JP3079547B2 - Charged particle beam equipment - Google Patents

Charged particle beam equipment

Info

Publication number
JP3079547B2
JP3079547B2 JP02249293A JP24929390A JP3079547B2 JP 3079547 B2 JP3079547 B2 JP 3079547B2 JP 02249293 A JP02249293 A JP 02249293A JP 24929390 A JP24929390 A JP 24929390A JP 3079547 B2 JP3079547 B2 JP 3079547B2
Authority
JP
Japan
Prior art keywords
sample
charged particle
particle beam
space
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02249293A
Other languages
Japanese (ja)
Other versions
JPH04129147A (en
Inventor
護 中筋
正平 鈴木
弘泰 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP02249293A priority Critical patent/JP3079547B2/en
Publication of JPH04129147A publication Critical patent/JPH04129147A/en
Application granted granted Critical
Publication of JP3079547B2 publication Critical patent/JP3079547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、試料室内で試料を傾ける空間を確保するた
めに、円錐形や円錐台形の対物レンズを有する荷電粒子
線装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged particle beam apparatus having a conical or frustoconical objective lens in order to secure a space for tilting a sample in a sample chamber.

〔従来の技術〕[Conventional technology]

この種の荷電粒子線装置は、円錐形や円錐台形の対物
レンズを有するから、対物レンズ周りに広い空間が得ら
れるため、試料室内で試料を傾けることができる。試料
の傾き角を大きく取れるようにすると円錐の角度は小さ
くなり、対物レンズの周りの空間は大きくなる。
This type of charged particle beam apparatus has a conical or frustoconical objective lens, so that a wide space can be obtained around the objective lens, so that the sample can be tilted in the sample chamber. If the inclination angle of the sample can be made large, the angle of the cone becomes small, and the space around the objective lens becomes large.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記の如き従来の技術に於いては、試料室に連結した
鏡筒内部の真空度を良好に保てないため、鏡筒に連結し
たポンプ構成が複雑になるという問題点があった。そこ
で本発明は簡単なポンプ構成で容易に鏡筒内部の真空度
を上げた荷電粒子線装置を提供することを目的とする。
In the prior art as described above, there is a problem that the structure of the pump connected to the lens barrel becomes complicated because the degree of vacuum inside the lens barrel connected to the sample chamber cannot be maintained satisfactorily. Therefore, an object of the present invention is to provide a charged particle beam apparatus in which the degree of vacuum inside the lens barrel is easily increased with a simple pump configuration.

〔課題を解決する為の手段〕[Means for solving the problem]

上記問題点の解決の為に請求項(1)記載の本発明
は、試料室(5)内で試料(9)を傾ける空間を確保す
るために、円錐形や円錐台形の対物レンズ(1、2、
3)を有する荷電粒子線装置において、前記対物レンズ
の(1、2、3)の開口から射出した荷電粒子線が試料
(9)に当接するまでの空間を排気する排気装置(4)
を、前記対物レンズ(1、2、3)の周りでかつ前記試
料(9)を傾けるための空間を避けて設けたことを特徴
とする荷電粒子線装置であり、また請求項(2)記載の
本発明は、試料室(5)内で試料(9)を傾ける空間を
確保するために、円錐形や円錐台形の対物レンズ(1、
2、3)を有する荷電粒子線装置において、前記試料室
(5)に低圧の気体を導入する気体導入装置(5a、5b)
を設けると共に、前記対物レンズ(1、2、3)の開口
から射出した荷電粒子線が試料(9)に当接するまでの
空間を排気する排気装置(4)を、前記対物レンズ
(1、2、3)の外側でかつ前記試料(9)を傾けるた
めの空間を避けて設けたことを特徴とする荷電粒子線装
置であり、請求項(3)記載の本発明は、請求項(1)
もしくは(2)記載の荷電粒子線装置において、前記排
気装置には、前記試料からの荷電粒子線の走行空間を確
保し、かつ該荷電粒子線の検出器を配設する空間を確保
するための小部屋部、を形成したことを特徴とする荷電
粒子線装置である。
In order to solve the above problems, the present invention according to claim (1) provides a conical or frustoconical objective lens (1, 1) in order to secure a space for tilting a sample (9) in a sample chamber (5). 2,
In the charged particle beam device having the above (3), an exhaust device (4) for exhausting a space until the charged particle beam emitted from the openings (1, 2, 3) of the objective lens comes into contact with the sample (9).
Is a charged particle beam device provided around the objective lens (1, 2, 3) and avoiding a space for tilting the sample (9). According to the present invention, in order to secure a space for tilting the sample (9) in the sample chamber (5), a conical or frustoconical objective lens (1,
In the charged particle beam apparatus having the above (2) and (3), gas introducing devices (5a, 5b) for introducing a low-pressure gas into the sample chamber (5).
And an exhaust device (4) for exhausting a space until the charged particle beam emitted from the opening of the objective lens (1, 2, 3) comes into contact with the sample (9). The charged particle beam apparatus is provided outside of (3) and avoiding a space for tilting the sample (9). The present invention described in claim (3) is characterized by claim (1).
Alternatively, in the charged particle beam device according to (2), the exhaust device is configured to secure a traveling space for the charged particle beam from the sample and to secure a space for disposing a detector for the charged particle beam. A charged particle beam apparatus characterized by forming a small chamber.

〔作用〕[Action]

請求項(1)及び(2)記載の発明においては、対物
レンズの周りの空間に排気装置を設けて、対物レンズの
開口から射出した荷電粒子線が試料に当接するまでの空
間を排気しているので、試料室に連結した鏡筒内部の真
空度が試料室側から低下していくことを抑えることがで
きる。
In the inventions described in claims (1) and (2), an exhaust device is provided in a space around the objective lens to exhaust the space until the charged particle beam emitted from the opening of the objective lens comes into contact with the sample. Therefore, it is possible to prevent the degree of vacuum inside the lens barrel connected to the sample chamber from decreasing from the sample chamber side.

従って、鏡筒内部の真空度を良好に保つ為に複雑なポ
ンプ構成が不用となる。また、本発明の排気装置は、従
来使用されていなかった対物レンズの周りの空間に配設
しているため、荷電粒子線装置を特別大きくすることが
ない。
Therefore, a complicated pump configuration is not required to maintain a good vacuum inside the lens barrel. Further, since the exhaust device of the present invention is disposed in the space around the objective lens which has not been used conventionally, the charged particle beam device does not have to be particularly large.

さらに、請求項(3)記載の発明においては、排気装
置に、試料からの荷電粒子線の走行空間を確保し、かつ
該荷電粒子線の検出器を配設する空間を確保するための
小部屋部を設けたので、排気装置を設けたにもかかわら
ず、何ら支障なく試料からの荷電粒子線を検出すること
ができる。
Furthermore, in the invention described in claim (3), a small room for securing a traveling space for charged particle beams from the sample and a space for disposing a detector for the charged particle beams in the exhaust device. Since the unit is provided, it is possible to detect the charged particle beam from the sample without any trouble even though the exhaust device is provided.

〔実施例〕〔Example〕

第1図(a)、(b)は本発明の荷電粒子線装置の一
実施例あるESEM……Environmental Scanning Electron
Microscopy(試料室に水蒸気、窒素等の低圧力の気体を
導入し、試料からの反射電子、2次電子がこれらの気体
をイオン化することによる電子増幅作用を利用した顕微
鏡)……の対物レンズ付近の説明図である。第1図
(a)は横断面図(第1図(b)のA−A′矢視断面
図)であり、第1図(b)は第1図(a)のB−B′矢
視断面図である。
FIGS. 1 (a) and 1 (b) show an ESEM as an embodiment of the charged particle beam apparatus of the present invention.
Microscopy (a microscope that uses the electron amplification effect of introducing low-pressure gas such as water vapor and nitrogen into the sample chamber and reflecting electrons from the sample and secondary electrons ionizing these gases) FIG. FIG. 1A is a transverse sectional view (a sectional view taken along the line AA 'in FIG. 1B), and FIG. 1B is a sectional view taken along the line BB' in FIG. 1A. It is sectional drawing.

第1図(a)、(b)で対物レンズは上極1、下極
2、コイル3からなり、試料を60゜程度迄傾けることが
可能なよう円錐台形に設計されている。対物レンズの下
極2の外側には排気のための排管4を設けている。排管
4は第1図(a)、(b)で示したように、試料を傾け
る空間を確保するため、及び正電圧の印加された検出器
8のための空間及び2次電子が検出器迄走行するための
空間を確保するため、排気する方向(X方向)に直交す
る方向(Y方向)では第1の小部屋部4a(前者に対
応)、第2の小部屋部4b(後者に対応)となっている。
この排気のための排管4には電子線が通るための穴6
(試料側)及び穴7(対物レンズ側)が設けられてい
る。これらの穴6、7は低倍のSEM像を得るため、穴7
は1mmφ、穴6は2mmφの大きさを持っている。この排管
4の排気コンダクタンスは最も狭い空間10でほぼ決り、
排管4の先に接続するのは不図示のロータリーポンプで
十分目的を達する。試料室5は、管5a、5bを通して排気
され、かつ、水蒸気、窒素などの低圧気体が導入され
る。試料室5の電子線照射位置には、試料9が不図示の
搬送装置によって、導入される。搬送装置は不図示の搬
送アーム等及び移動ステージを含む公知のものである。
1 (a) and 1 (b), the objective lens comprises an upper pole 1, a lower pole 2, and a coil 3, and is designed to have a truncated cone shape so that the sample can be tilted up to about 60 °. An exhaust pipe 4 for exhaust is provided outside the lower pole 2 of the objective lens. As shown in FIGS. 1 (a) and 1 (b), the exhaust tube 4 has a space for tilting the sample, a space for a detector 8 to which a positive voltage is applied, and a secondary electron detector. In order to secure a space for traveling to the vehicle, the first small room portion 4a (corresponding to the former) and the second small room portion 4b (the latter) in a direction (Y direction) orthogonal to the exhaust direction (X direction). Corresponding).
The exhaust pipe 4 for this exhaust has holes 6 through which electron beams pass.
(The sample side) and the hole 7 (the objective lens side). These holes 6 and 7 are used to obtain a low-magnification SEM image.
Has a size of 1 mmφ, and the hole 6 has a size of 2 mmφ. The exhaust conductance of the exhaust pipe 4 is substantially determined in the narrowest space 10,
A rotary pump (not shown) is connected to the end of the discharge pipe 4 to sufficiently achieve the purpose. The sample chamber 5 is evacuated through tubes 5a and 5b, and a low-pressure gas such as water vapor or nitrogen is introduced. The sample 9 is introduced into the electron beam irradiation position of the sample chamber 5 by a transfer device (not shown). The transfer device is a known device including a transfer arm or the like (not shown) and a moving stage.

ここで排管4の作用は以下の如くである。すなわち、 第1図の小穴6、7及び排気口10の排気コンダクタン
スをそれぞれG6、G7及びG10とし、試料室圧力をP9とす
る穴6、7の間の空間の圧力P10となる。排気コンダクタンスはほぼ開口面積に比例する
ので、G6=K・π・12、G10=K・2×5×π×4(但
しKは気体の種類等で決る定数)とすれば、 となる。
Here, the operation of the exhaust pipe 4 is as follows. That is, the pressure P 10 in the space between the holes 6 and 7 where the exhaust conductance of the small holes 6 and 7 and the exhaust port 10 in FIG. 1 is G 6 , G 7 and G 10 and the sample chamber pressure is P 9 , respectively. Becomes The exhaust conductance is approximately proportional to the opening area, if G 6 = K · π · 1 2, G 10 = K · 2 × 5 × π × 4 ( where K is determined constants type of gas, etc.), Becomes

すなわち穴6、7の間の圧力は試料室圧力の1/40にな
る。
That is, the pressure between the holes 6 and 7 is 1/40 of the sample chamber pressure.

従って従来のESEMに比べて鏡筒内真空を1/40に高真空
化できる。あるいは同じ鏡筒内真空で40倍高い圧力で動
作できる。あるいは別の見方をすれば、鏡筒を排気する
排気ポンプの能力を1/40のものにできる。
Therefore, the inside vacuum of the lens barrel can be increased to 1/40 as compared with the conventional ESEM. Alternatively, it can operate at a pressure 40 times higher in the same lens barrel vacuum. Or, from another perspective, the capacity of the exhaust pump that exhausts the lens barrel can be reduced to 1/40.

