JP2735752B2 - Single crystal growth method - Google Patents

Single crystal growth method

Info

Publication number
JP2735752B2
JP2735752B2 JP27615592A JP27615592A JP2735752B2 JP 2735752 B2 JP2735752 B2 JP 2735752B2 JP 27615592 A JP27615592 A JP 27615592A JP 27615592 A JP27615592 A JP 27615592A JP 2735752 B2 JP2735752 B2 JP 2735752B2
Authority
JP
Japan
Prior art keywords
heating element
single crystal
heating
zirconia
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27615592A
Other languages
Japanese (ja)
Other versions
JPH06122585A (en
Inventor
治 夫 嵐
見 肇 浅
脇 正 弘 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Shiro Renga KK
Original Assignee
Shinagawa Shiro Renga KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Shiro Renga KK filed Critical Shinagawa Shiro Renga KK
Priority to JP27615592A priority Critical patent/JP2735752B2/en
Publication of JPH06122585A publication Critical patent/JPH06122585A/en
Application granted granted Critical
Publication of JP2735752B2 publication Critical patent/JP2735752B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Resistance Heating (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は新規な単結晶育成法、特にサファ
イア、ルビー、YAG、GGGなどの高融点酸化物の単
結晶を育成する方法に関するものである。ここにYAG
はイットリウム・アルミニウム・ガーネット(YAl
12)のことであり、これは1970℃の融点を有
し、またGGGはガドリウム・ガリウムガーネット(G
Ga12)のことであり、これは1710℃の
融点を有する。両者はいずれもレーザー用に用いられ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method for growing a single crystal, and more particularly to a method for growing a single crystal of a high melting point oxide such as sapphire, ruby, YAG, and GGG. Here YAG
Is Yttrium Aluminum Garnet (Y 3 Al
5 O 12 ), which has a melting point of 1970 ° C. and GGG is gadolinium gallium garnet (G
d 3 Ga 5 O 12 ), which has a melting point of 1710 ° C. Both are used for lasers.

【0002】[0002]

【従来の技術と解決しようとする課題】従来、単結晶を
育成する方法には種々ありその中で溶液から行ない且つ
ルツボを用いない単結晶育成法には次のような3種があ
る(共立出版KK発行、実験物理学講座No.13、
「試料の作成と加工」135〜139頁参照)。
2. Description of the Related Art Conventionally, there are various methods for growing a single crystal. Among them, there are the following three types of single crystal growing methods using a solution and not using a crucible (Kyoritsu). Published by KK, Experimental Physics Course No. 13,
"Preparation and processing of samples", pages 135 to 139).

【0003】まずベルヌイ法があり、この場合微粉末試
料を酸水素炎の倒立バーナー中を落下させて加熱半溶融
状態にし、種子結晶あるいは耐火物棒の上に積もらせて
単結晶を成長させるのであるが2300℃より融点の高
い材料や反応性の高い材料には使用できないなどの難点
がある。
[0003] First, the Bernoulli method is used. In this case, a fine powder sample is dropped in an inverted burner of an oxyhydrogen flame so as to be heated to a semi-molten state, and deposited on a seed crystal or a refractory rod to grow a single crystal. However, it has a drawback such that it cannot be used for a material having a melting point higher than 2300 ° C. or a material having high reactivity.

【0004】次にフローティングゾーン法があり、この
場合は多結晶試料棒を両端で鉛直に保持し、その一部を
加熱溶融して溶融帯を作り、それを一端から他端に移動
することにより単結晶化する。この方法では溶融帯が表
面張力により保持されているのでルツボを必要としな
い。従ってこの方法は高温で活性な高融点材料の単結晶
化に好適な方法といえる。
[0004] Next, there is a floating zone method. In this case, a polycrystalline sample rod is held vertically at both ends, and a part thereof is heated and melted to form a molten zone, which is moved from one end to the other end. Single crystallize. In this method, no crucible is required because the molten zone is held by surface tension. Therefore, this method can be said to be a method suitable for single crystallization of a high melting point material which is active at a high temperature.

【0005】次に浸没アーク溶融法があり、この場合、
容器に詰めた原材料粉末の中央部にカーボン電極を挿入
し、電圧を印加すると放電により高温で発生し、中央部
が溶融する。アーク電流を減らして徐冷すると単結晶が
得られる。この方法は、他の方法では単結晶が得られな
い場合、品質がそれほど問題にならない場合に専ら用い
られる。
Next, there is an immersion arc melting method. In this case,
When a carbon electrode is inserted into the center of the raw material powder packed in the container and a voltage is applied, the material is generated at a high temperature by discharge and the center is melted. A single crystal is obtained by slow cooling with a reduced arc current. This method is used exclusively when the single crystal cannot be obtained by other methods or when the quality is not so important.

【0006】ルツボを用いないこれら各種単結晶育成法
の中、フローティングゾーン法が最も注目されているが
その方法の場合前記溶融帯を局部的に加熱しなければな
らずその加熱手段として三つの方式が考えられている。
即ち高周波加熱方式、電子ビーム加熱方式とアークイメ
ージ方式であり、高融点酸化物の育成に適しているもの
としてここ十数年来アークイメージ方式即ち赤外線集中
加熱方式による結晶製造装置が開発され一般に利用され
るようになっている。
[0006] Among these various single crystal growing methods that do not use a crucible, the floating zone method has attracted the most attention. In this method, the molten zone must be locally heated, and three types of heating means are required. Is considered.
In other words, a high frequency heating method, an electron beam heating method, and an arc image method, and a crystal manufacturing apparatus based on an arc image method, that is, an infrared concentrated heating method, has been developed and generally used for more than ten years as being suitable for growing a high melting point oxide. It has become so.

【0007】この赤外線集中加熱方式は回転楕円体の一
つの焦点に熱源となる赤外線発生電球を置き、そこから
輻射する光が楕円体の内面に反射してもう一つの焦点に
集まるという幾何学的な特性を利用したものである。そ
して単結晶試料棒を前記もう一つの焦点を通るよう鉛直
に保持せしめつつ加熱するのであるがこのような赤外線
集中加熱方式では光(赤外線)が集中した部分のみ加熱
されそれ以外の部分は加熱されないため固液境界の温度
勾配が大きすぎる。従って溶融帯が急冷されるため欠陥
の多い結晶となり完全な結晶がえられない。このため焦
点への集中度を多少ぼかすことによって温度の勾配をゆ
るめたり、育成中の結晶を溶融帯近くまでアルミナのパ
イプでおおって傍熱型のアフターヒーターとするなどし
ているが充分では無い。更に材料温度は材料が光を吸収
する度合いにより変り、また融点の光吸収係数によって
も変り所望の温度を得るのが難しい。
In this infrared concentrated heating method, an infrared light-generating bulb serving as a heat source is placed at one focal point of a spheroid, and light radiated therefrom is reflected on the inner surface of the ellipsoid and collected at another focal point. It utilizes the unique characteristics. Then, the single crystal sample rod is heated while being held vertically so as to pass through the other focal point, but in such an infrared concentrated heating method, only the portion where light (infrared rays) is concentrated is heated, and the other portions are not heated. Therefore, the temperature gradient at the solid-liquid boundary is too large. Therefore, since the molten zone is rapidly cooled, crystals having many defects cannot be obtained. For this reason, the temperature gradient is moderated by slightly blurring the degree of concentration at the focal point, or the in-grown crystal is covered with an alumina pipe to the vicinity of the melting zone and used as an indirectly heated after heater, but this is not sufficient. . Further, the material temperature varies depending on the degree to which the material absorbs light, and also varies depending on the light absorption coefficient of the melting point, and it is difficult to obtain a desired temperature.

【0008】フローティングゾーン法の加熱方式として
は上述のように赤外線集中加熱方式の外に高周波加熱方
式と電子ビーム加熱方式があるが、前者の場合は高周波
加熱装置が高価かつ大きな設備を必要とする外、直接高
周波を試料に印加する方式は導電性試料でないと適用不
可であり、又後者の場合は上述の場合と同様温度勾配が
急であるという問題点があった。
As the heating method of the floating zone method, there are a high frequency heating method and an electron beam heating method in addition to the infrared concentrated heating method as described above. In the former case, the high frequency heating device requires expensive and large equipment. In addition, the method of directly applying a high frequency to the sample is not applicable unless the sample is a conductive sample, and the latter case has a problem that the temperature gradient is steep as in the case described above.

【0009】本発明はこのような事情に鑑み、赤外線集
中加熱方法に代表されるフローティングゾーン法の問題
点を解決して溶融帯域の温度勾配が適切で容易に欠陥の
ない結晶を生成しうるフローティングゾーン法による単
結晶育成法を提供することを目的とするものである。
In view of such circumstances, the present invention solves the problems of the floating zone method typified by the infrared concentrated heating method, and has a suitable temperature gradient in the melting zone and can easily produce a defect-free crystal. It is an object of the present invention to provide a single crystal growing method by a zone method.

【0010】[0010]

【課題を解決するための手段】本発明者らはフローティ
ングゾーン法による単結晶育成法において、単結晶の育
成を通電により発熱する中空円筒型ジルコニア発熱体を
備えた超高温電気抵抗炉の前記発熱体の内部で行なうこ
とにより上記問題点を解決しうることを見出して本発明
に至ったものである。
Means for Solving the Problems In the single crystal growing method by the floating zone method, the present inventors have developed the above-mentioned heating method of an ultra-high temperature electric resistance furnace provided with a hollow cylindrical zirconia heating element that generates heat by energizing single crystal growth. The present inventors have found that the above problems can be solved by performing the treatment inside the body, and have reached the present invention.

【0011】本発明の単結晶育成法に用いるのに適当な
上記超高温電気抵抗炉は本発明者らによってかつて開発
され特許出願されたものであり(特願平3−22618
3号)、その一例が同出願明細書に詳しく記載されてい
るが、ここに図面をあげてあらためて説明することとす
る。まず図1において、1が本発明で用いられる中空円
筒型ジルコニア発熱体である。これは中央部に細い径即
ち小さな断面積の発熱部2とその両端ににそれより太い
径即ち大きな断面積を有する一定長さの端子部3を備え
ている。この端子部3には白金線又は白金−ロジウム合
金線の如き通電用リード線4が取付けられている。発熱
部2と端子部3は内部に単結晶試料を出し入れし内部で
発熱するに必要な大きさの内径を有している。この発熱
体については後で詳しく説明する。
The above-mentioned ultra-high temperature electric resistance furnace suitable for use in the method for growing a single crystal of the present invention has been previously developed and filed for a patent by the present inventors (Japanese Patent Application No. 3-22618).
No. 3), an example of which is described in detail in the specification of the same application, will be described again with reference to the drawings. First, in FIG. 1, reference numeral 1 denotes a hollow cylindrical zirconia heating element used in the present invention. It has a heat-generating portion 2 having a small diameter or small cross-sectional area at the center and a terminal portion 3 having a constant diameter and a larger diameter or large cross-sectional area at both ends thereof. An electric lead wire 4 such as a platinum wire or a platinum-rhodium alloy wire is attached to the terminal portion 3. The heat generating portion 2 and the terminal portion 3 have an inner diameter that is large enough to take a single crystal sample in and out and generate heat inside. This heating element will be described later in detail.

【0012】この発熱体1を直立支持するために発熱体
1の上下にパイプ状耐火物5を備える。この耐火物5と
しては、アルミナ又はマグネシア等電気絶縁性に優れた
ものが用いられ、リード線4が内部に配設されている。
この耐火物5の内径は前記発熱体1の内径と同じであ
る。なおこの耐火物5としてランタンクロマイト、ラン
タンマンガタイト、ランタンコバルタイト等を使用する
場合は前記の通電用リード線4は不要となる。
A pipe-like refractory 5 is provided above and below the heating element 1 to support the heating element 1 upright. As the refractory 5, a material having excellent electrical insulation such as alumina or magnesia is used, and the lead wire 4 is disposed inside.
The inner diameter of the refractory 5 is the same as the inner diameter of the heating element 1. When lanthanum chromite, lanthanum manganite, lanthanum cobaltite, or the like is used as the refractory 5, the current-carrying lead wire 4 becomes unnecessary.

【0013】これらの外側には該発熱体の予熱装置と円
筒状耐火物が配置される。まず発熱体1を囲んで周囲に
順にジルコニア質円筒状耐火物6、アルミナ質円筒状耐
火物7が配置される。耐火物6にかかる熱負荷を軽減す
るため、且つ発熱体1からの漏電を防ぐために発熱体1
と耐火物6との間に若干の空間8が設けられる。アルミ
ナ質耐火物7の表面には発熱体1を予熱するために予備
ヒーター9が備えられており、アルミナ質耐火物7はヒ
ーター9の漏電を防ぎヒーター9を発熱体1の高温時の
影響から保護することができる。前記ヒーター9はアル
ミナ質耐火物の外側に巻付けて施工される。そのスペー
サー及び接着剤としてアルミナ質モルタルが使用され
る。
Outside these, a preheating device for the heating element and a cylindrical refractory are arranged. First, a zirconia cylindrical refractory 6 and an alumina cylindrical refractory 7 are arranged around the heating element 1 in this order. In order to reduce the thermal load on the refractory 6 and to prevent electrical leakage from the heating element 1, the heating element 1
Some space 8 is provided between and the refractory 6. A preliminary heater 9 is provided on the surface of the alumina refractory 7 to preheat the heating element 1. The alumina refractory 7 prevents electric leakage of the heater 9 and prevents the heater 9 from being affected by the high temperature of the heating element 1. Can be protected. The heater 9 is wound around an alumina refractory. Alumina mortar is used as the spacer and the adhesive.

【0014】予備ヒーター9としては炭化珪素質、二珪
化モリブデン等の非金属発熱体、Fe−Cr−Al系や
白金等の金属発熱体が用いられる。熱効率の点からは金
属発熱体をアルミナ質耐火物7に巻付けて使用するのが
好ましい。その際、耐火物にジルコニアを使用するとき
に耐火物への漏電現象がおこるため、アルミナ耐火物を
介在させることが必要である。
As the preliminary heater 9, a non-metallic heating element such as silicon carbide or molybdenum disilicide, or a metal heating element such as Fe-Cr-Al or platinum is used. From the viewpoint of thermal efficiency, it is preferable to use a metal heating element wound around the alumina refractory 7. At this time, when zirconia is used as the refractory, a leakage phenomenon occurs to the refractory, so that it is necessary to interpose an alumina refractory.

【0015】アルミナ質耐火物7の外側にはセラミック
質断熱材10と外殻鉄皮11が設けられる。前記断熱材
10としてはアルミナシリカ系ファイバーブロック又は
バルクを施工する。これにより鉄皮11が保護断熱され
る。又鉄皮11は炉体全体寸法に制約がある場合には鉄
皮を二重構造として内部に水又は空気を流して水冷又は
空冷を図ることができる。
A ceramic heat insulating material 10 and an outer shell 11 are provided outside the alumina refractory 7. As the heat insulating material 10, an alumina-silica fiber block or bulk is applied. Thereby, the iron shell 11 is protected and insulated. When there is a restriction on the overall size of the furnace, the steel shell 11 can be water-cooled or air-cooled by flowing water or air into the steel shell having a double structure.

【0016】前記中空円筒型抵抗発熱体1とパイプ状耐
火物5の内部に上下に貫通する空間12が形成されて被
処理物を上方又は下方から挿入して発熱体1の発熱部2
付近の超高温加熱空間13に配置することができる。そ
の空間13に被処理物を載置又は懸垂させる手段を設け
ることができ、目的によっては前記空間の上部又は下部
を耐火材にてシールすることもできる(図示せず)。
A space 12 penetrating vertically is formed inside the hollow cylindrical resistance heating element 1 and the pipe-shaped refractory 5, and the object to be processed is inserted from above or below and the heating section 2 of the heating element 1 is formed.
It can be arranged in the nearby ultra-high temperature heating space 13. The space 13 may be provided with a means for placing or suspending the object to be processed, and the upper or lower part of the space may be sealed with a refractory material (not shown) depending on the purpose.

【0017】なお、中空円筒型抵抗発熱体とこれを支持
するパイプ状耐火物の外周囲に配置される耐火物として
は該発熱体が高温になった際その熱に耐えられる材質で
あることが必要であり、上記のようにジルコニア質のも
のが用いられる。ジルコニアファイバーを含むものであ
り、たとえばジルコニア中空球、ジルコニア粉末とジル
コニアファイバーからなるものを用いることができる
(特願平2−242244号)。そのジルコニアファイ
バーとしては、純ジルコニアファイバーの外にライム、
マグネシア、イツトリア等の安定化剤を添加して安定化
されたジルコニアファイバーも用いられる。この外、特
開平3−83856号公報に記載されたような、ジルコ
ニアファイバーと、ジルコニア粉末から構成され、嵩比
重が2.5〜5.0である表皮層を有し、内部が中空で
ある又は内部が全部又は一部ジルコニアのファイバー、
中空球、ファイバーボードからなる充填剤で充填されて
いる、耐火物を用いることもできる。
The refractory disposed around the hollow cylindrical resistance heating element and the pipe-shaped refractory supporting the same may be made of a material that can withstand the heat when the heating element becomes high in temperature. It is necessary, and a zirconia material is used as described above. For example, zirconia hollow spheres or zirconia powder and zirconia fibers can be used (Japanese Patent Application No. 2-242244). As the zirconia fiber, lime,
Zirconia fibers stabilized by adding a stabilizer such as magnesia or yttria are also used. In addition, it has a skin layer composed of zirconia fiber and zirconia powder and having a bulk specific gravity of 2.5 to 5.0 as described in JP-A-3-83856, and has a hollow interior. Or the fiber is entirely or partially zirconia,
Refractories filled with a filler consisting of hollow spheres and fiberboard can also be used.

【0018】本発明で用いるに好適な中空円筒型発熱体
1を図2(a),(b)について説明すれば、断面積乃
至外径が比較的小さな発熱部2の両端に端子部3が設け
られている。発熱部の断面積/端子部断面積の比の好適
な範囲は1/3〜1/10である。比が1/3より大き
な場合は端子部の温度上昇が大であり、1/10よりも
小さな場合端子部と発熱部の温度差が大きくなり折損し
易くなっていずれも好ましくない。なお発熱部2に外部
からの観察用の孔14を設けることができる。
Referring to FIGS. 2A and 2B, a hollow cylindrical heating element 1 suitable for use in the present invention will be described. Terminal sections 3 are provided at both ends of a heating section 2 having a relatively small sectional area or outer diameter. Is provided. A preferred range of the ratio of the sectional area of the heat generating portion / the sectional area of the terminal portion is 1/3 to 1/10. When the ratio is larger than 1/3, the temperature rise of the terminal portion is large, and when the ratio is smaller than 1/10, the temperature difference between the terminal portion and the heat generating portion becomes large and the terminal portion is easily broken. Note that the heat generating portion 2 can be provided with a hole 14 for observation from outside.

【0019】又、目的とする中空円筒型発熱体内部に必
要とされる温度分布に応じて端子部と発熱部との境界部
にテーパー15を設けるなど形状を調整することができ
る。
The shape can be adjusted by providing a taper 15 at the boundary between the terminal portion and the heat generating portion according to the desired temperature distribution inside the hollow cylindrical heat generating element.

【0020】この発熱体1の発熱部2の長さ、発熱体1
の内外径、発熱部2と端子部3との境界部の構造等は目
的とする単結晶の種類(融液の粘性)に応じ、あるいは
望ましい融液部と非融解部との温度勾配によって適宜選
択される。
The length of the heating portion 2 of the heating element 1
The inner diameter and the outer diameter, the structure of the boundary portion between the heat generating portion 2 and the terminal portion 3 and the like are appropriately determined according to the kind of the target single crystal (viscosity of the melt) or the desired temperature gradient between the melt portion and the non-melted portion. Selected.

【0021】このような超高温電気抵抗炉の中空円筒型
発熱体1には図3に示すごときシャフト16,16′が
上下に設けられる。このシャフト16は上下移動が可能
で且つ回転できる治具である。育成されるべき単結晶試
料17,17′は棒状に成形されて中空円筒型発熱体の
上方及び下方からその内部に挿入され鉛直方向にセット
される。その場合発熱体の発熱部付近の超高温加熱空間
13で上方及び下方棒状試料17,17′の端部を互い
に接触せしめる。その際接触し合う下方棒状試料17′
は表面を平面状とし、上方棒状試料17は端部の径を漸
次小ならしめ尖端を有するようにし、観察用の孔14か
らよく観察しながらセットさせるのが適当である。この
ようにして上下棒状単結晶試料を互いに接触させてから
一定速度で互いに逆方向に回転させつつ又、上下試料を
上下運動せしめつつ通電加熱する。加熱温度は単結晶試
料の種類によって適宜設定される。例えばアルミナの場
合は約2050℃である。その際の上方試料の回転速度
は0.1〜100rpm 、好ましくは1〜10rpm 、下方
試料の回転速度は0〜100rpm 、好ましくは0〜20
rpm の範囲とする。また上方試料の下降速度は1〜20
mm/hrの範囲が好ましい。単結晶の種類によっては下方
試料の回転は不要である。又試料は通常下降させ加熱溶
融、凝固させる。上昇させるのは試料をセットするとき
のみである。図3において、18は加熱後形成される溶
融帯を示す。
The hollow cylindrical heating element 1 of such an ultra-high temperature electric resistance furnace is provided with upper and lower shafts 16, 16 'as shown in FIG. The shaft 16 is a jig that can move up and down and rotate. The single crystal samples 17 and 17 'to be grown are formed into a rod shape, inserted into the hollow cylindrical heating element from above and below, and set vertically. In this case, the ends of the upper and lower rod-shaped samples 17, 17 'are brought into contact with each other in the ultra-high temperature heating space 13 near the heat generating portion of the heat generating element. At this time, the lower rod-shaped sample 17 'that comes into contact
It is appropriate to set the upper rod-shaped sample 17 to have a sharp edge by gradually reducing the diameter of the end portion and to set the upper rod-shaped sample 17 while observing it well through the observation hole 14. After the upper and lower rod-shaped single crystal samples are brought into contact with each other in this way, they are heated while being rotated in opposite directions at a constant speed, and while moving the upper and lower samples up and down. The heating temperature is appropriately set according to the type of the single crystal sample. For example, in the case of alumina, the temperature is about 2050 ° C. At this time, the rotation speed of the upper sample is 0.1 to 100 rpm, preferably 1 to 10 rpm, and the rotation speed of the lower sample is 0 to 100 rpm, preferably 0 to 20 rpm.
rpm range. The lowering speed of the upper sample is 1-20.
The range of mm / hr is preferred. Depending on the type of single crystal, rotation of the lower sample is not necessary. The sample is usually lowered, melted and solidified by heating. Raise it only when setting the sample. In FIG. 3, reference numeral 18 denotes a molten zone formed after heating.

【0022】このようにして中空円筒状ジルコニア発熱
体を備えた超高温電気抵抗炉を用い、単結晶試料を前記
発熱体内部に挿入し加熱して育成することは溶融部と非
溶融部間の温度勾配を緩徐たらしめ、欠陥の少ない良好
な単結晶を得ることができる。
In this way, by using an ultra-high temperature electric resistance furnace equipped with a hollow cylindrical zirconia heating element, inserting a single crystal sample into the heating element and heating the same to grow the single crystal sample, it is necessary to increase the temperature between the molten portion and the non-melted portion. The temperature gradient is made slow, and a good single crystal with few defects can be obtained.

【0023】[0023]

【実施例】高純度アルミナ粉末(Al2 3 純度≧9
9.99%)100重量部に対し、メチルセルローズ2
重量部、水20重量部を添加し、混練乾燥後、ラバープ
レスにて2000Kg/cm2 の静水圧で成形した。その
後、電気炉にて1700℃、2時間焼成し、焼結棒(8
φ×150mm)を得た。これらの焼結棒(棒状単結晶試
料)を図3の如く中空円筒型発熱体の発熱部に両端が接
するよう設置し、2050℃に加熱し、溶融帯を形成さ
せ上下棒を逆回転させながら徐々に降下させてほぼ15
時間後アルミナ単結晶を生成せしめた。
Example: High purity alumina powder (Al 2 O 3 purity ≧ 9)
(9.99%) 100 parts by weight of methyl cellulose 2
The mixture was kneaded and dried, and then molded by a rubber press under a hydrostatic pressure of 2000 kg / cm 2 . Then, it is baked in an electric furnace at 1700 ° C. for 2 hours, and is sintered (8)
φ 150 mm). As shown in FIG. 3, these sintered rods (rod-shaped single crystal samples) were placed so that both ends thereof were in contact with the heat generating portion of a hollow cylindrical heating element, and heated to 2050 ° C. to form a molten zone and rotate the upper and lower rods in reverse. Gradually descend, almost 15
After a time, an alumina single crystal was formed.

【0024】この際用いた超高温電気抵抗炉の高さは3
00mm、外径は300mmであった。発熱体の組成はイッ
トリア安定化ジルコニア粉末70、イットリア安定化ジ
ルコニア繊維30からなり、化学組成はZrO92重
量%、Y 8重量%であった。発熱体の寸法は次
のとおり 発熱体内径 24mm 発熱部長さ 10mm 端子部外径 42mm 端子部長さ 40mm 試料の回転数 上部試料4rpm 、下部試料10rpm 、試料下降速度10
mm/hr このとき測定された温度勾配は図4に示すとおりであ
り、適当なものであった。得られた結晶には欠陥がみら
れなかった。
The height of the ultra-high temperature electric resistance furnace used was 3
The outer diameter was 00 mm and the outer diameter was 300 mm. The composition of the heating element was composed of yttria-stabilized zirconia powder 70 and yttria-stabilized zirconia fibers 30, and the chemical composition was 92% by weight of ZrO 2 and 8% by weight of Y 2 O 3 . The dimensions of the heating element are as follows: Heating element inner diameter 24mm Heating part length 10mm Terminal part outer diameter 42mm Terminal part length 40mm Sample rotation speed Upper sample 4rpm, Lower sample 10rpm, Sample lowering speed 10
mm / hr The temperature gradient measured at this time was as shown in FIG. 4 and was appropriate. No defects were found in the obtained crystals.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いる超高温電気抵抗炉の一実施例の
断面図。
FIG. 1 is a sectional view of an embodiment of an ultra-high temperature electric resistance furnace used in the present invention.

【図2】本発明に用いる中空円筒型発熱体の各実施例の
正面図。
FIG. 2 is a front view of each embodiment of a hollow cylindrical heating element used in the present invention.

【図3】本発明に用いる超高温電気抵抗炉の要部断面
図。
FIG. 3 is a sectional view of an essential part of an ultra-high temperature electric resistance furnace used in the present invention.

【図4】本発明の実施例で測定された温度勾配を示すグ
ラフ。
FIG. 4 is a graph showing a temperature gradient measured in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 中空円筒型抵抗発熱体 2 発熱部 3 端子部 4 通電用リード線 5 パイプ状耐火物 9 予備ヒーター 16,16′ シャフト 17,17′ 単結晶試料 18 溶融帯 DESCRIPTION OF SYMBOLS 1 Hollow cylindrical resistance heating element 2 Heating part 3 Terminal part 4 Electric lead wire 5 Pipe-shaped refractory 9 Pre-heater 16, 16 'Shaft 17, 17' Single crystal sample 18 Melting zone

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】フローティングゾーン法による単結晶育成
法において、育成を通電により発熱する中空円筒型ジル
コニア発熱体を備えた超高温電気抵抗炉の前記発熱体の
内部で行なうことを特徴とする、単結晶育成法。
1. A single crystal growing method according to a floating zone method, wherein the growing is performed inside the heating element of an ultra-high temperature electric resistance furnace having a hollow cylindrical zirconia heating element which generates heat by energization. Crystal growth method.
【請求項2】前記超高温電気抵抗炉は、単結晶試料を内
部で加熱することができる発熱部とその両端の端子部を
備えた前記中空円筒型ジルコニア発熱体をパイプ状耐火
物により直立支持せしめ、その外側に前記発熱体を予熱
する装置とこれを保護するための円筒状耐火物を設けて
なることを特徴とする請求項1記載の単結晶育成法。
2. An ultra-high temperature electric resistance furnace, wherein said hollow cylindrical zirconia heating element having a heating part capable of internally heating a single crystal sample and terminals at both ends thereof is supported upright by a pipe-shaped refractory. 2. The method of growing a single crystal according to claim 1, wherein a device for preheating the heating element and a cylindrical refractory for protecting the device are provided outside the heating element.
【請求項3】前記中空円筒型ジルコニア発熱体はジルコ
ニアファイバーを含むジルコニア質抵抗発熱体である請
求項1記載の単結晶育成法。
3. The method of growing a single crystal according to claim 1, wherein said hollow cylindrical zirconia heating element is a zirconia-based resistance heating element containing zirconia fibers.
【請求項4】前記中空円筒型ジルコニア発熱体の前記発
熱部の断面積が前記端子部の断面積よりも小である請求
項2記載の単結晶育成法。
4. The method of growing a single crystal according to claim 2, wherein a cross-sectional area of said heat generating portion of said hollow cylindrical zirconia heating element is smaller than a cross-sectional area of said terminal portion.
【請求項5】単結晶の育成は単結晶試料を上方及び下方
より前記発熱体内部に挿入し、それらを回転自在に上下
方向に移動しながら加熱して行なうことを特徴とする請
求項1記載の単結晶育成法。
5. The method according to claim 1, wherein the single crystal is grown by inserting a single crystal sample from above and below into the inside of the heating element and heating them while rotatably moving up and down. Single crystal growth method.
JP27615592A 1992-10-14 1992-10-14 Single crystal growth method Expired - Lifetime JP2735752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27615592A JP2735752B2 (en) 1992-10-14 1992-10-14 Single crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27615592A JP2735752B2 (en) 1992-10-14 1992-10-14 Single crystal growth method

Publications (2)

Publication Number Publication Date
JPH06122585A JPH06122585A (en) 1994-05-06
JP2735752B2 true JP2735752B2 (en) 1998-04-02

Family

ID=17565522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27615592A Expired - Lifetime JP2735752B2 (en) 1992-10-14 1992-10-14 Single crystal growth method

Country Status (1)

Country Link
JP (1) JP2735752B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103205803A (en) * 2013-04-24 2013-07-17 哈尔滨奥瑞德光电技术股份有限公司 Zirconia heat insulation structure applied to sapphire single crystal furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4183959B2 (en) 2002-03-22 2008-11-19 株式会社日本製鋼所 Method for producing hydrogen storage alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103205803A (en) * 2013-04-24 2013-07-17 哈尔滨奥瑞德光电技术股份有限公司 Zirconia heat insulation structure applied to sapphire single crystal furnace
CN103205803B (en) * 2013-04-24 2016-04-20 哈尔滨奥瑞德光电技术有限公司 The zirconium white insulation construction applied in sapphire single-crystal furnace

Also Published As

Publication number Publication date
JPH06122585A (en) 1994-05-06

Similar Documents

Publication Publication Date Title
EP3396029B1 (en) Sic single crystal production method and production apparatus
JP2014508704A (en) Method for preparing a garnet-type doped single crystal having a diameter of up to 500 mm
US8268077B2 (en) Upper heater, single crystal production apparatus, and method for producing single crystal
JP6302192B2 (en) Single crystal growth apparatus and method
JP2937108B2 (en) Single crystal pulling method and single crystal pulling apparatus
JP2735752B2 (en) Single crystal growth method
Kooy Zone melting of oxides in a carbon-arc image furnace
JPH0357072B2 (en)
JP2010070404A (en) Apparatus for forming silicon melt
JP2017222537A (en) Crucible, and single crystal growing unit and growing method
CN103266346B (en) The growth apparatus of a kind of crystal Pulling YVO4 crystal and growing method based on this growth apparatus
JPH07277893A (en) Production of alumina single crystal
JPH0337181A (en) Production of big magnetostrictive alloy rod composed of rare earth metal and transition metal
CN210420250U (en) Thermal field device and crystal growth device
JPH05294784A (en) Single crystal growth device
JPH11189487A (en) Production apparatus for oxide single crystal
JPS61261288A (en) Apparatus for pulling up silicon single crystal
JP2019167282A (en) Crystal growth apparatus
US20220243357A1 (en) Production apparatus for gallium oxide crystal and production method for gallium oxide crystal
KR100193051B1 (en) Single crystal growth apparatus
JP2022149310A (en) Crystal manufacturing method, crystal manufacturing apparatus, and single crystal
KR930007852B1 (en) Monocrystal growing apparatus
JP2023106875A (en) Apparatus and method for manufacturing metal oxide single crystal
JPH072616Y2 (en) Seed holder
Kamaruddin et al. The influence of power control on the diameter of Nd: YAG crystal