JPH05174765A - Scanning electron microscope of environment control type - Google Patents

Scanning electron microscope of environment control type

Info

Publication number
JPH05174765A
JPH05174765A JP3053812A JP5381291A JPH05174765A JP H05174765 A JPH05174765 A JP H05174765A JP 3053812 A JP3053812 A JP 3053812A JP 5381291 A JP5381291 A JP 5381291A JP H05174765 A JPH05174765 A JP H05174765A
Authority
JP
Japan
Prior art keywords
sample
gas
piping
magnetic pole
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3053812A
Other languages
Japanese (ja)
Inventor
Mamoru Nakasuji
護 中筋
Shohei Suzuki
正平 鈴木
Hiroyasu Shimizu
弘泰 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP3053812A priority Critical patent/JPH05174765A/en
Publication of JPH05174765A publication Critical patent/JPH05174765A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable observation to be carried out without electrostatically charging an insulative object even with an electron beam having a large acceleration voltage and prevent drop of the sensitivity of a sensor even though the specimen chamber gas pressure is reduced by furnishing a vacuum piping for gas exhaustion in the lower part of a hole-equipped magnetic pole. CONSTITUTION:A vacuum piping 5 for gas exhaustion is installed between the lens barrel part of a hole--equipped magnetic pole 1 and a specimen chamber 13, and thereby the gas having intruded into the piping 5 from the specimen chamber 13 via a pressure limiting opening 7 is exhausted quickly through the piping 5. Also the gas having intruded to the lens barrel part of the magnetic pole 1 from the said opening 7 via the piping 5 and another pressure limiting opening 6 is exhausted by a vacuum pump provided for the lens barrel part. This allows keeping well the degree of vacuum in the lens barrel part of magnetic lens and preventing the inside from being contaminated with the gas in the chamber 13. Provision of notch in the piping 5 eliminates existence of obstacle in the track for secondary electrons, which enables acquisition of a satisfactorily large sensing signal for secondary electron, and even if the gas pressure in the chamber 13 is sunk, a sensing signal of good signal-noise ratio can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、環境制御型走査電子顕
微鏡(ESEM)に関し、特に該ESEMにおける2次
電子検出信号の信号対雑音比の向上および真空排気装置
の簡略化を図る技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an environment controlled scanning electron microscope (ESEM), and more particularly to a technique for improving the signal-to-noise ratio of a secondary electron detection signal in the ESEM and simplifying a vacuum exhaust device.

【0002】[0002]

【従来の技術】従来、試料室に低圧力の気体を導入し試
料からの2次電子を低圧力の気体中を通して観察する環
境制御型走査電子顕微鏡(ESEM)が知られている。
また、このようなESEMにおいては、試料室と磁気レ
ンズの鏡筒部との間に設けられた圧力制限開口(アパー
チャ)が2次電子検出器を兼ねている。
2. Description of the Related Art Conventionally, an environment-controlled scanning electron microscope (ESEM) is known in which a low-pressure gas is introduced into a sample chamber and secondary electrons from the sample are observed through the low-pressure gas.
In such an ESEM, the pressure limiting opening (aperture) provided between the sample chamber and the lens barrel of the magnetic lens also serves as the secondary electron detector.

【0003】また、対物レンズを構成する磁気レンズを
2つの磁極に分割し、これら2つの磁極間に試料を挿入
し、かつ試料に磁場を印加した状態で観察を行なうSE
Mがインレンズ型対物レンズを有するSEMとして知ら
れている。
Further, the magnetic lens constituting the objective lens is divided into two magnetic poles, a sample is inserted between these two magnetic poles, and observation is performed with a magnetic field applied to the sample.
M is known as an SEM having an in-lens type objective lens.

【0004】さらに、SEMにおいて対物レンズの磁場
の中に2次電子検出器を設けたものが知られている。
Further, there is known an SEM in which a secondary electron detector is provided in the magnetic field of the objective lens.

【0005】[0005]

【発明が解決しようとする課題】ところが、上述のよう
なESEMにおいては、圧力制限開口が2次電子検出器
を兼ねていたため、試料室の気体圧力をあまり小さくす
ると、(試料から2次電子検出器までの距離)×(気体
の圧力)即ちPD積が小さくなり、2次電子検出器の感
度が悪くなる。逆に、試料室の気体圧力を大きくすると
試料に照射される1次電子線の散乱が多くなり試料に照
射するための細く収束された非散乱電子線が少なくなる
という問題があった。
However, in the ESEM as described above, since the pressure limiting opening also serves as the secondary electron detector, if the gas pressure in the sample chamber is made too small, (the secondary electron detection from the sample is detected. (Distance to the detector) × (pressure of gas), that is, the PD product becomes small, and the sensitivity of the secondary electron detector becomes poor. On the contrary, when the gas pressure in the sample chamber is increased, there is a problem that the primary electron beam irradiated on the sample is scattered more and the number of finely scattered non-scattered electron beams for irradiating the sample is decreased.

【0006】また、従来のインレンズ型SEMにおいて
は、絶縁物の試料を観察しようとすると表面が帯電する
ため、電子線の加速電圧を1KV以下にする必要があ
り、色収差が大きくなりかつ電子ビームをあまり細く絞
れないという不都合があった。
In the conventional in-lens type SEM, the surface of the insulator is charged when the sample is observed, so that the accelerating voltage of the electron beam needs to be set to 1 KV or less, the chromatic aberration becomes large, and the electron beam becomes large. There was an inconvenience that I couldn't squeeze it too thin.

【0007】本発明の目的は、このような従来の装置に
おける問題点に鑑み、加速電圧が比較的大きな電子ビー
ムでも絶縁物を帯電させることなく観察可能であり、し
かも試料室の気体圧力を大幅に低減しても2次電子検出
器の感度が低下することのない環境制御型走査電子顕微
鏡を提供することにある。
In view of the above problems in the conventional apparatus, an object of the present invention is that even an electron beam having a relatively high accelerating voltage can be observed without charging the insulator, and the gas pressure in the sample chamber can be greatly increased. It is an object of the present invention to provide an environment-controlled scanning electron microscope in which the sensitivity of the secondary electron detector does not decrease even if it is reduced to 1.

【0008】[0008]

【課題を解決するための手段】上記問題点の解決のため
に、本発明では、電子銃からの電子ビームを対物レンズ
の磁場の中に配置された試料に照射して走査し、前記試
料からの2次電子を低圧力の気体中を通して2次電子検
出器により検出する電子光学系を有するESEMにおい
て、前記試料と前記対物レンズの磁極の内前記電子ビー
ムの通路側に位置する磁極との間に差動排気のための配
管を設けたことを特徴とする。
In order to solve the above problems, the present invention irradiates an electron beam from an electron gun onto a sample arranged in a magnetic field of an objective lens to scan the sample, Between the sample and the magnetic pole located on the passage side of the electron beam among the magnetic poles of the objective lens, in an ESEM having an electron optical system for detecting the secondary electrons of the secondary electron detector through a gas of low pressure. It is characterized in that a pipe for differential exhaust is provided in the.

【0009】前記配管は、前記電子ビームが通過するた
めの開口を有するものとされ、また電子ビームの試料上
の入射位置から前記2次電子検出器を見込む空間を遮ら
ないようにするための切欠きを設けると好都合である。
The pipe has an opening through which the electron beam passes, and is provided with a cutout so as not to block the space where the secondary electron detector is seen from the incident position of the electron beam on the sample. It is convenient to provide a notch.

【0010】さらに、前記配管は前記試料を傾斜させて
観察するために、先端面を傾斜させると好都合である。
Further, in order to observe the sample while inclining the sample, it is convenient to incline the tip end face.

【0011】[0011]

【作用】上記構成においては、対物レンズの磁極の内電
子ビームの通路側に位置する磁極と試料との間に差動排
気のための配管を設けたから、電子銃からの1次電子線
が通る通路は高真空に保たれ、これに対し試料から放出
された2次電子が通る通路は2次電子増倍に都合のよい
圧力に保たれる。従って、1次電子線の散乱による信号
対雑音比(S/N)の低下が防止され、かつ2次電子検
出器からは十分大きな検出信号が得られる。
In the above structure, since the pipe for differential pumping is provided between the magnetic pole located on the electron beam passage side of the magnetic pole of the objective lens and the sample, the primary electron beam from the electron gun passes. The passage is kept in a high vacuum, while the passage through which the secondary electrons emitted from the sample pass is kept at a pressure convenient for secondary electron multiplication. Therefore, the signal-to-noise ratio (S / N) is prevented from lowering due to the scattering of the primary electron beam, and a sufficiently large detection signal is obtained from the secondary electron detector.

【0012】この場合、前記配管には電子ビームの試料
上の入射位置から前記2次電子検出器を見込む空間を遮
らないようにするための切欠きを設けることにより、2
次電子の軌道内に障害物が存在しなくなり、十分大きな
2次電子検出信号が得られる。
In this case, the pipe is provided with a notch so as not to block the space where the secondary electron detector is seen from the incident position of the electron beam on the sample.
The obstacle does not exist in the orbit of the secondary electron, and a sufficiently large secondary electron detection signal is obtained.

【0013】また、上記構成においては、2次電子検出
器が2つの磁極の間にあるので、試料上のビーム入射位
置と前記2次電子検出器との間に強い磁場が存在するこ
とになる。従って、ビーム入射点から放出された2次電
子線はこれらの磁場に沿ってらせん軌道の運動を行な
い、2次電子検出器に直行しない。このため、2次電子
検出器は等価的に長い距離を走行することとなり、ガス
分子と衝突する確率が大幅に増大する。このため、前記
差動排気のための配管による作用と相まって通常のES
EMよりも低圧力のガス中でも大きな2次電子検出信号
が得られる。
Further, in the above structure, since the secondary electron detector is located between the two magnetic poles, a strong magnetic field exists between the beam incident position on the sample and the secondary electron detector. .. Therefore, the secondary electron beam emitted from the beam incident point moves in a spiral orbit along these magnetic fields and does not go straight to the secondary electron detector. Therefore, the secondary electron detector travels equivalently over a long distance, which greatly increases the probability of collision with gas molecules. Therefore, in combination with the action of the piping for the differential exhaust, the normal ES
A large secondary electron detection signal can be obtained even in a gas having a lower pressure than EM.

【0014】[0014]

【実施例】以下、図面により本発明の実施例を説明す
る。図1は、本発明の1実施例に関わる環境制御型走査
電子顕微鏡(ESEM)の対物レンズ近傍の構成を断面
図で示す。同図の装置は、電子ビームが通る穴を有する
穴あき磁極または上極1と該穴あき磁極1に対向する円
錐台状の穴なし磁極または下極2と励磁コイル3a,3
bとを有する対物レンズを備えている。また、穴あき磁
極1の上部に設けられた図示しない電子銃からの電子ビ
ームを走査するために偏向器4a,4bが設けられてい
る。穴あき磁極1の中央の開口部は圧力制限開口6とな
っており、この圧力制限開口6によって磁気レンズ鏡筒
部と試料室等との間の気圧差が適切に調整される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing a structure in the vicinity of an objective lens of an environment-controlled scanning electron microscope (ESEM) according to one embodiment of the present invention. The apparatus shown in the figure has a perforated magnetic pole or upper pole 1 having a hole through which an electron beam passes, and a frustoconical non-perforated magnetic pole or lower pole 2 facing the perforated magnetic pole 1 and exciting coils 3a, 3a.
and an objective lens having b. Further, deflectors 4a and 4b are provided for scanning an electron beam from an electron gun (not shown) provided above the perforated magnetic pole 1. A central opening of the perforated magnetic pole 1 is a pressure limiting opening 6, and the pressure limiting opening 6 appropriately adjusts the atmospheric pressure difference between the magnetic lens barrel and the sample chamber or the like.

【0015】穴あき磁極1と穴なし磁極2との間には静
電チャック12により吸着された試料11が配置され
る。この試料11は静電チャック12と共に図1の想像
線で示すように例えば水平状態から60度の角度まで回
転させることができる。
A sample 11 attracted by an electrostatic chuck 12 is arranged between the magnetic pole 1 with holes and the magnetic pole 2 without holes. This sample 11 can be rotated together with the electrostatic chuck 12 from a horizontal state to an angle of 60 degrees as shown by an imaginary line in FIG.

【0016】また、穴あき磁極1と試料11との間には
真空配管5が配設されており図示しない真空ポンプに連
通している。
A vacuum pipe 5 is arranged between the perforated magnetic pole 1 and the sample 11 and communicates with a vacuum pump (not shown).

【0017】図2の(a)および(b)はこのような真
空配管5の詳細な構造を示す側面図および底面図であ
る。これらの図および図1から明らかなように、真空配
管5の先端部の穴あき磁極1に接する面には前記圧力制
限開口6が設けられており、かつ試料11に対向する面
には他の圧力制限開口7が設けられている。圧力制限開
口7は低倍率での観察が可能なよう必要十分な大きさを
もっている。また、真空配管5の先端部は試料11を静
電チャック12と共に傾斜できるようにするため傾斜し
た先端面を有している。さらに、真空配管5の先端部の
両側面には2次電子検出器10が設けられている。これ
ら2次電子検出器10の先端部、即ち試料11に対向す
る端部のエッジは放電電圧を高くするため半球状に加工
されている。そして、試料11上のビーム入射点14か
らこれら2次電子検出器10を見込む空間を遮らないよ
うにするため、真空配管5には切欠き部15が設けられ
ている。
FIGS. 2A and 2B are a side view and a bottom view showing the detailed structure of such a vacuum pipe 5. As is apparent from these figures and FIG. 1, the pressure limiting opening 6 is provided on the surface of the tip end of the vacuum pipe 5 which is in contact with the perforated magnetic pole 1, and another surface is provided on the surface facing the sample 11. A pressure limiting opening 7 is provided. The pressure limiting opening 7 has a necessary and sufficient size so that observation at a low magnification is possible. The tip of the vacuum pipe 5 has an inclined tip surface so that the sample 11 can be inclined together with the electrostatic chuck 12. Further, secondary electron detectors 10 are provided on both side surfaces of the tip of the vacuum pipe 5. The tip of these secondary electron detectors 10, that is, the edge of the end facing the sample 11 is processed into a hemispherical shape in order to increase the discharge voltage. The vacuum pipe 5 is provided with a notch 15 so as not to block the space where the secondary electron detector 10 is seen from the beam incident point 14 on the sample 11.

【0018】また、試料11が配設された試料室13
は、例えば0.5Torr程度の水(HO)等の気体
で満されている。また、図示しない電子銃からの電子ビ
ームが通り、かつ偏向器4a,4b等が配設された穴あ
き磁極1内の鏡筒部は図示しない真空ポンプによって真
空排気されている。
A sample chamber 13 in which the sample 11 is arranged
Is filled with a gas such as water (H 2 O) of about 0.5 Torr. An electron beam from an electron gun (not shown) passes through, and the lens barrel inside the perforated magnetic pole 1 in which the deflectors 4a, 4b and the like are arranged is evacuated by a vacuum pump (not shown).

【0019】以上のような構成を有するESEMにおい
ては、図示しない電子銃から生成される電子ビームが視
野走査用の偏向器4a,4bを通り、圧力制限開口6を
介して制限され、かつ真空配管5および他の圧力制限開
口7を通り試料11のビーム入射点14に入射する。試
料11は、例えば半導体ウェーハのようなものとされ、
静電チャック12によって吸着されかつ平面矯正されて
いる。この場合、電子ビームは穴あき磁極1および穴な
し磁極2の間の点線で示される磁束8によって収束され
ると共に、偏向器4a,4bによって圧力制限開口6を
偏向中心として偏向され、試料11上を走査する。
In the ESEM having the above structure, the electron beam generated from the electron gun (not shown) passes through the field-scanning deflectors 4a and 4b, is limited through the pressure limiting opening 6, and is vacuum piping. 5 and another pressure limiting aperture 7 to enter the beam incident point 14 of the sample 11. The sample 11 is, for example, a semiconductor wafer,
It is attracted by the electrostatic chuck 12 and is flattened. In this case, the electron beam is converged by the magnetic flux 8 indicated by the dotted line between the magnetic pole 1 with holes and the magnetic pole 2 without holes, and is deflected by the deflectors 4a and 4b with the pressure limiting aperture 6 as the deflection center, and on the sample 11. To scan.

【0020】このようにして電子ビームが試料11のビ
ーム入射点14に入射すると、該ビーム入射点から試料
11の表面状態に応じて2次電子が放出される。放出さ
れた2次電子は対物レンズの磁束8にトラップされた形
で例えば軌道9に示すような曲線運動を行ない、途中で
ガス分子と衝突を繰返し、最初に持っていたポテンシャ
ルエネルギを少しずつ運動のエネルギに変え、さらにガ
ス分子をイオン化することによって2次電子を増倍させ
る。そして、上記ポテンシャルエネルギをほとんど失っ
た後2次電子検出器10に入射する。なお、途中で発生
した2次電子もまた増倍されて2次電子検出器10に入
射する。
When the electron beam is incident on the beam incident point 14 of the sample 11 in this manner, secondary electrons are emitted from the beam incident point according to the surface state of the sample 11. The emitted secondary electrons are trapped in the magnetic flux 8 of the objective lens and make a curved motion as shown in the orbit 9, for example, and repeatedly collide with gas molecules, and the potential energy initially held moves little by little. The secondary electrons are multiplied by changing to the energy of and further ionizing gas molecules. Then, after the potential energy is almost lost, it is incident on the secondary electron detector 10. The secondary electrons generated on the way are also multiplied and enter the secondary electron detector 10.

【0021】また、試料11からの反射電子はエネルギ
が高いから、磁気レンズの磁力線であまり曲げられるこ
とはなく、試料室のガスの圧力も低いからほとんどガス
分子とは衝突せずかつ2次電子検出器にもほとんど入ら
ない。
Further, since the reflected electrons from the sample 11 have high energy, they are hardly bent by the magnetic lines of force of the magnetic lens, and the gas pressure in the sample chamber is low, so that they hardly collide with gas molecules and secondary electrons are generated. It hardly enters the detector.

【0022】このような動作において、真空配管5が穴
付き磁極1の鏡筒部と試料室との間に介在しており、圧
力制限開口7を介して試料室から真空配管5に侵入した
気体は真空配管5により速かに排気される。また、圧力
制限開口7から真空配管5および圧力制限開口6を介し
て穴付き磁極1の鏡筒部に侵入した気体は鏡筒部のため
の真空ポンプで排気除去される。従って、磁気レンズの
鏡筒部の内部の真空度を良好に保つことができ、かつ内
部が試料室の気体によって汚染されることが防止され
る。さらに、真空配管5が存在するため、電子ビームか
ら試料11に入射する1次電子が気体中を通る距離が短
くなり、1次電子が気体と衝突することが少なくなる。
In such an operation, the vacuum pipe 5 is interposed between the barrel of the magnetic pole with hole 1 and the sample chamber, and the gas that has entered the vacuum pipe 5 from the sample chamber through the pressure limiting opening 7. Is quickly exhausted through the vacuum pipe 5. Further, the gas that has entered the barrel of the magnetic pole with holes 1 from the pressure limiting opening 7 through the vacuum pipe 5 and the pressure limiting opening 6 is exhausted and removed by the vacuum pump for the barrel. Therefore, the degree of vacuum inside the barrel of the magnetic lens can be kept good, and the inside is prevented from being contaminated by the gas in the sample chamber. Furthermore, since the vacuum pipe 5 is present, the distance that the primary electrons that enter the sample 11 from the electron beam pass through the gas is shortened, and the collision of the primary electrons with the gas is reduced.

【0023】図3は、本発明の他の実施例に関わるES
EMの対物レンズ付近の構造を示し、同図(a)は中心
線に沿って左半分が同図(b)におけるO−A線に沿っ
た断面図、右半分がO−B線に沿った断面図を示してい
る。図3の(b)は真空配管および2次電子検出器を下
から見た図である。
FIG. 3 shows an ES according to another embodiment of the present invention.
The structure in the vicinity of the objective lens of the EM is shown. In the figure (a), the left half is a cross-sectional view along the line OA in the figure (b) along the center line, and the right half is along the line OB. A cross-sectional view is shown. FIG. 3B is a view of the vacuum piping and the secondary electron detector as seen from below.

【0024】図3に示す装置は、試料を傾ける必要がな
い場合のものであり、穴付き磁極21と穴なし平板磁極
22と励磁コイル23とを備えた磁気レンズを有する。
穴あき磁極21の中央開口部上部には図示しない電子銃
からの電子ビームを走査偏向するための偏向器24a,
24bが設けられている。穴なし平板磁極22の上には
静電チャック32により試料31が固定されている。穴
あき磁極21の中央開口部には試料31との間に位置す
る真空配管25が設けられている。真空配管25の穴あ
き磁極21中央開口部と接する面には圧力制限開口26
が設けられ、かつ該真空配管25の試料31に対向する
面には他の圧力制限開口27が設けられている。
The apparatus shown in FIG. 3 is for the case where it is not necessary to tilt the sample, and has a magnetic lens having a magnetic pole with hole 21, a flat magnetic pole without hole 22 and an exciting coil 23.
A deflector 24a for scanning and deflecting an electron beam from an electron gun (not shown) is provided above the central opening of the perforated magnetic pole 21.
24b is provided. A sample 31 is fixed on the flat magnetic pole 22 without holes by an electrostatic chuck 32. At the central opening of the perforated magnetic pole 21, a vacuum pipe 25 located between the magnetic pole 21 and the sample 31 is provided. A pressure limiting opening 26 is formed on the surface of the vacuum pipe 25 which is in contact with the central opening of the perforated magnetic pole 21.
Is provided, and another pressure limiting opening 27 is provided on the surface of the vacuum pipe 25 facing the sample 31.

【0025】また、真空配管25の両側部には各圧力制
限開口26,27を結ぶ線に関して対称の位置に2個の
2次電子検出器30が設けられている。各2次電子は検
出器30の試料31上のビーム入射位置に対向する端部
は丸みをもたせてある。そして、真空配管25は、試料
31上のビーム入射位置から2次電子検出器を見込む空
間を遮らないように切欠き35を備えている。
Further, two secondary electron detectors 30 are provided on both sides of the vacuum pipe 25 at symmetrical positions with respect to the line connecting the pressure limiting openings 26 and 27. Each secondary electron has a rounded end facing the beam incident position on the sample 31 of the detector 30. Further, the vacuum pipe 25 is provided with a notch 35 so as not to block the space where the secondary electron detector is seen from the beam incident position on the sample 31.

【0026】図3の装置においては、図示しない電子銃
から出力された電子ビームが偏向器24a,24bを通
り、圧力制限開口26、真空配管25、他の圧力制限開
口27および試料室33を通り試料31上に入射する。
これにより、試料31から2次電子が放出され、この2
次電子は磁気レンズの磁界28によって曲線運動を行な
い2次電子検出器30に入射し検出信号が得られる。
In the apparatus of FIG. 3, an electron beam output from an electron gun (not shown) passes through the deflectors 24a and 24b, and passes through the pressure limiting opening 26, the vacuum pipe 25, another pressure limiting opening 27 and the sample chamber 33. It is incident on the sample 31.
As a result, secondary electrons are emitted from the sample 31,
The secondary electron makes a curvilinear motion by the magnetic field 28 of the magnetic lens and enters the secondary electron detector 30 to obtain a detection signal.

【0027】また、図3の実施例においても、試料室3
3から圧力制限開口27を介して真空配管25に侵入し
た気体は該真空配管25に連通する真空ポンプにより速
かに排気される。また、圧力制限開口26から磁気レン
ズ鏡筒部に侵入した気体も同様に該鏡筒部のための真空
ポンプにより除去される。従って、磁気レンズ鏡筒内の
真空度は良好に保持されると共に、鏡筒内部が試料室3
3の気体によって汚染されることが防止される。
Also in the embodiment of FIG. 3, the sample chamber 3
The gas that has entered the vacuum pipe 25 from 3 through the pressure limiting opening 27 is quickly exhausted by the vacuum pump communicating with the vacuum pipe 25. Further, gas that has entered the magnetic lens barrel through the pressure limiting opening 26 is also removed by the vacuum pump for the barrel. Therefore, the degree of vacuum inside the magnetic lens barrel is maintained well, and the inside of the barrel is kept in the sample chamber 3
Contamination by the gas of 3 is prevented.

【0028】[0028]

【発明の効果】以上のように、本発明によれば、穴あき
磁極下部に排気のための真空配管を設けたから、対物レ
ンズ鏡筒内部の真空度を極めて良好に保つことができ、
試料室から鏡筒内部にHOガスのような気体が侵入し
て内部が汚染されることがなくなる。
As described above, according to the present invention, since the vacuum pipe for exhausting gas is provided below the perforated magnetic pole, the degree of vacuum inside the objective lens barrel can be kept extremely good.
A gas such as H 2 O gas does not enter the lens barrel from the sample chamber to contaminate the inside.

【0029】また、真空配管にはビーム入射点から2次
電子検出器を見込む空間に切欠きが設けられているか
ら、2次電子の軌道内に障害物が介在することがなくな
り、十分大きな2次電子検出信号が得られる。また、試
料から放出された2次電子は対物レンズの強い磁界によ
ってトラップされ曲がりくねった長い軌道を通り2次電
子検出器に入るから試料室の気体の圧力を低くしても信
号対雑音比の良好な2次電子検出信号が得られる。
Further, since the vacuum pipe is provided with a notch in the space from which the secondary electron detector is seen from the beam incident point, there is no obstacle in the orbit of the secondary electrons, which is sufficiently large. A secondary electron detection signal is obtained. In addition, the secondary electrons emitted from the sample are trapped by the strong magnetic field of the objective lens and enter the secondary electron detector through a long curved orbit, so that the signal-to-noise ratio is good even if the gas pressure in the sample chamber is lowered. A secondary electron detection signal is obtained.

【0030】また、1次電子が試料により反射して生ず
る反射電子は2次電子検出器にほとんど入らず、従って
反射電子信号の混入のほとんどない2次電子像が得られ
るので、例えば残留レジスト膜のような非常に薄い膜も
観察することができる。
Further, the reflected electrons generated by the reflection of the primary electrons by the sample hardly enter the secondary electron detector, and therefore a secondary electron image with almost no reflected electron signal mixed therein can be obtained. Very thin films such as can also be observed.

【0031】さらに、2次電子検出器の試料に対向する
エッジに丸みが持たせてあるから、2次電子検出器の表
面近くに高電界が発生せず、磁場および気体の存在する
状況でも比較的放電電圧が高くなり高い電圧を2次電子
検出器に印加できる。従って、2次電子検出器の感度が
増大する。なお、2次電子検出器は、先の実施例のよう
にビーム軸に対して点対称の位置に2個設けられている
から、有害な照明効果が起きることもない。
Further, since the edge of the secondary electron detector facing the sample is rounded, a high electric field is not generated near the surface of the secondary electron detector, and a comparison is made even in the presence of a magnetic field and gas. The target discharge voltage becomes high, and a high voltage can be applied to the secondary electron detector. Therefore, the sensitivity of the secondary electron detector is increased. Since the two secondary electron detectors are provided at positions symmetrical with respect to the beam axis as in the previous embodiment, no harmful illumination effect occurs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に関わる環境制御型走査
電子顕微鏡の対物レンズ近くの構成を示す断面的説明図
である。
FIG. 1 is a cross-sectional explanatory view showing a configuration near an objective lens of an environment-controlled scanning electron microscope according to a first embodiment of the present invention.

【図2】図1の装置に用いられている真空配管付近の詳
細な構造を示す部分的側面図(a)および部分的底面図
(b)である。
FIG. 2 is a partial side view (a) and a partial bottom view (b) showing a detailed structure near a vacuum pipe used in the apparatus of FIG.

【図3】本発明の第2の実施例に関わる環境制御型走査
電子顕微鏡の対物レンズ付近の構成を示す断面的説明図
(a)および真空配管および2次電子検出器の構造を示
す底面図(b)である。
FIG. 3 is a cross-sectional explanatory view (a) showing a structure in the vicinity of an objective lens of an environment-controlled scanning electron microscope according to a second embodiment of the present invention and a bottom view showing a structure of a vacuum pipe and a secondary electron detector. It is (b).

【符号の説明】[Explanation of symbols]

1,21 穴あき磁極 2,22 穴なし磁極 3a,3b,23 対物レンズ励磁コイル 4a,4b,24a,24b 走査用偏向器 5,25 排気用真空配管 6,7,26,27 圧力制限開口 8,28 磁力線 9,29 2次電子軌道 10,30 2次電子検出器 11,31 試料 12,32 静電チャック 13,33 試料室 14 1次ビーム入射点 15,35 切欠き部 1, 21 Perforated magnetic pole 2, 22 Non-perforated magnetic pole 3a, 3b, 23 Objective lens exciting coil 4a, 4b, 24a, 24b Scan deflector 5,25 Exhaust vacuum pipe 6,7,26,27 Pressure limiting opening 8 , 28 Magnetic field lines 9,29 Secondary electron orbit 10,30 Secondary electron detector 11,31 Sample 12,32 Electrostatic chuck 13,33 Sample chamber 14 Primary beam incident point 15,35 Notch

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電子銃からの電子ビームを対物レンズの
磁場の中に配置された試料に照射して走査し、前記試料
からの2次電子を低圧力の気体中を通して2次電子検出
器により検出する電子光学系を有する環境制御型走査電
子顕微鏡であって、 前記試料と前記対物レンズの磁極の内前記電子ビームの
通路側に位置する磁極との間に差動排気のための配管を
設けたことを特徴とする環境制御型走査電子顕微鏡。
1. A sample arranged in a magnetic field of an objective lens is irradiated with an electron beam from an electron gun to scan, and secondary electrons from the sample are passed through a low-pressure gas by a secondary electron detector. An environment control type scanning electron microscope having an electron optical system for detecting, wherein a pipe for differential exhaust is provided between the sample and a magnetic pole located on a passage side of the electron beam among magnetic poles of the objective lens. An environment-controlled scanning electron microscope characterized in that
【請求項2】前記配管は前記電子ビームが通過するため
の開口を有することを特徴とする請求項1に記載の環境
制御型走査電子顕微鏡。
2. The environment-controlled scanning electron microscope according to claim 1, wherein the pipe has an opening through which the electron beam passes.
【請求項3】 前記配管は前記電子ビームの試料上の入
射位置から前記2次電子検出器を見込む空間を遮らない
ようにするための切欠きを有することを特徴とする請求
項1または2に記載の環境制御型走査電子顕微鏡。
3. The pipe according to claim 1, wherein the pipe has a notch so as not to block a space in which the secondary electron detector is seen from the incident position of the electron beam on the sample. Environmentally controlled scanning electron microscope as described.
【請求項4】前記配管は前記試料を傾斜させるために先
端面が傾斜していることを特徴とする請求項1、2また
は3のいずれか1項に記載の環境制御型走査電子顕微
鏡。
4. The environment control type scanning electron microscope according to claim 1, wherein the end surface of the pipe is inclined in order to incline the sample.
JP3053812A 1991-02-26 1991-02-26 Scanning electron microscope of environment control type Pending JPH05174765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3053812A JPH05174765A (en) 1991-02-26 1991-02-26 Scanning electron microscope of environment control type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3053812A JPH05174765A (en) 1991-02-26 1991-02-26 Scanning electron microscope of environment control type

Publications (1)

Publication Number Publication Date
JPH05174765A true JPH05174765A (en) 1993-07-13

Family

ID=12953209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3053812A Pending JPH05174765A (en) 1991-02-26 1991-02-26 Scanning electron microscope of environment control type

Country Status (1)

Country Link
JP (1) JPH05174765A (en)

Similar Documents

Publication Publication Date Title
US7531799B2 (en) Charged particle beam column
JP4093662B2 (en) Scanning electron microscope
JP4236742B2 (en) Scanning electron microscope
US6674075B2 (en) Charged particle beam apparatus and method for inspecting samples
US7541580B2 (en) Detector for charged particle beam instrument
JP4176159B2 (en) Environmentally controlled SEM using magnetic field for improved secondary electron detection
JPH05266855A (en) Scanning electronic microscope
JPH09171791A (en) Scanning type electron microscope
US7034297B2 (en) Method and system for use in the monitoring of samples with a charged particle beam
US20030218133A1 (en) Charged particle beam column and method for directing a charged particle beam
US6184525B1 (en) Environmental SEM with a multiple fields for improved secondary electron detection
JPH05174768A (en) Scanning electron microscope of environment control type
JP3432091B2 (en) Scanning electron microscope
JP2002075264A (en) Rough-vacuum scanning electron microscope
US6407388B1 (en) Corpuscular beam device
JPH05174765A (en) Scanning electron microscope of environment control type
JPH06338280A (en) Environmental control type scanning electron microscope
WO2005091328A1 (en) Apparatus and method for directing gas towards a specimen
JP2001319612A (en) Direct imaging electron microscope
JP3494152B2 (en) Scanning electron microscope
JP2006140162A (en) Method of forming testpiece image
JP2003187734A (en) Reduction in aberration caused by wien filter in scanning electron microscope or the like
JPH03295141A (en) Detector
JP3101141B2 (en) Electron beam equipment
JP2000182557A (en) Charged particle beam device