このような構成であるから、対物レンズ1、2、3の
下端の穴を出た電子線は、排管4の穴7、6を通って試
料9に達する。試料9からは反射電子、2次電子が生
じ、これらの電子は試料室5内の気体分子をイオン化さ
せながら検出器8へ向かう。その結果、検出器8には試
料9からの反射電子、2次電子の他に、試料室5内のイ
オン化により生じた電子も到達することになる。その結
果、試料室5内の気体分子による2次電子増幅が行なわ
れることになる(USP4785182参照)。
With such a configuration, the electron beam that has exited the holes at the lower ends of the objective lenses 1, 2, and 3 reaches the sample 9 through the holes 7 and 6 of the exhaust tube 4. Reflected electrons and secondary electrons are generated from the sample 9, and these electrons travel toward the detector 8 while ionizing gas molecules in the sample chamber 5. As a result, in addition to reflected electrons and secondary electrons from the sample 9, electrons generated by ionization in the sample chamber 5 also reach the detector 8. As a result, secondary electron amplification is performed by gas molecules in the sample chamber 5 (see US Pat. No. 4,781,182).

このとき鏡筒内部は高真空に維持されていなければな
らないが、対物レンズ1、2、3の開口から射出した電
子線が試料に当接するまでの空間が排管4により排気さ
れているので、試料室5内部に気体が導入されているに
もかかわらず、鏡筒内部の真空度を抑えることが有効に
行なえる。
At this time, the inside of the lens barrel must be maintained at a high vacuum. However, since the space until the electron beam emitted from the openings of the objective lenses 1, 2, and 3 comes into contact with the sample is exhausted by the exhaust pipe 4, Even though gas is introduced into the sample chamber 5, it is possible to effectively reduce the degree of vacuum inside the lens barrel.

また、試料9を傾けたいときは、排管4の第1の小部
屋部4aの外側に形成された試料室5内の空間を用いて行
なえばよい。試料9の傾斜方向は一方向のみで十分であ
る。
When the sample 9 is to be tilted, the sample 9 may be tilted by using a space in the sample chamber 5 formed outside the first small chamber portion 4a of the exhaust pipe 4. Only one direction of the inclination of the sample 9 is sufficient.

〔発明の効果〕〔The invention's effect〕

本発明は、円錐形や円錐台形の対物レンズの外側とい
う従来何にも利用されていなかった空間に排気装置を設
けることによって、鏡筒内部の真空度を良くできる。あ
るいは同じ真空度なら試料室の真空度を大きくしても動
作する。別の面から見れば鏡筒を排気するポンプの能力
が低くてよい。
According to the present invention, the degree of vacuum inside the lens barrel can be improved by providing the exhaust device in a space outside the conical or frustoconical objective lens, which has not been conventionally used. Alternatively, if the degree of vacuum is the same, the apparatus operates even if the degree of vacuum in the sample chamber is increased. From another viewpoint, the pump capable of exhausting the lens barrel may have a low capacity.

なお、この発明はESEMの他に、試料室に反応性ガスを
導入して試料の加工や、選択デポを行う装置にも適用可
能である。
The present invention can be applied to an apparatus for processing a sample by introducing a reactive gas into a sample chamber and performing a selective deposition in addition to the ESEM.

さらに、試料室にガスを導入しない場合にも有効であ
る。
Further, it is also effective when no gas is introduced into the sample chamber.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)、(b)は本発明の実施例を示す図であ
り、第1図(a)は実施例の横断面図(第1図(b)の
A−A′矢視断面図)、第1図(b)は第1図(a)の
B−B′矢視断面図、である。 〔主要部分の符号の説明〕 4……排管、4a、4b……細隙部。
1 (a) and 1 (b) are views showing an embodiment of the present invention, and FIG. 1 (a) is a cross-sectional view of the embodiment (a cross section taken along line AA 'in FIG. 1 (b)). FIG. 1B is a cross-sectional view taken along the line BB ′ of FIG. 1A. [Description of Signs of Main Parts] 4... Exhaust tube, 4a, 4b.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−309243(JP,A) 特開 昭56−38756(JP,A) 特開 昭59−143249(JP,A) 特開 平2−210748(JP,A) 実開 昭61−77543(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01J 37/141 H01J 37/18 H01J 37/20 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-1-309243 (JP, A) JP-A-56-38756 (JP, A) JP-A-59-143249 (JP, A) JP-A-2- 210748 (JP, A) Japanese Utility Model Sho 61-77543 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H01J 37/141 H01J 37/18 H01J 37/20

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】対物レンズ及び荷電粒子線検出器を有し、
試料室に低圧の反応性気体を導入し、試料からの反射電
子或いは2次電子がこれらの気体をイオン化することに
よる電子増幅作用を利用して、試料面を観察する荷電粒
子線装置において、 前記試料面に選択デポを行う ことを特徴とする荷電粒子線装置。
An object lens and a charged particle beam detector,
In a charged particle beam apparatus for observing a sample surface by introducing a low-pressure reactive gas into a sample chamber and utilizing an electron amplifying action by reflected electrons or secondary electrons from the sample ionizing these gases, A charged particle beam apparatus characterized by performing selective deposition on a sample surface.
【請求項2】圧力制限開口、対物レンズ及び該レンズの
外側で、試料面から該圧力制限開口迄の距離より遠い位
置に設けた荷電粒子線検出器を有し、試料室に低圧の反
応性気体を導入し、試料からの反射電子或いは2次電子
がこれらの気体をイオン化することによる電子増幅作用
を利用して、 前記試料面を観察し、加工し、或いは、前記試料面に選
択デポを行う ことを特徴とする荷電粒子線装置。
2. A pressure-reducing aperture, an objective lens, and a charged particle beam detector provided outside the lens at a position farther than a distance from a sample surface to the pressure-restriction aperture. A gas is introduced, and the reflected electrons or secondary electrons from the sample utilize the electron amplification effect of ionizing these gases to observe and process the sample surface, or place a selective depot on the sample surface. A charged particle beam apparatus characterized by performing.
JP02249293A 1990-09-19 1990-09-19 Charged particle beam equipment Expired - Fee Related JP3079547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02249293A JP3079547B2 (en) 1990-09-19 1990-09-19 Charged particle beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02249293A JP3079547B2 (en) 1990-09-19 1990-09-19 Charged particle beam equipment

Publications (2)

Publication Number Publication Date
JPH04129147A JPH04129147A (en) 1992-04-30
JP3079547B2 true JP3079547B2 (en) 2000-08-21

Family

ID=17190819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02249293A Expired - Fee Related JP3079547B2 (en) 1990-09-19 1990-09-19 Charged particle beam equipment

Country Status (1)

Country Link
JP (1) JP3079547B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396067A (en) * 1992-06-11 1995-03-07 Nikon Corporation Scan type electron microscope

Also Published As

Publication number Publication date
JPH04129147A (en) 1992-04-30

Similar Documents

Publication Publication Date Title
EP2372743B1 (en) Charged particle beam system with an ion generator
US6979822B1 (en) Charged particle beam system
US5396067A (en) Scan type electron microscope
JP5053359B2 (en) Improved detector for charged particle beam instruments
US6809322B2 (en) Environmental scanning electron microscope
US7034297B2 (en) Method and system for use in the monitoring of samples with a charged particle beam
JPS5937540B2 (en) Field emission scanning electron microscope
JP3079547B2 (en) Charged particle beam equipment
JPS5938701B2 (en) Scanning electron microscope with two-stage sample stage
JP4406429B2 (en) Chamber with less electron stimulation
JP3038901B2 (en) Environmentally controlled scanning electron microscope
JPH06338280A (en) Environmental control type scanning electron microscope
JP2854466B2 (en) Charged particle beam equipment
JPH02139842A (en) Electron beam device
JP3091850B2 (en) Charged particle beam equipment
JP2787084B2 (en) Scanning electron microscope
JPH06338282A (en) Scanning electron microscope
TWI807604B (en) Charged particle beam apparatus, scanning electron microscope, and method of operating a charged particle beam apparatus
JPH03295141A (en) Detector
JPH0689686A (en) Scanning electron microscope
JPH0375387A (en) Electron beam assistant processing equipment
JP2012099312A (en) Charged particle beam apparatus
JPH06236744A (en) Scanning electron microscope
JPH05174765A (en) Scanning electron microscope of environment control type
JP2002134055A (en) Scanning electron microscope

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees