JP2003095783A - Manufacturing apparatus and method for bulk of oxide eutectoid - Google Patents

Manufacturing apparatus and method for bulk of oxide eutectoid

Info

Publication number
JP2003095783A
JP2003095783A JP2001290283A JP2001290283A JP2003095783A JP 2003095783 A JP2003095783 A JP 2003095783A JP 2001290283 A JP2001290283 A JP 2001290283A JP 2001290283 A JP2001290283 A JP 2001290283A JP 2003095783 A JP2003095783 A JP 2003095783A
Authority
JP
Japan
Prior art keywords
crucible
pores
eutectic
melt
seed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001290283A
Other languages
Japanese (ja)
Other versions
JP3992469B2 (en
Inventor
Tsuguo Fukuda
承生 福田
Akira Yoshikawa
彰 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001290283A priority Critical patent/JP3992469B2/en
Publication of JP2003095783A publication Critical patent/JP2003095783A/en
Application granted granted Critical
Publication of JP3992469B2 publication Critical patent/JP3992469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problems with bulk of an oxide eutectoid which is usable for gas turbine blades for thermal power generator, the grain refining of which does not proceed because of a gentle temperature gradient (2 to 3 deg.C/mm) in a growth direction in a conventional method, or a Bridgman method, and has unsufficient strength. SOLUTION: The bulk of the oxide eutectoid is manufactured by an apparatus providing the bottom of an iridium metal or an iridium alloy crucible with a plurality of narrow pores, bringing the melt flowing down from these narrow pores into contact with the plane at the top end of the seed crystal to join the flows thereof, drawing out the joined melt downward by a seed crystal holder and solidifying and growing the melt unidirectionally. The homogeneous grain refining of the eutectic tissue is made successful by realizing the temperature gradient as steep as 150 deg.C/mm in maximum in the crystal growth direction and simultaneously realizing the homogeneous temperature distribution with respect to a radial direction. The practicable properties within the scope of 1,500 deg.C and 800 MPa in the atmosphere exceeding (about 5 times) conventional strength is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐熱構造材料に適
する酸化物系共晶体(Al2O3/YAG, Al2O3/YAG/ZrO2等)
のバルクの製造装置と製造方法に関するものである。
TECHNICAL FIELD The present invention relates to an oxide eutectic (Al 2 O 3 / YAG, Al 2 O 3 / YAG / ZrO 2 etc.) suitable for a heat resistant structural material.
The present invention relates to a bulk manufacturing apparatus and manufacturing method.

【0002】[0002]

【従来の技術】酸化物共晶体は高温構造材料として注目
されている。従来、この材料の製造はブリッジマン法が
もっぱら使用されている。
2. Description of the Related Art Oxide eutectic has received attention as a high temperature structural material. Conventionally, the Bridgman method is exclusively used for the production of this material.

【0003】[0003]

【発明が解決しようとする課題】現在、火力発電用のガ
スタービンシステムにおけるタービン翼および炉壁は、
1300℃以上に耐えられる構造材料がないため、効率
は落ちるが冷却運転を行っている。ここで、大気中での
1500℃無冷却運転が可能になれば、10%程度のエ
ネルギー効率の向上が見込まれ、1%の向上が1兆円規
模での省エネルギーをもたらすと試算されていることか
ら、無冷却運転を可能とする耐熱構造材料の開発の社会
的効果は大きい。その他にも、当該材料は自動車などの
エンジン部材や、消却炉の炉壁として酸化雰囲気中、1
200℃域での応用も期待されている。
Currently, turbine blades and furnace walls in a gas turbine system for thermal power generation are
Since there is no structural material that can withstand temperatures above 1300 ° C, cooling operation is performed although efficiency is reduced. If 1500 ° C uncooled operation in the atmosphere becomes possible, it is estimated that energy efficiency will improve by about 10%, and a 1% improvement will lead to energy savings on the scale of 1 trillion yen. Therefore, the social effect of developing a heat-resistant structural material that enables uncooled operation is great. In addition, the material is used for engine parts of automobiles and furnace walls of incinerators in oxidizing atmospheres.
Applications in the 200 ° C range are also expected.

【0004】これまで、酸化物共晶体は、上記のような
応用分野のの候補材料として期待されていたが、従来法
であるブリッジマン法では、成長方向の緩やかな温度勾
配(2〜3℃/mm)のため、強度の鍵を握る「共晶組
織の大きさ」が大きくなってしまい、共晶組織の微細化
が進まず、実用化に十分な強度が1500℃、大気中で
1000MPaとされているのに対して、1500℃で
300MPa程度の強度を発現する材料しか得られず、
強度の向上が行き詰まっていた。
Up to now, the oxide eutectic has been expected as a candidate material for the above-mentioned application fields, but in the conventional Bridgman method, the temperature gradient in the growth direction (2 to 3 ° C.) is used. / Mm), the size of the eutectic structure, which holds the key to the strength, becomes large, and the eutectic structure does not become finer, and the strength sufficient for practical use is 1500 ° C and 1000 MPa in the atmosphere. However, only a material that exhibits a strength of about 300 MPa at 1500 ° C. can be obtained,
The improvement in strength was stalled.

【0005】[0005]

【課題を解決するための手段】本発明者は、ブリッジマ
ン法では到達できない急峻な温度勾配を成長方向に実現
し、同時に、径方向に緩やかな温度勾配を実現する方法
および装置を開発することにより共晶組織が微細にな
り、強度の飛躍的な向上をもたらした酸化物共晶体のバ
ルクを得ることに成功した。
DISCLOSURE OF THE INVENTION The present inventors have developed a method and apparatus for realizing a steep temperature gradient in the growth direction that cannot be reached by the Bridgman method and at the same time realizing a gentle temperature gradient in the radial direction. As a result, the eutectic structure became finer and succeeded in obtaining a bulk of an oxide eutectic body which brought about a dramatic improvement in strength.

【0006】すなわち、本発明は、 坩堝と、坩堝底部
に設けた細孔から流出する融液に接触させる種結晶を保
持する種結晶保持具と、種結晶保持具を下方に移動させ
る移動機構と、該移動機構の移動速度制御装置と、坩堝
を加熱する誘導加熱手段とを具備した一方向凝固成長装
置であって、該坩堝はイリジウム金属またはイリジウム
合金坩堝であり、坩堝底部外周にイリジウム金属または
イリジウム合金からなる発熱体であるアフターヒータを
配置し、坩堝及びアフターヒータは、誘導加熱手段の出
力調整により発熱量の調整を可能とすることによって坩
堝底部に設けた細孔から引き出される融液の固液境界相
の加熱温度の制御を可能とした装置において、坩堝底部
に細孔を複数個設け、該細孔の径を下記の式1で示され
る実効偏析係数keffが1になり、 keff = k[k + (1-k)exp(-Vd/D)]-1 (式1) 且つ、融液が垂れ落ちない大きさとし、かつ種結晶の上
端を水平面とし、複数の細孔から流下した融液を種結晶
の上端平面に接触させて合流させることができる間隔で
複数の細孔を配置したことを特徴とする酸化物系共晶体
のバルクの製造装置である。
That is, the present invention comprises a crucible, a seed crystal holder for holding a seed crystal to be brought into contact with the melt flowing out from the pores provided at the bottom of the crucible, and a moving mechanism for moving the seed crystal holder downward. A unidirectional solidification growth apparatus comprising a moving speed control device of the moving mechanism and an induction heating means for heating the crucible, wherein the crucible is an iridium metal or an iridium alloy crucible, and an iridium metal or an iridium metal is formed on the outer periphery of the bottom of the crucible. An after-heater, which is a heating element made of an iridium alloy, is arranged, and the crucible and the after-heater allow the amount of heat generation to be adjusted by adjusting the output of the induction heating means, so that the melt liquid drawn out from the pores provided in the bottom of the crucible can be adjusted. in a possible and the device controlling the heating temperature of the solid-liquid boundary phase, provided a plurality of pores crucible bottom, the effective segregation coefficient k eff shown the diameter of the pores in equation 1 below Becomes 1, k eff = k [k + (1-k) exp (-Vd / D)] -1 ( Equation 1) and the size Satoshi melt does not drip, and the upper end of the seed crystal and a horizontal plane, An apparatus for manufacturing a bulk of an oxide-based eutectic body, characterized in that a plurality of pores are arranged at an interval such that a melt flowing down from a plurality of pores can be brought into contact with the upper end plane of a seed crystal and merged. .

【0007】また、本発明は、上記の装置を用い、坩堝
内に共晶組成の酸化物原料粉末を挿入して溶融し、坩堝
底部に設けた複数の細孔から種結晶保持具により下方へ
引き出され一方向凝固成長する共晶体の引き出し開始に
際して、複数の細孔のうち中心部の細孔から流下した融
液にまず種結晶の上端平面を接触させ、該融液を水平方
向に広げて隣接する細孔から流下した融液に接触させ、
形成されるメニスカスを観察し、目的の結晶径を得たの
を確認した後所定の速度で結晶成長を行うことを特徴と
する酸化物系共晶体バルクの製造方法である。
Further, according to the present invention, by using the above-mentioned apparatus, an oxide raw material powder having a eutectic composition is inserted into a crucible and melted, and the powder is downwardly moved by a seed crystal holder from a plurality of pores provided at the bottom of the crucible. At the start of the extraction of the eutectic body that is pulled out and unidirectionally solidifies and grows, first, the upper end plane of the seed crystal is brought into contact with the melt flowing down from the central pore of the plurality of pores, and the melt is spread horizontally. Contact the melt flowing down from the adjacent pores,
A method for producing an oxide eutectic bulk, which comprises observing a formed meniscus and confirming that a target crystal diameter is obtained, and then performing crystal growth at a predetermined rate.

【0008】また、本発明は、上記の装置を用い、坩堝
内に共晶組成の酸化物原料粉末を挿入して溶融し、坩堝
底部に設けた複数の細孔から種結晶保持具により下方へ
引き出され一方向凝固成長する共晶体の引き出し速度を
0.01〜20mm/minとすることを特徴とする酸
化物系共晶体バルクの製造方法である。また、本発明
は、成長方向の温度勾配を0〜150℃/mmとするこ
とを特徴とする上記の酸化物系共晶体バルクの製造方法
である。
In the present invention, the above apparatus is used to insert the oxide raw material powder having a eutectic composition into the crucible and melt the powder, and the seed crystal holder is used to move downward through a plurality of pores provided at the bottom of the crucible. A method for producing an oxide eutectic bulk, characterized in that the eutectic that is pulled out and undergoes unidirectional solidification growth is set at a rate of 0.01 to 20 mm / min. Further, the present invention is the above-mentioned method for producing an oxide-based eutectic bulk, wherein the temperature gradient in the growth direction is 0 to 150 ° C./mm.

【0009】本発明者らは、先に、イリジウム金属また
はイリジウム合金坩堝底部外周にアフターヒータを配置
し、アフターヒータの発熱量の調整を可能とすることに
よって坩堝底部に設けた細孔からマイクロ引き下げ装置
を用いて引き出される融液の固液境界相の加熱温度の制
御を可能とすることにより、共晶体のラメラの幅を10
μ以下の微細等方組織とした太さ数百〜数十μmの高温
強度特性に優れた酸化物系共晶体セラミックス繊維の製
造方法を開発した(特開平11−278994号公
報)。
The present inventors previously arranged an after-heater on the outer periphery of the bottom of the iridium metal or iridium alloy crucible, and made it possible to adjust the heat generation amount of the after-heater, so that the micro-pulled down from the pores provided at the bottom of the crucible. By making it possible to control the heating temperature of the solid-liquid boundary phase of the melt drawn by using the apparatus, the width of the eutectic lamella can be set to 10
A method for producing an oxide-based eutectic ceramic fiber having a fine isotropic structure of μ or less and a thickness of several hundred to several tens of μm and excellent in high-temperature strength characteristics has been developed (JP-A-11-278994).

【0010】上記の方法によれば、温度勾配の急峻な引
き下げ法を用いてブリッジマン法に比べて10分の1の
共晶組織サイズを有する共晶体繊維を作製できた。しか
し、坩堝底部に設けた細穴を大きくすると、「融液が垂
れ落ちてしまう」という現象が起き、引き下げ法でのバ
ルクの結晶成長はできないので、「繊維」を「バルク」
にするには大きな問題点が存在した。
According to the above method, a eutectic fiber having a eutectic structure size which is one-tenth that of the Bridgman method can be produced by using the method of sharply lowering the temperature gradient. However, if the small hole provided at the bottom of the crucible is enlarged, the phenomenon of "melt melts down" occurs, and bulk crystal growth cannot be performed by the pull-down method.
There was a big problem to make it.

【0011】本発明は、この方法を改良することによ
り、結晶成長方向の温度勾配がブリッジマン法の2〜3
℃/mmに対して、最大で150℃/mm、好ましくは
100〜150℃/mmという急峻な温度勾配を実現
し、同時に径方向に関しては極めて均質な温度分布を実
現する結晶作製技術により共晶組織を均質に微細化する
ことに成功し、従来の強度を大幅(5倍程度)に上回
る、1500℃、大気中で800MPaという、実用化
物性が射程に入る結果を得た。
In the present invention, by improving this method, the temperature gradient in the crystal growth direction is 2 to 3 of the Bridgman method.
Eutectic by a crystal production technology that realizes a steep temperature gradient of up to 150 ° C / mm, preferably 100 to 150 ° C / mm with respect to ° C / mm, and at the same time realizes an extremely uniform temperature distribution in the radial direction. We succeeded in making the structure homogeneously fine, and obtained a result that the practically applicable materiality was within the range of 1500 MPa and 800 MPa in the air, which was significantly (about 5 times) higher than the conventional strength.

【0012】抵抗加熱炉を坩堝周りに設置して間接的に
加熱する方法では、坩堝のみならず周辺部も加熱される
ため成長方向に緩やかな温度勾配を実現する場合には適
するものの、急峻な温度勾配は実現できない。本発明
は、坩堝をイリジウム金属またはイリジウム合金坩堝と
し、高周波誘導加熱手段を用いることにより周辺雰囲気
を加熱することなく坩堝のみを熱して原料を加熱溶解す
るので急峻な温度勾配は実現することができる。
In the method of indirectly heating by setting the resistance heating furnace around the crucible, not only the crucible but also the peripheral part is heated, so that it is suitable for realizing a gentle temperature gradient in the growth direction, but it is steep. No temperature gradient can be realized. The present invention uses an iridium metal or iridium alloy crucible as the crucible and uses the high frequency induction heating means to heat only the crucible and heat and melt the raw material without heating the surrounding atmosphere, so that a steep temperature gradient can be realized. .

【0013】さらに、共晶組織は温度分布に極めて敏感
であり、径方向の温度分布に勾配ができていると、共晶
組織は不均一になってしまう。本発明では、坩堝をがイ
リジウム金属またはイリジウム合金坩堝であり、坩堝底
部の複数の細孔から流下する融液が一体になってメニス
カスが形成されて凝固することにより共晶体のバルクが
形成されることになる。
Further, the eutectic structure is extremely sensitive to the temperature distribution, and if the temperature distribution in the radial direction has a gradient, the eutectic structure becomes non-uniform. In the present invention, the crucible is an iridium metal or iridium alloy crucible, the melt flowing down from a plurality of pores in the bottom of the crucible is united to form a meniscus to form a bulk eutectic crystal. It will be.

【0014】本発明の方法は、標準的な成長速度を15m
m/min、最大で 20mm/minという高速に設
定することができ、結晶成長速度はブリッジマン法に比
べて、400〜1200倍程度高速である。
The method of the present invention has a standard growth rate of 15 m.
It can be set to a high speed of m / min and a maximum of 20 mm / min, and the crystal growth speed is 400 to 1200 times faster than that of the Bridgman method.

【0015】本発明によれば、バルクでも高強度が実現
できるため、優れた特性を有する酸化物共晶体の実用化
に大きく貢献する。本発明の方法で得られた酸化物共晶
体は、1500℃の高温酸化雰囲気においても粒成長は
見られず、高い耐酸化性を示すので、ジェットエンジン
や超高温ガスタービンの部材といった耐熱構造材料とし
ての実用化が期待できる。その他、自動車のエンジン部
材(排ガス系、動弁など)にも、焼却炉壁としても使用
可能である。
According to the present invention, high strength can be realized even in bulk, which greatly contributes to the practical application of an oxide eutectic having excellent characteristics. Since the oxide eutectic obtained by the method of the present invention does not show grain growth even in a high temperature oxidizing atmosphere of 1500 ° C. and exhibits high oxidation resistance, it is a heat resistant structural material such as a member of a jet engine or an ultra high temperature gas turbine. Can be expected to be put into practical use. In addition, it can be used as an engine member of an automobile (exhaust gas system, valve drive, etc.) or as an incinerator wall.

【0016】また、本発明の製造方法は、細孔の配置に
応じて、円柱状のもののみならず、角状、板状のものの
製造も可能とする製造方法であるので、加工プロセスを
軽減でき、歩留まりが高いことが期待される。
Further, the manufacturing method of the present invention is a manufacturing method which can manufacture not only a cylindrical shape but also a square shape or a plate shape depending on the arrangement of the pores. It is expected to be possible and the yield will be high.

【0017】[0017]

【発明の実施の形態】本発明の装置を図1を用いて説明
する。なお、図1の左部の円内は坩堝1の底部の拡大図
を示している。原料は坩堝1内に保持する。酸化物系共
晶体製造用原料は高融点物質なので、高周波誘導加熱を
用い、坩堝は高融点材料であるイリジウム金属またはロ
ジウムを1〜20%含有するイリジウム−ロジウム等の
イリジウム合金が適する。
DETAILED DESCRIPTION OF THE INVENTION The apparatus of the present invention will be described with reference to FIG. The circle in the left part of FIG. 1 shows an enlarged view of the bottom of the crucible 1. The raw material is held in the crucible 1. Since the raw material for producing the oxide eutectic is a high melting point substance, high frequency induction heating is used, and the crucible is preferably made of a high melting point material such as iridium metal or iridium-rhodium alloy containing 1 to 20% of rhodium.

【0018】イリジウムは、酸化物共晶体融液とのぬれ
性が悪く(接触角が90°<θ)、坩堝の細孔から流下
する融液と種結晶との間に安定なメニスカスを形成する
ので好適である。また、このような坩堝を使用すると、
融液が坩堝内で対流を起こしているため、得られる共晶
体の均質性が高い。
Iridium has poor wettability with the oxide eutectic melt (contact angle is 90 ° <θ), and forms a stable meniscus between the melt flowing down from the crucible pores and the seed crystal. Therefore, it is preferable. Also, when using such a crucible,
Since the melt causes convection in the crucible, the obtained eutectic has high homogeneity.

【0019】坩堝1は、アルミナホルダ3で保持し、ア
ルミナ断熱材4で坩堝1の全体を遮蔽して、石英管5内
に設置する。石英管5の外周には、高周波誘導加熱用R
Fコイル6を配置し、坩堝1内の原料を加熱昇温し、溶
融し、融液とする。坩堝1の底部側面部にはイリジウム
金属またはイリジウム合金からなる発熱体であるアフタ
ーヒータ2を設置する。
The crucible 1 is held by an alumina holder 3, the alumina heat insulating material 4 is used to shield the entire crucible 1, and the crucible 1 is installed in a quartz tube 5. On the outer circumference of the quartz tube 5, R for high frequency induction heating
The F coil 6 is arranged and the raw material in the crucible 1 is heated and heated to be melted to form a melt. An after-heater 2 which is a heating element made of iridium metal or iridium alloy is installed on the side surface of the bottom of the crucible 1.

【0020】坩堝の酸化を防ぐために、Arガス雰囲気
を用い、結晶性の向上のために用いるO2 との比を厳密
にコントロールした不活性ガス等の雰囲気ガスを石英管
5の上部より導入し、下部より排気する。坩堝1の下部
には拡大図に示すように酸化物共晶体融液が流下する複
数の細孔7を設ける。
In order to prevent the oxidation of the crucible, an atmosphere of Ar gas is used, and an atmosphere gas such as an inert gas whose ratio to O 2 used for improving the crystallinity is strictly controlled is introduced from the upper part of the quartz tube 5. , Exhaust from the bottom. As shown in an enlarged view, a plurality of pores 7 through which the oxide eutectic melt flows down are provided in the lower part of the crucible 1.

【0021】融液は、坩堝1の底部に鉛直に設けられた
複数の細孔7を通って、下方に流出して種結晶保持具8
にセットした種結晶(サファイヤ)9に接触し、種結晶
保持具8の引き下げ軸を引き下げることにより、一方向
凝固成長して共晶体のバルク10となり、下方へ種結晶
保持具8の移動機構により連続的に引き下げられる。種
結晶保持具8の移動機構としては、種結晶保持具8をボ
ールネジとサーボモータとギヤによって回転させて移動
させる機構等の公知の手段を採用できる。
The melt flows downward through a plurality of vertical pores 7 provided at the bottom of the crucible 1 and flows downward.
By contacting the seed crystal (sapphire) 9 set to, and pulling down the pull-down axis of the seed crystal holder 8, unidirectional solidification growth is performed to form the bulk 10 of the eutectic body, and the seed crystal holder 8 is moved downward by the moving mechanism. It is continuously lowered. As a moving mechanism of the seed crystal holder 8, a known means such as a mechanism for rotating the seed crystal holder 8 by a ball screw, a servo motor and a gear to move it can be adopted.

【0022】図2は、坩堝底部の細孔から融液を種結晶
に接触させて引き下げる工程の態様を示す模式図であ
る。まず、図のように、製造する共晶体バルクの径より
小さく、細孔径より小さい径の種結晶9を中心の細孔7
−3に接触させ(図2のA)、坩堝底部の中央部に後述
の図3に示すようなメニスカスを形成する。種結晶9の
径は細孔7−3に隣接する細孔間の幅よりは小さい。
FIG. 2 is a schematic view showing a mode of a step of bringing the melt into contact with the seed crystal and pulling it down from the pores at the bottom of the crucible. First, as shown in the drawing, the seed crystal 9 having a diameter smaller than the diameter of the eutectic bulk to be produced and smaller than the pore diameter is used as the center of the pores 7.
-3 (A in FIG. 2), and a meniscus as shown in FIG. 3 to be described later is formed at the center of the bottom of the crucible. The diameter of the seed crystal 9 is smaller than the width between the pores adjacent to the pore 7-3.

【0023】この状態で種結晶9をゆっくりと下方へ移
動、すなわち、結晶成長を開始すると、細孔7−3から
流下した融液が水平に広がり始め、近接する細孔7−
2、7−4に達するとそちらの細孔から流下する融液の
供給も手伝って更に広いメニスカスが形成される(図2
のB)。同様に、坩堝底部全体に融液が広がるまでゆっ
くりと結晶成長を続ける(図2のC)。融液が坩堝底部
全体に広がり、目的の結晶径を得たのをCCDカメラに
て確認した後、必要な速度(例えば、20mm/min)での結
晶成長を行う(図2のD)。
When the seed crystal 9 is slowly moved downward in this state, that is, when crystal growth is started, the melt flowing down from the pores 7-3 begins to spread horizontally and the adjacent pores 7-
When reaching 2 and 7-4, a wider meniscus is formed by helping the supply of the melt flowing down from the pores (Fig. 2).
B). Similarly, crystal growth is slowly continued until the melt spreads over the entire bottom of the crucible (C in FIG. 2). After confirming with the CCD camera that the melt has spread over the entire bottom of the crucible and the target crystal diameter has been obtained, crystal growth is performed at a required speed (for example, 20 mm / min) (D in FIG. 2).

【0024】細径ファイバーの作製時は、細孔の径は微
細なものが用意されるので細孔の径、深さなどのパラメ
ータについての特別な工夫は重要ではないが、バルク体
を作る際はこれらは無視できないパラメータとなる。
Since fine pores are prepared at the time of producing a small-diameter fiber, special measures for parameters such as pore diameter and depth are not important, but when making a bulk body. Are parameters that cannot be ignored.

【0025】細孔を規定する実効偏析係数keffは以下の
式1で表される。 keff = k[k + (1-k)exp(-Vd/D)]-1 (式1) ここで,Dは液相中の拡散係数,k=CA S/CA L(CA S:固相に
おける混合相の濃度,CA L:液相における混合相の濃
度),dは拡散相厚,Vは成長速度である。式1で示され
る実効偏析係数keffを1にすることは、作製結晶を均質
にするために必須である。
The effective segregation coefficient k eff that defines the pores is expressed by the following equation 1. k eff = k [k + (1-k) exp (-Vd / D)] -1 (Equation 1) where D is the diffusion coefficient in the liquid phase, and k = C A S / C A L (C A S : concentration of the mixed phase in the solid phase, C A L : concentration of the mixed phase in the liquid phase), d is the thickness of the diffusion phase, and V is the growth rate. Setting the effective segregation coefficient k eff shown in Expression 1 to 1 is essential for making the produced crystal homogeneous.

【0026】 拡散相厚dに当たるのが細孔の深さであ
り、細孔の径はDと強い相関関係(径が大きくなるとDが
大きくなる)を持つ。式1からわかるとおり、実効偏析
係数kef fを1にするには、V、dを大きくしてDを小さくす
るのが理想である。
[0026] The depth of the pores corresponds to the diffusion phase thickness d.
Therefore, the pore diameter has a strong correlation with D (as the diameter increases, D
Have to grow). As can be seen from Equation 1, effective segregation
Coefficient kef fTo set 1 to 1, increase V and d and decrease D.
Ideally.

【0027】引き下げ法の場合、結晶成長速度のVは従
来法に比して非常に早いのでこれは理想的である。拡散
相厚dに当たるのが細孔の深さも大きいのが望ましい。
すなわち、細孔の深さは深い方が望ましい。しかし、深
すぎるとシードタッチの作業が非常に困難になるため、
その最適値は目的物に合わせる必要がある。例えば、酸
化物共晶体の場合は深さ2mm以上5mm以下が好まし
い。また、細孔の径はDと強い相関関係(径が大きくな
るとDが大きくなる)を持つので、これは小さい方が望
ましい。
In the pull-down method, the crystal growth rate V is much faster than in the conventional method, and this is ideal. It is desirable that the depth of the pores is large corresponding to the diffusion phase thickness d.
That is, the deeper the pores, the better. However, if it is too deep, the work of seed touch becomes very difficult,
The optimum value needs to be matched to the target object. For example, in the case of an oxide eutectic, the depth is preferably 2 mm or more and 5 mm or less. Further, the diameter of the pore has a strong correlation with D (the larger the diameter, the larger D).

【0028】結晶径Rcryを大きくするためには坩堝細孔
Rcapを大きくしなければならないが、そうすると、融液
が細い孔から垂れ落ちてしまうので、坩堝細孔Rcapは実
効偏析係数keffが約1になり、且つ、融液が垂れ落ちな
い径として、坩堝下端に細孔を複数個設けて、複数の細
孔から流下した融液を種結晶の上端平面に接触させて合
流させるようにした。融液が垂れ落ちない径は、酸化物
共晶体の場合、400μmφ以下であり、好ましくは2
00μmφ〜300μmφである。細孔の深さは、偏析
係数keffの制御と融液の粘度の観点から2mm〜5mm
程度が好ましい。
In order to increase the crystal diameter R cry , the crucible pores
The R cap must be increased, but if this is done, the melt will drip from the small holes, so the effective pore segregation coefficient R eff of the crucible pore R cap will be approximately 1 and the diameter at which the melt will not drip. As a result, a plurality of pores were provided at the lower end of the crucible, and the melt flowing down from the plurality of pores was brought into contact with the upper end plane of the seed crystal to join them. In the case of an oxide eutectic, the diameter at which the melt does not drip is 400 μmφ or less, preferably 2
It is 00 μmφ to 300 μmφ. The depth of the pores is 2 mm to 5 mm from the viewpoint of controlling the segregation coefficient k eff and the viscosity of the melt.
A degree is preferable.

【0029】本発明においては坩堝底部の細孔から流下
する融液は、図3に示す坩堝の細孔のRcap 、結晶のR
cryst と坩堝の下端と結晶との間の高さからなる融液部
にメニスカスが形成される。図の○印と点線で示す曲線
の外側は安定成長域となり、曲線の内側は不安定とな
る。ただし、本発明においては、Rcapを大きくできない
ので、その代わりに坩堝の底面Rbottomを径制御のパラ
メータとした。その結果、引き下げ速度20mm/mi
nという高速度までは確実に安定成長可能となった。
In the present invention, the melt flowing down from the pores at the bottom of the crucible is Rcap of the pores of the crucible and R of the crystal shown in FIG.
A meniscus is formed in the melt portion, which is defined by the height between cryst and the lower end of the crucible and the crystal. The outside of the curve indicated by the circle and the dotted line in the figure is the stable growth region, and the inside of the curve is unstable. However, in the present invention, since Rcap cannot be increased, the bottom surface R bottom of the crucible was used as a parameter for diameter control instead. As a result, the pulling speed is 20 mm / mi
Stable growth was certainly possible up to a high speed of n.

【0030】本発明の装置を用いて、酸化物系共晶体の
バルクの一方向凝固成長を行う際には、坩堝細孔Rcap
上記の要件を満たすように酸化物系共晶体材料の種類に
応じて定める。また、細孔の数は共晶体材料の大きさに
応じて上記の条件を満たすように定める。まず、図2の
Aに示すように、先端の平らな種結晶(サファイア)9
を坩堝1の中心の細孔7−3の下部に位置させ、原料を
溶解し細孔7−3に溜まった融液に接触させて、その融
液の水平方向の広がりにより隣接する細孔から流下する
融液と接触させて複数の細孔から出た融液を合流させて
一方向凝固成長を開始し固液界面を形成する。
When bulk unidirectional solidification growth of an oxide-based eutectic is carried out using the apparatus of the present invention, the crucible pore R cap is made of a kind of oxide-based eutectic material so as to satisfy the above requirements. Determined according to. Further, the number of pores is determined so as to satisfy the above condition according to the size of the eutectic material. First, as shown in FIG. 2A, a seed crystal (sapphire) 9 having a flat tip is formed.
Is located below the central pore 7-3 of the crucible 1 and is brought into contact with the melt that has melted the raw material and is accumulated in the pore 7-3, and the melt spreads in the horizontal direction from the adjacent pores. The melt flowing out from a plurality of pores is brought into contact with the flowing melt and merges to start unidirectional solidification growth to form a solid-liquid interface.

【0031】坩堝1の底部の複数の細孔7の先端から流
下する融液と種結晶との間に形成される固化部の変動に
応じて、アフターヒーター2の発熱量をRFコイル6の
パワーの増減により調整する。このため、複数の細孔7
の先端における融液を石英管5の外部より観察できるよ
うに、アルミナ断熱材4にCCDカメラ用覗き窓12を
設け、アルミナホルダ3、アフターヒータ2には開口を
設ける。
The amount of heat generated by the after-heater 2 is controlled by the power of the RF coil 6 according to the variation of the solidified portion formed between the melt and the seed crystal flowing down from the tips of the plurality of pores 7 at the bottom of the crucible 1. Adjust by increasing or decreasing. Therefore, the plurality of pores 7
A CCD camera viewing window 12 is provided in the alumina heat insulating material 4, and an opening is provided in the alumina holder 3 and the after-heater 2 so that the melt at the tip of the can be observed from the outside of the quartz tube 5.

【0032】融液幅と高さをCCDカメラで観察し、融
液幅と高さに応じてカウントされるピクセル数と誘導加
熱コイル6のパワー調整の関係式を予め求めておき、実
際の引き下げにおいて、CCDカメラで得られるピクセ
ルのカウント数の変動に基づき、高周波誘導加熱コイル
6のパワーを増減してアフターヒータ2の発熱温度を調
節する。
By observing the melt width and height with a CCD camera, the relational expression between the number of pixels counted according to the melt width and height and the power adjustment of the induction heating coil 6 is obtained in advance, and the actual reduction is performed. In step 2, the heat generation temperature of the after-heater 2 is adjusted by increasing or decreasing the power of the high frequency induction heating coil 6 based on the variation of the pixel count number obtained by the CCD camera.

【0033】このアフターヒータ2の発熱温度調整によ
り共晶体の一方向凝固成長速度のマクロな制御を行う。
すなわち、複数の細孔7の先端における融液の高さが大
きいときは温度を下げ、高さが小さいときは温度を上げ
ることにより共晶体の凝固成長速度のマクロな制御を行
うことができる。また、結晶性のミクロな制御は、共晶
体のバルク10の径の観察に基づく移動機構(図示せ
ず)の速度制御による引き下げ速度の微調整によって行
う。
By adjusting the heat generation temperature of the after-heater 2, the unidirectional solidification growth rate of the eutectic is macro-controlled.
That is, when the height of the melt at the tips of the plurality of pores 7 is large, the temperature is lowered, and when the height is small, the temperature is raised, and macroscopic control of the solidification growth rate of the eutectic can be performed. Further, the microscopic control of the crystallinity is performed by finely adjusting the pulling speed by speed control of a moving mechanism (not shown) based on the observation of the diameter of the bulk 10 of the eutectic.

【0034】Al23 −Y23 系共晶体としては、約
18〜22モル%のY23を含有するAl23 −3Y2
3・5Al23(YAG)をはじめとして、約39〜
43モル%、約58〜62モル%、約78〜82モル%
の各範囲のY23を含有する共晶組成も好適である。そ
の他のAl23/YAG/ZrO2、Al23/RAP
(R:稀土類、P:ペロブスカイト)共晶体、Al23
/RAG、Fe34/RIP(I:鉄)、Fe34/R
IG、ZrO2/RZP、ZrO2/RZGやその他の2
元系、3元系の酸化物系共晶体への適用も可能である。
The Al 2 O 3 --Y 2 O 3 eutectic is an Al 2 O 3 -3Y 2 containing about 18 to 22 mol% Y 2 O 3.
O 3 · 5Al 2 O 3 a (YAG) as the beginning, about 39 to
43 mol%, about 58-62 mol%, about 78-82 mol%
A eutectic composition containing Y 2 O 3 in each range is also suitable. Other Al 2 O 3 / YAG / ZrO 2 , Al 2 O 3 / RAP
(R: rare earth, P: perovskite) eutectic, Al 2 O 3
/ RAG, Fe 3 O 4 / RIP (I: iron), Fe 3 O 4 / R
IG, ZrO 2 / RZP, ZrO 2 / RZG and other 2
It is also possible to apply to a ternary oxide eutectic.

【0035】[0035]

【実施例】実施例1 原料は、Y23 、Al23 (ともに99.99%)
酸化物粉末をAl2 3 /YAGの共晶組成にて数gを
仕込み、よく攪拌したものを用いた。坩堝およびアフタ
ーヒータにはイリジウム金属を用い、それをセラミック
スの保温材で覆い、誘導加熱コイルのパワーを5.00
kw以下とし、融解温度1840℃で融解した。酸素を
含むアルゴンガス流雰囲気にて、上端が平らな径1mm
のサファイア単結晶棒を種結晶として用い、引き下げ法
により、設定引き下げ速度を20mm/minまでとし
て一方向凝固成長させた。
[Example] Example 1 The raw material is Y2 O3 , Al2 O3 (Both are 99.99%)
Oxide powder is Al2O 3 Several g in eutectic composition of / YAG
What was charged and well stirred was used. Crucible and after
-Iridium metal is used for the heater and it is made of ceramic
The heat of the induction heating coil is 5.00
The melting point was set to kW or less, and melting was performed at a melting temperature of 1840 ° C. Oxygen
1mm in diameter with flat top in an argon gas flow atmosphere containing
Sapphire single crystal rod as a seed crystal
Therefore, the setting lowering speed is set to 20 mm / min.
Directionally solidified and grown.

【0036】イリジウム金属製坩堝細孔径は200μm
φとし、それぞれの間隔を3mmとして7個設けた。細
孔の孔の深さは4mmとした。
Iridium metal crucible pore size is 200 μm
φ, and the distance between them was 3 mm, and seven pieces were provided. The depth of the pores was 4 mm.

【0037】アフターヒータは円筒状とし、共晶体バル
ク外面から円筒内面までの距離は4mmとした。図4に
示す外観形状の径7mmのAl23 /YAG共晶体の
ロッドを得た。得られたバルク共晶体の組織は1μm以
下に微細化されており、バルクの外側と中心付近を比較
してもそのサイズは均質である。共晶組織が不均質であ
ると強度劣化の原因になるが、本発明の製造方法により
製造した共晶体では、図5に示すように、(a)端部、
(b)中央部ともに均質な微細組織が得られた。これ
は、融液を保持しているIr坩堝自体が高周波により加
熱されており、径方向に均質な温度分布が実現したため
である。
The after heater had a cylindrical shape, and the distance from the outer surface of the eutectic bulk to the inner surface of the cylinder was 4 mm. An Al 2 O 3 / YAG eutectic rod with a diameter of 7 mm having the appearance shown in FIG. 4 was obtained. The structure of the obtained bulk eutectic is refined to 1 μm or less, and the size is uniform even when the outside of the bulk and the vicinity of the center are compared. When the eutectic structure is inhomogeneous, it causes strength deterioration, but in the eutectic body manufactured by the manufacturing method of the present invention, as shown in FIG.
(B) A uniform fine structure was obtained in the central part. This is because the Ir crucible itself holding the melt is heated by the high frequency, and a uniform temperature distribution is realized in the radial direction.

【0038】実施例2 実施例1の原料に、ZrO2(99.99%)酸化物粉
末をAl2 3 /YAG/ZrO2の共晶組成になるよ
うに仕込み、実施例1と同様に共晶体のロッドを製造し
た。図4に示す外観形状の径7mmのAl23 /YA
G/ZrO2共晶体バルクを得た。
Example 2 The raw material of Example 1 was charged with ZrO 2 (99.99%) oxide powder so as to have an eutectic composition of Al 2 O 3 / YAG / ZrO 2 , and the same procedure as in Example 1 was performed. A eutectic rod was produced. Al 2 O 3 / YA with a diameter of 7 mm shown in FIG.
A G / ZrO 2 eutectic bulk was obtained.

【0039】実施例 図6に示す円筒状の容器の底部に細孔を直線状に並べた
イリジウム金属製坩堝用い、実施例2と同条件で酸化物
共晶体板状バルクを製造した。図7に示すように、外観
形状で幅7〜10mm、厚さ1mmのAl23 /YAG
/ZrO2共晶体板状バルクを得た。
Example 3 An oxide eutectic plate-like bulk was produced under the same conditions as in Example 2, using an iridium metal crucible having fine pores arranged linearly at the bottom of the cylindrical container shown in FIG. As shown in FIG. 7, the external shape is Al 2 O 3 / YAG having a width of 7 to 10 mm and a thickness of 1 mm.
A / ZrO 2 eutectic plate-like bulk was obtained.

【0040】[0040]

【発明の効果】本発明の一方向凝固成長した共晶体バル
クは、高温引張り強度に極めて優れおり、高温酸化性雰
囲気で使用される耐熱構造材料として特に適する。ま
た、本発明の装置は、坩堝として底部に短い長さの複数
の細孔を有するイリジウム坩堝を用い、坩堝底部の融液
部の温度制御をアフターヒータの使用により実現したも
のであり、簡易な装置構造により、待望されていた酸化
物共晶体バルクを大量生産できるという優れた効果をも
たらすものである。
INDUSTRIAL APPLICABILITY The unidirectionally solidified eutectic bulk of the present invention is extremely excellent in high temperature tensile strength and is particularly suitable as a heat resistant structural material used in a high temperature oxidizing atmosphere. Further, the apparatus of the present invention uses an iridium crucible having a plurality of pores having a short length at the bottom as a crucible, and realizes temperature control of the melt portion of the crucible bottom by using an afterheater, which is simple. Due to the device structure, the long-awaited excellent effect of mass-producing the oxide eutectic bulk can be brought about.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造装置を示す概念図である。FIG. 1 is a conceptual diagram showing a manufacturing apparatus of the present invention.

【図2】本発明の製造方法において、坩堝底部の細孔か
ら融液を種結晶に接触させて引き下げる工程の態様を示
す模式図である。
FIG. 2 is a schematic diagram showing an aspect of a step of bringing a melt into contact with a seed crystal and pulling it down from pores at the bottom of the crucible in the production method of the present invention.

【図3】本発明の製造方法において、融液のメニスカス
の状態を示す模式図である。
FIG. 3 is a schematic view showing a state of a meniscus of a melt in the manufacturing method of the present invention.

【図4】実施例1および実施例2で得られた酸化物共晶
体バルクの形状を示す図面代用光学写真である。
FIG. 4 is a drawing-substitute optical photograph showing a shape of an oxide eutectic bulk obtained in Example 1 and Example 2.

【図5】実施例1で得られた酸化物共晶体バルクの微細
組織を示す図面代用顕微鏡組織写真である。
5 is a drawing-substitute microstructure photograph showing a microstructure of an oxide eutectic bulk obtained in Example 1. FIG.

【図6】実施例3の板状酸化物共晶体バルクを得るため
の坩堝底部の模式図である。
FIG. 6 is a schematic diagram of a crucible bottom for obtaining a plate-shaped oxide eutectic bulk of Example 3.

【図7】実施例3で得られた板状酸化物共晶体バルクの
形状を示す図面代用光学写真である。
7 is a drawing-substitute optical photograph showing the shape of the plate-shaped oxide eutectic bulk obtained in Example 3. FIG.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年11月16日(2001.11.
16)
[Submission date] November 16, 2001 (2001.11.
16)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0004】 これまで、酸化物共晶体は、上記のよう
な応用分野候補材料として期待されていたが、従来法
であるブリッジマン法では、成長方向の緩やかな温度勾
配(2 〜3℃/mm)のため、強度の鍵を握る「共晶
組織の大きさ」が大きくなってしまい、共晶組織の微細
化が進まず、実用化に十分な強度が1500℃、大気中
で1000MPaとされているのに対して、1500℃
で300MPa程度の強度を発現する材料しか得られ
ず、強度の向上が行き詰まっていた。
Up to now, the oxide eutectic has been expected as a candidate material for the above-mentioned application fields , but in the Bridgman method, which is a conventional method, a gradual temperature gradient in the growth direction (2 to 3 ° C. / mm), the size of the eutectic structure, which holds the key to the strength, becomes large, the eutectic structure does not become finer, and the strength sufficient for practical use is 1500 ° C and 1000 MPa in the atmosphere. However, 1500 ℃
However, only a material exhibiting a strength of about 300 MPa was obtained, and improvement in strength was stalled.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Name of item to be corrected] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】[0005]

【課題を解決するための手段】 本発明者は、ブリッジ
マン法では到達できない急峻な温度勾配を成長方向に実
現し、同時に、径方向に均質な温度分布を実現する方法
および装置を開発することにより共晶組織が微細にな
り、強度の飛躍的な向上をもたらした酸化物共晶体のバ
ルクを得ることに成功した。
Means for Solving the Problems The present inventor develops a method and apparatus for realizing a steep temperature gradient in the growth direction, which cannot be achieved by the Bridgman method, and at the same time, realizing a uniform temperature distribution in the radial direction. As a result, the eutectic structure became finer and succeeded in obtaining a bulk of an oxide eutectic body which brought about a dramatic improvement in strength.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Name of item to be corrected] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0022】図2は、坩堝底部の細孔から融液を種結晶
に接触させて引き下げる工程の態様を示す模式図であ
る。まず、図のように、製造する共晶体バルクの径より
小さく 、細孔径より大きい径の種結晶9を中心の細孔
7−3に接触させ(図2のA)、 坩堝底部の中央部に
後述の図3に示すようなメニスカスを形成する。種結晶
9の 径は細孔7−3に隣接する細孔間の幅よりは小さ
い。
FIG. 2 is a schematic view showing a mode of a step of bringing the melt into contact with the seed crystal and pulling it down from the pores at the bottom of the crucible. First, as shown in the figure, a seed crystal 9 having a diameter smaller than that of the eutectic bulk to be produced and larger than the pore diameter is brought into contact with the central pore 7-3 (A in FIG. 2), and the seed crystal 9 is attached to the central portion of the crucible bottom. A meniscus as shown in FIG. 3 described later is formed. The diameter of the seed crystal 9 is smaller than the width between the pores adjacent to the pore 7-3.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0026】拡散相厚dに当たるのが細孔の深さであ
り、細孔の径はDと強い相関関係(径が大きくなるとDが
大きくなる)を持つ。式1からわかるとおり、実効偏析
係数k ffを1にするには、V、dを大きくしてDを小さ
くするのが理想である。
The depth of the pores corresponds to the diffusion phase thickness d, and the diameter of the pores has a strong correlation with D (the larger the diameter, the larger D). As can be seen from Equation 1, to 1 the effective segregation coefficient k e ff is, V, to reduce the D by increasing the d is ideal.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Name of item to be corrected] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0032】融液幅と高さをCCDカメラで観察し、融
液幅と高さに応じてカウントされるピクセル数と誘導加
熱コイル6のパワー調整の関係式を予め求めておき、実
際の引き下げにおいて、CCDカメラで得られるピクセ
ルのカウント数の変動に基づき、高周波誘導加熱コイル
6のパワーを増減して坩堝およびアフターヒータ2の発
熱温度を調節する。
By observing the melt width and height with a CCD camera, the relational expression between the number of pixels counted according to the melt width and height and the power adjustment of the induction heating coil 6 is obtained in advance, and the actual reduction is performed. In step 2, the power of the high frequency induction heating coil 6 is increased or decreased to adjust the heat generation temperatures of the crucible and the after-heater 2 based on the variation of the pixel count number obtained by the CCD camera.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 坩堝と、坩堝底部に設けた細孔から流出
する融液に接触させる種結晶を保持する種結晶保持具
と、種結晶保持具を下方に移動させる移動機構と、該移
動機構の移動速度制御装置と、坩堝を加熱する誘導加熱
手段とを具備した一方向凝固成長装置であって、該坩堝
はイリジウム金属またはイリジウム合金坩堝であり、坩
堝底部外周にイリジウム金属またはイリジウム合金から
なる発熱体であるアフターヒータを配置し、坩堝及びア
フターヒータは、誘導加熱手段の出力調整により発熱量
の調整を可能とすることによって坩堝底部に設けた細孔
から引き出される融液の固液境界相の加熱温度の制御を
可能とした装置において、坩堝底部に細孔を複数個設
け、該細孔の径を下記の式1で示される実効偏析係数k
effが1になり、 keff = k[k + (1-k)exp(-Vd/D)]-1 (式1) 且つ、融液が垂れ落ちない大きさとし、かつ種結晶の上
端を水平面とし、複数の細孔から流下した融液を種結晶
の上端平面に接触させて合流させることができる間隔で
複数の細孔を配置したことを特徴とする酸化物系共晶体
のバルクの製造装置。
1. A crucible, a seed crystal holder for holding a seed crystal to be brought into contact with a melt flowing out from a fine hole provided at the bottom of the crucible, a moving mechanism for moving the seed crystal holder downward, and the moving mechanism. A unidirectional solidification growth apparatus equipped with a moving speed control device and an induction heating means for heating the crucible, wherein the crucible is an iridium metal or iridium alloy crucible and is made of iridium metal or iridium alloy on the outer periphery of the crucible bottom. An after-heater, which is a heating element, is arranged.The crucible and the after-heater are capable of adjusting the amount of heat generation by adjusting the output of the induction heating means, and the solid-liquid boundary phase of the melt drawn out from the pores provided at the bottom of the crucible. In the apparatus capable of controlling the heating temperature of No. 1, a plurality of pores are provided at the bottom of the crucible, and the diameter of the pores is the effective segregation coefficient k shown in the following formula 1.
eff becomes 1 and k eff = k [k + (1-k) exp (-Vd / D)] -1 (Equation 1) and the size is such that the melt does not drip, and the upper end of the seed crystal is a horizontal plane. And an apparatus for manufacturing a bulk oxide-based eutectic body, characterized in that a plurality of pores are arranged at intervals such that the melt flowing down from the plurality of pores can be brought into contact with the upper end plane of the seed crystal and merged. .
【請求項2】 請求項1記載の装置を用い、坩堝内に共
晶組成の酸化物原料粉末を挿入して溶融し、坩堝底部に
設けた複数の細孔から種結晶保持具により下方へ引き出
され一方向凝固成長する共晶体の引き出し開始に際し
て、複数の細孔のうち中心部の細孔から流下した融液に
まず種結晶の上端平面を接触させ、該融液を水平方向に
広げて隣接する細孔から流下した融液に接触させ、形成
されるメニスカスを観察し、目的の結晶径を得たのを確
認した後所定の速度で結晶成長を行うことを特徴とする
酸化物系共晶体バルクの製造方法。
2. Using the apparatus according to claim 1, an oxide raw material powder having a eutectic composition is inserted into a crucible and melted, and then pulled down by a seed crystal holder from a plurality of pores provided at the bottom of the crucible. At the start of drawing out the eutectic body that undergoes unidirectional solidification growth, the upper end plane of the seed crystal is first brought into contact with the melt flowing down from the central pore of the plurality of pores, and the melt is spread horizontally and adjacent The eutectic oxide-based eutectic characterized by performing crystal growth at a predetermined rate after confirming that the meniscus formed by contacting with the melt flowing down from the pores to obtain the desired crystal size Bulk manufacturing method.
【請求項3】 請求項1記載の装置を用い、坩堝内に
共晶組成の酸化物原料粉末を挿入して溶融し、坩堝底部
に設けた複数の細孔から種結晶保持具により下方へ引き
出され一方向凝固成長する共晶体の引き出し速度を0.
01〜20mm/minとすることを特徴とする酸化物
系共晶体バルクの製造方法。
3. The apparatus according to claim 1, wherein an oxide raw material powder having a eutectic composition is inserted into a crucible and melted, and the powder is drawn downward by a seed crystal holder from a plurality of pores provided at the bottom of the crucible. The pull-out speed of the eutectic crystal that undergoes unidirectional solidification growth is 0.
01-20 mm / min, The manufacturing method of the oxide type eutectic body bulk characterized by the above-mentioned.
【請求項4】 成長方向の温度勾配を0〜150℃/m
mとすることを特徴とする請求項3記載の酸化物系共晶
体バルクの製造方法。
4. A temperature gradient in the growth direction of 0 to 150 ° C./m
The method for producing an oxide-based eutectic bulk according to claim 3, wherein m is m.
JP2001290283A 2001-09-21 2001-09-21 Oxide eutectic bulk production equipment and production method Expired - Fee Related JP3992469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001290283A JP3992469B2 (en) 2001-09-21 2001-09-21 Oxide eutectic bulk production equipment and production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001290283A JP3992469B2 (en) 2001-09-21 2001-09-21 Oxide eutectic bulk production equipment and production method

Publications (2)

Publication Number Publication Date
JP2003095783A true JP2003095783A (en) 2003-04-03
JP3992469B2 JP3992469B2 (en) 2007-10-17

Family

ID=19112615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001290283A Expired - Fee Related JP3992469B2 (en) 2001-09-21 2001-09-21 Oxide eutectic bulk production equipment and production method

Country Status (1)

Country Link
JP (1) JP3992469B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005035861A (en) * 2003-07-18 2005-02-10 Furuya Kinzoku:Kk Crucible for growing single crystal, and its after heater
JP2006131483A (en) * 2004-11-09 2006-05-25 Tohoku Univ Unidirectionally solidifying and growing apparatus and method for manufacturing single crystal
JP2008063180A (en) * 2006-09-06 2008-03-21 Univ Of Yamanashi Single crystal, its manufacturing device and manufacturing process
JP2009513469A (en) * 2005-10-26 2009-04-02 アポロン、ソーラー Apparatus and method for producing a ribbon of silicon or other crystalline material
JP2010105901A (en) * 2009-03-30 2010-05-13 Tdk Corp Single crystal pulling-down apparatus
JP2010105876A (en) * 2008-10-31 2010-05-13 Tdk Corp Single crystal pulling-down apparatus
JP2012229134A (en) * 2011-04-25 2012-11-22 Fujikura Ltd Method for producing oxide eutectic body
JP2013040104A (en) * 2012-11-26 2013-02-28 Tdk Corp Pulling-down apparatus
JP2013040103A (en) * 2012-11-26 2013-02-28 Tdk Corp Pulling-down apparatus
JP7483840B2 (en) 2017-11-09 2024-05-15 キヤノン株式会社 Powdered materials for additive manufacturing, structures, semiconductor manufacturing equipment parts, and semiconductor manufacturing equipment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005035861A (en) * 2003-07-18 2005-02-10 Furuya Kinzoku:Kk Crucible for growing single crystal, and its after heater
JP4492998B2 (en) * 2003-07-18 2010-06-30 株式会社フルヤ金属 Single crystal growth crucible and its after heater
JP2006131483A (en) * 2004-11-09 2006-05-25 Tohoku Univ Unidirectionally solidifying and growing apparatus and method for manufacturing single crystal
JP2009513469A (en) * 2005-10-26 2009-04-02 アポロン、ソーラー Apparatus and method for producing a ribbon of silicon or other crystalline material
JP2008063180A (en) * 2006-09-06 2008-03-21 Univ Of Yamanashi Single crystal, its manufacturing device and manufacturing process
JP2010105876A (en) * 2008-10-31 2010-05-13 Tdk Corp Single crystal pulling-down apparatus
JP2010105901A (en) * 2009-03-30 2010-05-13 Tdk Corp Single crystal pulling-down apparatus
JP2012229134A (en) * 2011-04-25 2012-11-22 Fujikura Ltd Method for producing oxide eutectic body
JP2013040104A (en) * 2012-11-26 2013-02-28 Tdk Corp Pulling-down apparatus
JP2013040103A (en) * 2012-11-26 2013-02-28 Tdk Corp Pulling-down apparatus
JP7483840B2 (en) 2017-11-09 2024-05-15 キヤノン株式会社 Powdered materials for additive manufacturing, structures, semiconductor manufacturing equipment parts, and semiconductor manufacturing equipment

Also Published As

Publication number Publication date
JP3992469B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
KR101858779B1 (en) A method for the preparation of doped garnet structure single crystals with diameters of up to 500 mm
JP3892496B2 (en) Semiconductor single crystal manufacturing method
KR101997565B1 (en) Method for producing monocrystalline silicon
JP2004262684A (en) METHOD FOR GROWING BETA-Ga2O3 SINGLE CRYSTAL
CN113718337A (en) Device and method for growing silicon carbide crystals by liquid phase method
CN107881550B (en) Melt method crystal growth method of large-size crystal
JP2003095783A (en) Manufacturing apparatus and method for bulk of oxide eutectoid
JP5935764B2 (en) Garnet-type single crystal and manufacturing method thereof
JP2018150198A (en) LARGE-DIAMETER ScAlMgO4 SINGLE CRYSTAL, AND GROWTH METHOD AND GROWTH UNIT THEREFOR
JPH0337182A (en) Production of big magnetostrictive alloy rod
CN106498494A (en) A kind of thermal field of MEMS making silicon single crystal material and preparation method
JP2019163187A (en) Single crystal growth method of iron gallium alloy
JP2006273684A (en) Method for producing group iii element oxide-based single crystal
JP3852804B2 (en) Method for producing oxide-based eutectic ceramic fiber
JP2008239352A (en) Single crystal manufacturing device and manufacturing method
CN103266346B (en) The growth apparatus of a kind of crystal Pulling YVO4 crystal and growing method based on this growth apparatus
US5063986A (en) Method for manufacturing alloy rod having giant magnetostriction
Rudolph et al. Studies on meniscus and diameter stability during the growth of fiber crystals by the micro-pulling-down method
JPH07277893A (en) Production of alumina single crystal
JP7486743B2 (en) Method for producing FeGa alloy single crystal
JP7349100B2 (en) Seed crystal for FeGa single crystal growth and method for producing FeGa single crystal
JP2018203563A (en) Production method of magnetostrictive material
RU2626637C1 (en) Method for growing high-temperature monocrystals by sinelnikov-dziov&#39;s method
JP2001316195A (en) Manufacturing device and manufacturing method of oxide single crystal
WO2014073165A1 (en) Single crystal producing apparatus

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees