upper and lower shafts were continuously pulled down to grow a single crystal at a growth rate of 40 mm/hr. Approximately 80 a+m growth At that point, the movement of the upper shaft was stopped, the growing crystal was separated from the molten zone, and the output of the microwave oscillator was gradually lowered.
その結果、直径約15mmの無色透明な単結晶を得るこ
とかできた。1ie−Neレーザ光による散乱試験の結
果、結晶中にクラック、気泡及び泡有物は認められなか
った。As a result, a colorless and transparent single crystal with a diameter of about 15 mm could be obtained. As a result of a scattering test using a 1ie-Ne laser beam, no cracks, bubbles, or bubbles were observed in the crystal.
また、上記と同様の方法で、マイクロ波共振器の口径を
変化させることにより、直径約5mm及び直径約20m
mのイツトリア安定化ジルコニア単結晶を育成すること
ができた。In addition, by changing the diameter of the microwave resonator in the same manner as above, the diameter of the microwave resonator was approximately 5 mm and the diameter was approximately 20 m.
It was possible to grow an yttria-stabilized zirconia single crystal of m.
(発明の効果)
本発明は、同軸円筒形のマイクロ波共振器で収束された
マイクロ波を用いて加熱するため、共振器の口径を広げ
ることにより、従来より大きな直径の単結晶を育成する
ことができ、また、溶融帯の円周方向の温度分布を均一
にできる。さらに、マイクロ波共振器の直前にプレヒー
タを設けることにより、導電率の小さな材料についても
マイクロ波の吸収率を増大させることができ、溶融帯の
形成及び安定保持を容易にし、その結果、良質の単結晶
育成を可能にした。(Effects of the Invention) The present invention uses microwaves focused in a coaxial cylindrical microwave resonator to perform heating, so by expanding the diameter of the resonator, it is possible to grow a single crystal with a larger diameter than before. In addition, the temperature distribution in the circumferential direction of the molten zone can be made uniform. Furthermore, by providing a preheater just before the microwave resonator, it is possible to increase the microwave absorption rate even for materials with low conductivity, making it easier to form and maintain a molten zone stably, resulting in high quality This made it possible to grow single crystals.
第1図は本発明の1具体例である単結晶成長装置の概念
図、第2図は第1図で使用するブレヒータの拡大断面図
、第3図は従来の赤外線イメーン炉の断面図である。Fig. 1 is a conceptual diagram of a single crystal growth apparatus that is a specific example of the present invention, Fig. 2 is an enlarged cross-sectional view of the bleeder heater used in Fig. 1, and Fig. 3 is a cross-sectional view of a conventional infrared image furnace. .
Claims (1)
棒を両端で支持する支持手段と、原料棒の周囲に配置し
た空洞共振器と、該空洞共振器に接続されたマイクロ波
発振器と、該空洞共振器と原料棒とを相対的に移動する
手段とを有することを特徴とする単結晶成長装置。A single crystal growth apparatus used in the floating zone melting method includes a support means for supporting a raw material rod at both ends, a cavity resonator arranged around the raw material rod, a microwave oscillator connected to the cavity resonator, and the cavity. A single crystal growth apparatus comprising a resonator and a means for relatively moving a raw material rod.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2250325A JP2734485B2 (en) | 1990-09-21 | 1990-09-21 | Single crystal growth equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2250325A JP2734485B2 (en) | 1990-09-21 | 1990-09-21 | Single crystal growth equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04130082A true JPH04130082A (en) | 1992-05-01 |
JP2734485B2 JP2734485B2 (en) | 1998-03-30 |
Family
ID=17206234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2250325A Expired - Lifetime JP2734485B2 (en) | 1990-09-21 | 1990-09-21 | Single crystal growth equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2734485B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2246461A1 (en) * | 2007-12-25 | 2010-11-03 | Crystal Systems Corporation | Floating-zone melting apparatus |
US8658092B2 (en) | 2004-10-12 | 2014-02-25 | Ethicon, Inc. | Sterilization system and method and orifice inlet control apparatus therefor |
JP2015032704A (en) * | 2013-08-02 | 2015-02-16 | 株式会社東芝 | Semiconductor device manufacturing method and semiconductor manufacturing apparatus |
CN115726038A (en) * | 2022-12-05 | 2023-03-03 | 广西大学 | Rare earth doped zirconia single crystal white light solid-state light source and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03148591A (en) * | 1989-11-06 | 1991-06-25 | Mitsubishi Electric Corp | Double elliptical microwave discharge image heater |
-
1990
- 1990-09-21 JP JP2250325A patent/JP2734485B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03148591A (en) * | 1989-11-06 | 1991-06-25 | Mitsubishi Electric Corp | Double elliptical microwave discharge image heater |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8658092B2 (en) | 2004-10-12 | 2014-02-25 | Ethicon, Inc. | Sterilization system and method and orifice inlet control apparatus therefor |
EP2246461A1 (en) * | 2007-12-25 | 2010-11-03 | Crystal Systems Corporation | Floating-zone melting apparatus |
EP2246461A4 (en) * | 2007-12-25 | 2011-05-25 | Crystal Systems Corp | Floating-zone melting apparatus |
JP2015032704A (en) * | 2013-08-02 | 2015-02-16 | 株式会社東芝 | Semiconductor device manufacturing method and semiconductor manufacturing apparatus |
CN115726038A (en) * | 2022-12-05 | 2023-03-03 | 广西大学 | Rare earth doped zirconia single crystal white light solid-state light source and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2734485B2 (en) | 1998-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chani et al. | Growth of Y3Al5O12: Nd fiber crystals by micro-pulling-down technique | |
US6553787B1 (en) | Method for manufacturing quartz glass crucible | |
TWI400368B (en) | Floating band melting device | |
US20040118158A1 (en) | SiO2 shaped body which has been vitrified in partial areas, process for producing it, and its use | |
US7178366B2 (en) | Method for the production of an internally vitrified SiO2 crucible | |
JPH04130082A (en) | Single crystal growing device | |
Chani et al. | Preparation and characterization of Yb: Y3Al5O12 fiber crystals | |
EP1024118A2 (en) | Large diameter quartz glass crucible for pulling up single crystalline silicon | |
JPH11255593A (en) | Auxiliary apparatus for melting raw material | |
JP2003095783A (en) | Manufacturing apparatus and method for bulk of oxide eutectoid | |
JPH0789797A (en) | Production of terbium aluminum garnet single crystal | |
JPH11228293A (en) | Growth of single crystal and growing apparatus | |
JPH07277893A (en) | Production of alumina single crystal | |
JP2009051679A (en) | Device and method for growing single crystal | |
Itoyama et al. | Growth of βII-Li3VO4 single crystals by the floating zone technique with the aid of a heat reservoir | |
JP3557734B2 (en) | Single crystal manufacturing method | |
JPH03290393A (en) | Crucible for producing si single crystal | |
US3226193A (en) | Method for growing crystals | |
US11846037B2 (en) | Crystal manufacturing method, crystal manufacturing apparatus and single crystal | |
JP2735752B2 (en) | Single crystal growth method | |
JP2982642B2 (en) | Infrared heating single crystal manufacturing equipment | |
JPH02275794A (en) | Automatical single crystal-growing device | |
JPS60161388A (en) | Growing method of single crystal | |
JP3531280B2 (en) | Single crystal manufacturing method | |
JPH0253397B2 (en) |