JPH04129147A - Charged particle ray device - Google Patents

Charged particle ray device

Info

Publication number
JPH04129147A
JPH04129147A JP2249293A JP24929390A JPH04129147A JP H04129147 A JPH04129147 A JP H04129147A JP 2249293 A JP2249293 A JP 2249293A JP 24929390 A JP24929390 A JP 24929390A JP H04129147 A JPH04129147 A JP H04129147A
Authority
JP
Japan
Prior art keywords
sample
charged particle
particle beam
space
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2249293A
Other languages
Japanese (ja)
Other versions
JP3079547B2 (en
Inventor
Mamoru Nakasuji
護 中筋
Shohei Suzuki
正平 鈴木
Hiroyasu Shimizu
弘泰 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP02249293A priority Critical patent/JP3079547B2/en
Publication of JPH04129147A publication Critical patent/JPH04129147A/en
Application granted granted Critical
Publication of JP3079547B2 publication Critical patent/JP3079547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To easily maintain the proper degree of vacuum in a lens barrel by providing an evacuation device in such a way as to bypass space formed around an objective lens for inclining a sample. CONSTITUTION:An electron beam after a hole at the lower ends of objective lenses 1, 2 and 3 reaches a sample 9 via the holes 7 and 6 of an evacuation tube (evacuation tube device) 4. Reflective electrons or secondary electrons are generated at the sample 9 and travel toward a detector 8, while ionizing gas molecules in a sample chamber 5. As a result, electrons generated due to the ionization of gas in the sample chamber 5 reach the detector 8, in addition to the reflective or secondary electrons from the sample 9. Consequently, secondary electrons are amplified by the gas molecules in the sample chamber 5. In this case, space covering an area where an electron beam emitted through an opening at the objective lenses 1, 2 and 3 comes in contact with the sample 9, is via the evacuated tube 4 and, therefore, the degree of vacuum in a lens barrel can be effectively restrained, regardless of the introduction of gas into the sample chamber 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、試料室内で試料を傾ける空間を確保するため
に、円錐形や円錐台形の対物レンズを有する荷電粒子線
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a charged particle beam apparatus having a conical or truncated conical objective lens in order to secure a space for tilting a sample in a sample chamber.

〔従来の技術〕[Conventional technology]

この種の荷電粒子線装置は、円錐形や円錐台形の対物レ
ンズを有するから、対物レンズ周りに広い空間が得られ
るため、試料室内で試料を傾けることができる。試料の
傾き角を大きく取れるようにすると円錐の角度は小さく
なり、対物レンズの周りの空間は太き(なる。
This type of charged particle beam device has a conical or truncated conical objective lens, which provides a wide space around the objective lens, allowing the sample to be tilted within the sample chamber. When the tilt angle of the sample is increased, the angle of the cone becomes smaller, and the space around the objective lens becomes thicker.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の如き従来の技術に於いては、試料室に連結した鏡
筒内部の真空度を良好に保てないため、鏡筒に連結した
ポンプ構成が[iになるという問題点があった。そこで
本発明は簡単なポンプ構成で容易に鏡筒内部の真空度を
上げた荷電粒子線装置を提供することを目的とする。
In the conventional technique as described above, the vacuum level inside the lens barrel connected to the sample chamber cannot be maintained well, so there is a problem that the pump configuration connected to the lens barrel becomes [i]. SUMMARY OF THE INVENTION An object of the present invention is to provide a charged particle beam device that can easily increase the degree of vacuum inside a lens barrel with a simple pump configuration.

〔課題を解決する為の手段〕[Means to solve problems]

上記問題点の解決の為に請求項(1)記載の本発明は、
試料室(5)内で試料(9)を傾ける空間を確保するた
めに、円錐形や円錐台形の対物レンズ(1,2,3)を
有する荷電粒子線装置において、前記対物レンズの(l
、2.3)の開口から射出した荷電粒子線が試料(9)
に当接するまでの空間を排気する排気装置(4)を、前
記対物レンズ(l、2.3)の周りでかつ前記試料(9
)を傾けるための空間を避けて設けたことを特徴とする
荷電粒子線装置であり、また請求項(2)記載の本発明
は、試料室(5)内で試料(9)を傾ける空間を確保す
るために、円錐形や円錐台形の対物レンズ(l、2.3
)を有する荷電粒子線装置において、前記試料室(5)
に低圧の気体を導入する気体導入装置(5a、5b)を
設けると共に、前記対物レンズ(l、2.3)の開口か
ら射出した荷電粒子線が試料(9)に当接するまでの空
間を排気する排気装置(4)を、前記対物レンズ(1,
2,3)の外側でかつ前記試料(9)を傾けるための空
間を避けて設けたことを特徴とする荷電粒子線装置であ
り、請求項(3)記載の本発明は、請求項(1)もしく
は(2)記載の荷電粒子線装置において、前記排気装置
には、前記試料からの荷電粒子線の走行空間を確保し、
かつ該荷電粒子線の検出器を配設する空間を確保するた
めの小部屋部、形成したことを特徴とする荷電粒子線装
置である。
In order to solve the above problem, the present invention as set forth in claim (1) includes:
In order to secure a space for tilting the sample (9) in the sample chamber (5), in a charged particle beam device having a conical or truncated conical objective lens (1, 2, 3),
, 2.3) The charged particle beam emitted from the aperture of sample (9)
An exhaust device (4) is installed around the objective lens (l, 2.3) and around the sample (9).
), and the present invention according to claim (2) is characterized in that a space for tilting the sample (9) is provided in the sample chamber (5). A conical or truncated conical objective lens (l, 2.3
) in the charged particle beam device having the sample chamber (5);
A gas introduction device (5a, 5b) is provided to introduce low-pressure gas into the space, and the space until the charged particle beam emitted from the aperture of the objective lens (l, 2.3) contacts the sample (9) is evacuated. The exhaust device (4) is connected to the objective lens (1,
2, 3) and is provided outside of the sample (9) while avoiding a space for tilting the sample (9), the present invention according to claim (3) ) or (2), in the charged particle beam device, the exhaust device has a space for the charged particle beam from the sample to travel;
The charged particle beam apparatus is characterized in that a small room portion is formed to secure a space for arranging a detector for the charged particle beam.

〔作用〕[Effect]

請求項(1)及び(2)記載の発明においては、対物レ
ンズの周りの空間に排気装置を設けて、対物レンズの開
口から射出した荷電粒子線が試料に当接するまでの空間
を排気しているので、試料室に連結した鏡筒内部の真空
度が試料室側から低下してい(ことを抑えることができ
る。
In the invention described in claims (1) and (2), an exhaust device is provided in the space around the objective lens, and the space until the charged particle beam emitted from the aperture of the objective lens comes into contact with the sample is evacuated. This can prevent the degree of vacuum inside the lens barrel connected to the sample chamber from decreasing from the sample chamber side.

従って、鏡筒内部の真空度を良好に保つ為に複雑なポン
プ構成が不用となる。また、本発明の排気装置は、従来
使用されていなかった対物レンズの周りの空間に配設し
ているため、荷電粒子線装置を特別大きくすることがな
い。
Therefore, a complicated pump configuration is not required to maintain a good degree of vacuum inside the lens barrel. Further, since the exhaust device of the present invention is disposed in a space around the objective lens that has not been used conventionally, there is no need to make the charged particle beam device particularly large.

さらに、請求項(3)記載の発明においては、排気装置
に、試料からの荷電粒子線の走行空間を確保し、かつ該
荷電粒子線の検出器を配設する空間を確保するための小
部屋部を設けたので、排気装置を設けたにもかかわらず
、何ら支障なく試料からの荷電粒子線を検出することが
できる。
Furthermore, in the invention set forth in claim (3), the exhaust device has a small room for securing a traveling space for the charged particle beam from the sample and for securing a space for arranging a detector for the charged particle beam. Since a part is provided, charged particle beams from a sample can be detected without any problems even though an exhaust device is provided.

〔実施例〕〔Example〕

第1図(a)、(b)は本発明の荷電粒子線装置の一実
施例であるE S EM−Environmental
Scanning l!1ectro+s Micro
scopy (試料室に水蒸気、窒素等の低圧力の気体
を導入し、試料からの反射電子、2次電子がこれらの気
体をイオン化することによる電子増幅作用を利用した顕
微鏡)・・・・・・の対物レンズ付近の説明図である。
FIGS. 1(a) and 1(b) show an E S EM-Environmental device, which is an embodiment of the charged particle beam device of the present invention.
Scanning l! 1electro+s Micro
Scopy (a microscope that uses low-pressure gases such as water vapor and nitrogen into the sample chamber, and utilizes the electron amplification effect by ionizing these gases with reflected electrons and secondary electrons from the sample)... FIG. 2 is an explanatory diagram of the vicinity of the objective lens.

第1図(a)は横断面図(第1図(b)のA−A’矢視
断面図)であり、第1図(b)は第1図(a)のB−B
’矢視断面図である。
FIG. 1(a) is a cross-sectional view (A-A' arrow sectional view in FIG. 1(b)), and FIG. 1(b) is a cross-sectional view taken along B-B in FIG. 1(a).
'It is a sectional view taken in the direction of arrows.

第1図(a)、(b)で対物レンズは上極1、下極2、
コイル3からなり、試料を60°程度迄傾けることが可
能なよう円錐台形に設計されている。対物レンズの下極
2の外側には排気のための排管4を設けている。排管4
は第1図(a)、(b)で示したように、試料を傾ける
空間を確保するため、及び正電圧の印加された検出器8
のための空間及び2次電子が検出3迄走行するための空
間を確保するため、排気する方向(X方向)に直交する
方向(Y方向)では第1の小部屋部4a(前者に対応)
、第2の小部屋部4b(後者に対応)となっている、こ
の排気のための排管4には電子線が通るための六6(試
料側)及び穴7(対物レンズ側)が設けられている。こ
れらの穴6.7は低倍のSEM像を得るため、穴7は1
−中、穴6は21中の大きさを持っている。この排管4
の排気コンダクタンスは最も狭い空間10でほぼ決り、
排管4の先に接続するのは不図示のロータリーポンプで
十分目的を達する。試料室5は、管5a、5bを通して
排気され、かつ、水蒸気、窒素などの低圧気体が導入さ
れる。試料室5の電子線照射位置には、試料9が不図示
の搬送装置によって、導入される。搬送装置は不図示の
搬送アーム等及び移動ステージを含む公知のものである
In Figures 1(a) and (b), the objective lenses are upper pole 1, lower pole 2,
It consists of a coil 3 and is designed in the shape of a truncated cone so that the sample can be tilted up to about 60 degrees. An exhaust pipe 4 for exhaust is provided outside the lower pole 2 of the objective lens. Drain pipe 4
As shown in FIGS. 1(a) and (b), in order to secure a space for tilting the sample, the detector 8 to which a positive voltage is applied is
In order to secure a space for the secondary electrons to travel up to the detection 3, the first small chamber 4a (corresponding to the former) is provided in the direction (Y direction) perpendicular to the exhaust direction (X direction).
This exhaust pipe 4, which serves as the second small chamber part 4b (corresponding to the latter), is provided with a hole 7 (on the sample side) and a hole 7 (on the objective lens side) through which the electron beam passes. It is being These holes 6 and 7 are used to obtain low magnification SEM images, so hole 7 is
- Medium, hole 6 has a size of 21 medium. This drain pipe 4
The exhaust conductance of is almost determined by the narrowest space 10,
A rotary pump (not shown) connected to the end of the exhaust pipe 4 is sufficient to achieve the purpose. The sample chamber 5 is evacuated through pipes 5a and 5b, and low-pressure gas such as water vapor and nitrogen is introduced into the sample chamber 5. A sample 9 is introduced into the electron beam irradiation position of the sample chamber 5 by a transport device (not shown). The transfer device is a known device including a transfer arm (not shown) and a moving stage.

ここで排管4の作用は以下の如くである。すなわち、 第1図の小穴6.7及び排気口10の排気コンダクタン
スをそれぞれG、 、ct及びG1゜とし、試料室圧力
をP、とすると六6.7の間の空間の圧力pHlは G。
Here, the function of the exhaust pipe 4 is as follows. That is, if the exhaust conductance of the small hole 6.7 and the exhaust port 10 in FIG.

Pea−PBX G、。Pea-PBX G.

となる、排気コンダクタンスはほぼ開口面積に比例する
ので、G、−に−π・1” 、G+a−K・2×5×π
×4(但しKは気体の種類等で決る定数)とすれば、 C,1 ζ G、。     40 となる。
Since the exhaust conductance is almost proportional to the opening area, G, - is -π・1", G+a-K・2×5×π
×4 (where K is a constant determined by the type of gas, etc.), then C,1 ζ G,. It becomes 40.

すなわち穴6.7の間の圧力は試料室圧力の1/40に
なる。
That is, the pressure between holes 6.7 is 1/40 of the sample chamber pressure.

従って従来のESEMに比べて鏡筒内真空を1740に
高真空化できる。あるいは同じ鏡筒内真空で40倍高い
圧力で動作できる。あるいは別の見方をすれば、鏡筒を
排気する排気ポンプの能力を1740のものにできる。
Therefore, compared to the conventional ESEM, the vacuum inside the lens barrel can be increased to 1,740 degrees. Alternatively, it can operate at 40 times higher pressure with the same vacuum inside the lens barrel. Or, from another perspective, the capacity of the exhaust pump for exhausting the lens barrel can be increased to 1740.

このような構成であるから、対物レンズ1.2.3の下
端の穴を出た電子線は、排管4の穴7.6を通って試料
9に達する。試料9からは反射電子、2次電子が生じ、
これらの電子は試料室5内の気体分子をイオン化させな
がら検出器8へ向かう。
With such a configuration, the electron beam exiting the hole at the lower end of the objective lens 1.2.3 passes through the hole 7.6 in the exhaust tube 4 and reaches the sample 9. Reflected electrons and secondary electrons are generated from sample 9,
These electrons head toward the detector 8 while ionizing gas molecules within the sample chamber 5 .

その結果、検出器8には試料9からの反射電子、2次電
子の他に、試料室5内のイオン化により生じた電子も到
達することになる。その結果、試料室5内の気体分子に
よる2次電子増幅が行なわれることになる(USP47
851B2参照)。
As a result, in addition to the reflected electrons and secondary electrons from the sample 9, electrons generated by ionization within the sample chamber 5 also reach the detector 8. As a result, secondary electron amplification is performed by gas molecules in the sample chamber 5 (USP 47
851B2).

このとき鏡筒内部は高真空に維持されていなければなら
ないが、対物レンズ1.2.3の開口から射出した電子
線が試料に当接するまでの空間が排管4により排気され
ているので、試料室5内部に気体が導入されているにも
かかわらず、鏡筒内部の真空度を抑えることが有効に行
なえる。
At this time, the inside of the lens barrel must be maintained at a high vacuum, but the space before the electron beam emitted from the aperture of the objective lens 1.2.3 comes into contact with the sample is evacuated by the exhaust pipe 4. Even though gas is introduced into the sample chamber 5, the degree of vacuum inside the lens barrel can be effectively suppressed.

また、試料9を傾けたいときは、排管4の第1の小部屋
部4aの外側に形成された試料室5内の空間を用いて行
なえばよい、試料9の傾斜方向は一方向のみで十分であ
る。
Furthermore, if you want to tilt the sample 9, you can do so using the space inside the sample chamber 5 formed outside the first small chamber 4a of the drain pipe 4.The sample 9 can only be tilted in one direction. It is enough.

〔発明の効果〕〔Effect of the invention〕

本発明は、円錐形や円錐台形の対物レンズの外側という
従来何にも利用されていなかった空間に排気装置を設け
ることによって、鏡筒内部の真空度を良くできる。ある
いは同じ真空度なら試料室の真空度を大きくしても動作
する。別の面から見れば鏡筒を排気するポンプの能力が
低くてよい。
The present invention improves the degree of vacuum inside the lens barrel by providing an exhaust device in a space outside the conical or truncated conical objective lens, which has not been used for any purpose in the past. Alternatively, if the degree of vacuum is the same, it will work even if the degree of vacuum in the sample chamber is increased. From another point of view, the ability of the pump to exhaust the lens barrel may be low.

なお、この発明はESEMの他に、試料室に反応性ガス
を導入して試料の加工や、選択デボを行う装置にも適用
可能である。
In addition to the ESEM, the present invention is also applicable to an apparatus that processes a sample or performs selective deposition by introducing a reactive gas into a sample chamber.

さらに、試料室にガスを導入しない場合にも有効である
Furthermore, it is also effective when no gas is introduced into the sample chamber.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)は本発明の実施例を示す図であり
、第1図(a)は実施例の横断面図(第1図(b)のA
−A″矢視断面図)、第1図(b)は第1図(b)のB
−B’矢視断面図、である。 〔主要部分の符号の説明〕 4・・・排管、4a、4b・・・細隙部。
FIGS. 1(a) and 1(b) are diagrams showing an embodiment of the present invention, and FIG. 1(a) is a cross-sectional view of the embodiment (A in FIG. 1(b)).
- A'' arrow sectional view), Figure 1 (b) is B of Figure 1 (b)
-B' arrow sectional view. [Explanation of symbols of main parts] 4... Exhaust pipe, 4a, 4b... Slit portion.

Claims (3)

【特許請求の範囲】[Claims] (1)試料室内で試料を傾ける空間を確保するために、
円錐形や円錐台形の対物レンズを有する荷電粒子線装置
において、 前記対物レンズの開口から射出した荷電粒子線が試料に
当接するまでの空間を排気する排気装置を、前記対物レ
ンズの周りでかつ前記試料を傾けるための空間を避けて
設けたことを特徴とする荷電粒子線装置。
(1) To secure space for tilting the sample in the sample chamber,
In a charged particle beam device having a conical or truncated conical objective lens, an exhaust device is provided around the objective lens and in the space up to the point where the charged particle beam emitted from the aperture of the objective lens contacts the sample. A charged particle beam device characterized by being provided to avoid a space for tilting a sample.
(2)試料室内で試料を傾ける空間を確保するために、
円錐形や円錐台形の対物レンズを有する荷電粒子線装置
において、 前記試料室に低圧の気体を導入する気体導入装置を設け
ると共に、前記対物レンズの開口から射出した荷電粒子
線が試料に当接するまでの空間を排気する排気装置を、
前記対物レンズの外側でかつ前記試料を傾けるための空
間を避けて設けたことを特徴とする荷電粒子線装置。
(2) To secure space for tilting the sample in the sample chamber,
In a charged particle beam device having a conical or truncated conical objective lens, a gas introduction device is provided for introducing low-pressure gas into the sample chamber, and the charged particle beam ejected from the aperture of the objective lens contacts the sample. An exhaust system that exhausts the space of
A charged particle beam device characterized in that it is provided outside the objective lens and away from a space for tilting the sample.
(3)請求項(1)もしくは(2)記載の荷電粒子線装
置において、 前記排気装置には、前記試料からの荷電粒子線の走行空
間を確保し、かつ該荷電粒子線の検出器を配設する空間
を確保するための小部屋部、を形成したことを特徴とす
る荷電粒子線装置。
(3) In the charged particle beam device according to claim (1) or (2), the exhaust device secures a traveling space for the charged particle beam from the sample and is provided with a detector for the charged particle beam. A charged particle beam device characterized in that a small room is formed to secure a space for installation.
JP02249293A 1990-09-19 1990-09-19 Charged particle beam equipment Expired - Fee Related JP3079547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02249293A JP3079547B2 (en) 1990-09-19 1990-09-19 Charged particle beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02249293A JP3079547B2 (en) 1990-09-19 1990-09-19 Charged particle beam equipment

Publications (2)

Publication Number Publication Date
JPH04129147A true JPH04129147A (en) 1992-04-30
JP3079547B2 JP3079547B2 (en) 2000-08-21

Family

ID=17190819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02249293A Expired - Fee Related JP3079547B2 (en) 1990-09-19 1990-09-19 Charged particle beam equipment

Country Status (1)

Country Link
JP (1) JP3079547B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396067A (en) * 1992-06-11 1995-03-07 Nikon Corporation Scan type electron microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396067A (en) * 1992-06-11 1995-03-07 Nikon Corporation Scan type electron microscope

Also Published As

Publication number Publication date
JP3079547B2 (en) 2000-08-21

Similar Documents

Publication Publication Date Title
EP2372743B1 (en) Charged particle beam system with an ion generator
US5396067A (en) Scan type electron microscope
US7425708B2 (en) Secondary electron detector unit for a scanning electron microscope
JPH01311554A (en) Plasma ionization mass spectrometer
JPS5937540B2 (en) Field emission scanning electron microscope
US4458151A (en) Electron microscope of a scanning type
JPH04129147A (en) Charged particle ray device
JPH09320504A (en) Low vacuum scanning electron microscope
JP4406429B2 (en) Chamber with less electron stimulation
US20170229284A1 (en) Ion beam device and sample observation method
JP2867389B2 (en) Ion beam device and method of using the same
JP2854466B2 (en) Charged particle beam equipment
JP3038901B2 (en) Environmentally controlled scanning electron microscope
JPH06338280A (en) Environmental control type scanning electron microscope
JPH02139842A (en) Electron beam device
JP3091850B2 (en) Charged particle beam equipment
JPS5812700B2 (en) electron beam equipment
JPH0689686A (en) Scanning electron microscope
JPH05174765A (en) Scanning electron microscope of environment control type
JP2012099312A (en) Charged particle beam apparatus
JPH1040850A (en) Low-vacuum atmosphere type scanning electron microscope
JP3944384B2 (en) Focused ion beam processing equipment
KR100521434B1 (en) Vacuum system of scanning electron microscope
JPH0746853Y2 (en) Differential exhaust system
JPH0678897B2 (en) Pattern inspection device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees