JPS5812700B2 - electron beam equipment - Google Patents

electron beam equipment

Info

Publication number
JPS5812700B2
JPS5812700B2 JP52130460A JP13046077A JPS5812700B2 JP S5812700 B2 JPS5812700 B2 JP S5812700B2 JP 52130460 A JP52130460 A JP 52130460A JP 13046077 A JP13046077 A JP 13046077A JP S5812700 B2 JPS5812700 B2 JP S5812700B2
Authority
JP
Japan
Prior art keywords
chamber
sample
preliminary
sample chamber
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52130460A
Other languages
Japanese (ja)
Other versions
JPS5464459A (en
Inventor
吉村長光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP52130460A priority Critical patent/JPS5812700B2/en
Publication of JPS5464459A publication Critical patent/JPS5464459A/en
Publication of JPS5812700B2 publication Critical patent/JPS5812700B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 本発明は例えば電子顕微鏡やX線マイクロアナライザー
等の電子線装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electron beam device such as an electron microscope or an X-ray microanalyzer.

一般に電子顕微鏡等においては試料交換を迅速に行うた
めに試料室に隣接してエアーロツク弁で仕切られた予備
室を設け、大気からの試料の出し入れは予備室を通じて
行なう方式がとられている。
In general, in electron microscopes and the like, in order to quickly exchange samples, a preliminary chamber is provided adjacent to the sample chamber and separated by an air lock valve, and the sample is taken in and taken out from the atmosphere through the preliminary chamber.

即ち予備排気室を油回転ポンプ等の粗引ポンプで排気し
た後エアーロツク弁を開放して常時真空に保たれている
試料室に送り込むいわゆるエアーロック方式が採用され
ている。
That is, a so-called air lock method is adopted in which the preliminary evacuation chamber is evacuated by a roughing pump such as an oil rotary pump, and then an air lock valve is opened to send the sample into a sample chamber which is constantly maintained in a vacuum.

この場合油回転ポンプによる到達圧力は比較的高いため
(例えば10−3Torr、予備室を油回転ポンプで排
気後エアーロツク弁を開いて直接10−6Torr程度
の高真空に保たれた試料室に連通せしめると、予備室の
ガス分子が試料室に流入するので試料汚染の原因となる
In this case, since the ultimate pressure by the oil rotary pump is relatively high (e.g. 10-3 Torr), after evacuating the preliminary chamber with the oil rotary pump, the air lock valve is opened to directly communicate with the sample chamber maintained at a high vacuum of about 10-6 Torr. Then, gas molecules from the preliminary chamber flow into the sample chamber, causing sample contamination.

又予備室において試料交換棒や試料の表面に付着したガ
ス分子をも充分に排気することができず、試料汚染を増
大せしめることになる。
Furthermore, gas molecules adhering to the sample exchange rod and the surface of the sample in the preliminary chamber cannot be sufficiently exhausted, increasing sample contamination.

更に試料室に流入したガス分子が排気管を経て電子銃室
にも流入し、電子源(エミツター)に損傷を与える不都
合が生ずる。
Furthermore, the gas molecules that have flowed into the sample chamber also flow into the electron gun chamber through the exhaust pipe, resulting in the inconvenience of damaging the electron source (emitter).

ところで近時斯様な不者袷を解決するために、予備室に
油拡散ポンプやイオンポンプ等の高真空用ポンプを接続
することにより予備室の圧力を試料室の圧力と略同程度
まで排気せしめるようになした装置も提案されている。
By the way, recently, in order to solve such problems, the pressure in the preliminary chamber can be evacuated to approximately the same level as the pressure in the sample chamber by connecting a high vacuum pump such as an oil diffusion pump or an ion pump to the preliminary chamber. Devices have also been proposed that allow this to occur.

しかし乍ら斯様な装置においては試料室近傍に新たな高
真空排気系を配設しなければならないため、各種アタッ
チメントの装着が難かしくなるおそれが生ずる。
However, in such an apparatus, a new high vacuum exhaust system must be installed near the sample chamber, which may make it difficult to attach various attachments.

又排気系全体が複雑化すると共にコストアップの原因と
なり、更に振動が発生する等の種σの不都合を生ずる。
Furthermore, the entire exhaust system becomes complicated, which causes an increase in cost, and also causes other inconveniences such as vibration.

本発明は斯様な不都合を解決するもので、以下図面に基
づき詳説する。
The present invention is intended to solve such inconveniences, and will be explained in detail below with reference to the drawings.

添付図面は本発明の一実施例を示す構成略図であり、1
は電子顕微鏡の鏡体である。
The attached drawings are schematic diagrams showing an embodiment of the present invention, and 1
is the mirror body of an electron microscope.

該鏡体内には電子銃室2、集束レンズ3、試料室4、対
物レンズ5、投影レンズ6、観察室7及びカメラ室8が
順次設置されており、この内電子銃室2、試料室4とカ
メラ室8に連通した観察室7とは夫々主排気管9a,9
bを介して別々の油拡散ポンプやイオンポンプ等高真空
用ポンプ10a,10bにより排気される。
Inside the mirror body, an electron gun chamber 2, a focusing lens 3, a sample chamber 4, an objective lens 5, a projection lens 6, an observation chamber 7, and a camera chamber 8 are installed in order. and observation room 7 communicating with camera room 8 are main exhaust pipes 9a and 9, respectively.
The air is evacuated by separate high-vacuum pumps 10a and 10b such as oil diffusion pumps and ion pumps via b.

これはカメラ室8内で発生したガス分子が主排気管を通
って試料室や電子銃室内に流入するのを防止するためで
ある。
This is to prevent gas molecules generated within the camera chamber 8 from flowing into the sample chamber or electron gun chamber through the main exhaust pipe.

このとき鏡体内部の電子線通路上には結像レンズの磁極
片や絞りがおかれているため、試料室4と観察室との間
の排気コンダクタンスは非常に小さく、従ってカメラ室
内で発生したガス分子が電子線通路を通つて試料室に流
入することは無視できる。
At this time, since the magnetic pole piece of the imaging lens and the diaphragm are placed on the electron beam path inside the mirror body, the exhaust conductance between the sample chamber 4 and the observation chamber is very small, and therefore, the exhaust conductance between the sample chamber 4 and the observation chamber is very small. The flow of gas molecules into the sample chamber through the electron beam path is negligible.

11は前記試料室4に連通した予備室で、該予備室と試
料室との境部分にはエアーロック弁12が設定され、両
室を真空遮断することができる。
Reference numeral 11 denotes a preparatory chamber communicating with the sample chamber 4, and an air lock valve 12 is installed at the boundary between the preparatory chamber and the sample chamber to shut off both chambers under vacuum.

該予備室は弁13を備えた排気管14によって前記観察
室フと連通されており、又該予備室には図示はしないが
この予備室におかれた試料を試料室まで移動せしめるた
めの試料交換機構が組込まれている。
The preliminary chamber is communicated with the observation chamber through an exhaust pipe 14 equipped with a valve 13, and a sample chamber (not shown) is provided in the preliminary chamber to transport the sample placed in the preliminary chamber to the sample chamber. Built-in exchange mechanism.

15は前記予備室11内を排気管16を介して荒引する
ための油回転ポンプ等の粗引ポンプ、17は前記排気管
16に設けた弁、18は前記予備室11内を大気にする
ためのリーク弁である。
15 is a roughing pump such as an oil rotary pump for roughing the inside of the preliminary chamber 11 via the exhaust pipe 16; 17 is a valve provided in the exhaust pipe 16; and 18 is a pump for making the inside of the preliminary chamber 11 atmospheric. It is a leak valve for.

しかして今、検鏡試料を試料室4に挿入する場合にはエ
アーロック弁12、弁13及び17を閉鎖した状態にお
いて、リーク弁18を開放することにより予備室11を
大気圧にする。
When inserting a speculum sample into the sample chamber 4, the air lock valve 12, valves 13 and 17 are closed, and the leak valve 18 is opened to bring the preliminary chamber 11 to atmospheric pressure.

この状態にねいて予備室に設けた蓋体(図示せず)を開
放して試料を予備室内の所定位置に装着した後、再び蓋
体を閉じる。
In this state, a lid (not shown) provided in the preliminary chamber is opened, the sample is placed in a predetermined position in the preliminary chamber, and then the lid is closed again.

次いで弁17を開放し粗引ポンプ15により予備室11
を0.1Torr程度の圧力まで排気する。
Next, the valve 17 is opened and the preliminary chamber 11 is pumped by the roughing pump 15.
is evacuated to a pressure of approximately 0.1 Torr.

しかる後弁17を閉じてから弁13を開放することによ
り予備室11を観察室7に連通させる。
Thereafter, the preliminary chamber 11 is communicated with the observation chamber 7 by closing the valve 17 and then opening the valve 13.

このとき観察室7は高真空(10−5Torr程度)に
保たれていると共にその容積は予備室11に比べて極め
て大きいため、予備室内のガス分子は速やかに観察室内
に拡散して薄められ、短時間のうちに予備室の圧力は1
0−5Torrオーダーに達する。
At this time, the observation chamber 7 is kept at a high vacuum (approximately 10-5 Torr) and its volume is extremely large compared to the preliminary chamber 11, so the gas molecules in the preliminary chamber are quickly diffused into the observation chamber and diluted. Within a short time, the pressure in the preliminary chamber is 1
It reaches the order of 0-5 Torr.

その後弁13を閉じ、エアーロック弁12を開放すると
ゝもに図示外の試料移動機構により試料を試料室4に移
動させて再びエアーロツク弁12を閉じれば、試料室4
の圧力は直ちに所要の例えば10−7Torr程度に達
する。
Thereafter, the valve 13 is closed, the air lock valve 12 is opened, the sample is moved to the sample chamber 4 by a sample moving mechanism (not shown), and the air lock valve 12 is closed again.
The pressure immediately reaches the required level, for example, about 10-7 Torr.

尚該実施例において高真空用ポンプ10a,10bとし
て油拡散ポンプを使用した場合、試料室4等を排気する
油拡散ポンプの背圧側を観察室7を排気する他方の油拡
散ポンプで排気するように構成してもよい。
In this embodiment, when oil diffusion pumps are used as the high vacuum pumps 10a and 10b, the back pressure side of the oil diffusion pump that exhausts the sample chamber 4 etc. is evacuated by the other oil diffusion pump that exhausts the observation chamber 7. It may be configured as follows.

又予備室は観察室7に接続した場合について述べたが、
カメラ室でもよい。
Also, we have described the case where the preliminary room is connected to observation room 7,
It could also be a camera room.

以上の如く構成することにより本発明は従来のように予
備室に新たに高真空用ポンプを接続することなく予備室
を高真空まで排気することができるため、各種アタッチ
メントを容易に装着でき、又排気系を簡素化することが
できると共にコストの低減をはかることができ、しかも
振動の影響を少くすることができる。
By configuring as described above, the present invention can evacuate the preliminary chamber to a high vacuum without newly connecting a high vacuum pump to the preliminary chamber as in the past, so various attachments can be easily attached, and The exhaust system can be simplified, costs can be reduced, and the influence of vibration can be reduced.

更に予備室を高真空に排気する場合に接続せしめる観察
室は容積が予備室の容積に比べて極めて大きいので、粗
引ポンプ15による予備室11の圧力が高くても単時間
のうちに予備室の圧力は高真空に達する。
Furthermore, since the volume of the observation chamber connected to evacuate the preliminary chamber to high vacuum is extremely large compared to the volume of the preliminary chamber, even if the pressure in the preliminary chamber 11 caused by the roughing pump 15 is high, the preliminary chamber can be evacuated within a short period of time. The pressure reaches high vacuum.

このことは粗引ポンプによる排気時間を短時間にと父め
ることかでき、それによって粗引ポンプとして油回転ポ
ンプから予備室に逆流する油蒸気を少なくすることがで
きる。
This can reduce the evacuation time by the roughing pump, thereby reducing the amount of oil vapor flowing back into the preliminary chamber from the oil rotary pump as a roughing pump.

尚前述の説明は本発明の例示であり、実施にあたっては
幾多の変形が考えられる。
It should be noted that the above description is an illustration of the present invention, and many modifications can be made in implementing the present invention.

例えば前述の実施例では電子顕微鏡について説明したが
、これに限定されることなく、例えばX線マイクロアナ
ライザーについても実施することができる。
For example, in the above-mentioned embodiments, an electron microscope has been described, but the present invention is not limited thereto, and can also be implemented with, for example, an X-ray microanalyzer.

即ちX線マイクロアナライザーにおいては試料に電子線
を照射せしめることにより発生する特性X線のエネルギ
ーを分散せしめるための分光結晶が使用され、この分光
結晶は前記試料を装着する試料室に隣接して形成された
分光室に配置される。
That is, in an X-ray microanalyzer, a spectroscopic crystal is used to disperse the energy of characteristic X-rays generated by irradiating a sample with an electron beam, and this spectroscopic crystal is formed adjacent to the sample chamber in which the sample is mounted. placed in a spectroscopic chamber.

このとき分光室と試料室とはその境部分に設けられたマ
イラー膜を有したX線取出窓によって真空的に遮断され
ている。
At this time, the spectroscopic chamber and the sample chamber are vacuum-blocked by an X-ray extraction window having a mylar film provided at the boundary between the spectroscopic chamber and the sample chamber.

従って該分光室と試料室に設けられた予備室とを弁を有
した排気管によって接続せしめれば、前述と同様な効果
を得ることができる。
Therefore, if the spectroscopic chamber and the preliminary chamber provided in the sample chamber are connected by an exhaust pipe having a valve, the same effect as described above can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は本発明の一実施例を示す構成略図である。 図において1は電子顕微鏡の鏡体、2は電子銃室、3は
集束レンズ、4は試料室、5は対物レンズ、6は投影レ
ンズ、7は観察室、8はカメラ室、9a,9b,14及
び16は排気管、10a及び10bは高真空用ポンプ、
11は予備室、12はエアーロツク弁、13及び17は
弁、15は粗引ポンプ、18はリーク弁である。
The accompanying drawings are schematic diagrams showing an embodiment of the present invention. In the figure, 1 is the mirror body of the electron microscope, 2 is the electron gun chamber, 3 is the focusing lens, 4 is the sample chamber, 5 is the objective lens, 6 is the projection lens, 7 is the observation chamber, 8 is the camera chamber, 9a, 9b, 14 and 16 are exhaust pipes, 10a and 10b are high vacuum pumps,
11 is a preliminary chamber, 12 is an air lock valve, 13 and 17 are valves, 15 is a roughing pump, and 18 is a leak valve.

Claims (1)

【特許請求の範囲】[Claims] 1 試料室と、該試料室を排気するための第1の高真空
排気手段と、前記試料室と電子線通過孔を介して接続さ
れ試料室よりも大きな排気空間を有する第2の室と、該
第2の室を排気するための第2の高真空排気手段と、前
記試料室にエアーロツク弁を介して連通可能に取り付け
られた予備室と、該予備室を粗引するための粗引ポンプ
とを備えた装置において、該予備室と前記第2の室とを
接続するための排気管と、該排気管に設けられた真空弁
とを備えたことを特徴とする電子線装置。
1 a sample chamber, a first high vacuum evacuation means for evacuating the sample chamber, and a second chamber connected to the sample chamber via an electron beam passage hole and having a larger evacuation space than the sample chamber; a second high vacuum evacuation means for evacuating the second chamber; a preliminary chamber attached to the sample chamber so as to be able to communicate through an air lock valve; and a roughing pump for roughing the preliminary chamber. An electron beam apparatus comprising: an exhaust pipe for connecting the preliminary chamber and the second chamber; and a vacuum valve provided on the exhaust pipe.
JP52130460A 1977-10-31 1977-10-31 electron beam equipment Expired JPS5812700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52130460A JPS5812700B2 (en) 1977-10-31 1977-10-31 electron beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52130460A JPS5812700B2 (en) 1977-10-31 1977-10-31 electron beam equipment

Publications (2)

Publication Number Publication Date
JPS5464459A JPS5464459A (en) 1979-05-24
JPS5812700B2 true JPS5812700B2 (en) 1983-03-09

Family

ID=15034760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52130460A Expired JPS5812700B2 (en) 1977-10-31 1977-10-31 electron beam equipment

Country Status (1)

Country Link
JP (1) JPS5812700B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789257U (en) * 1980-11-21 1982-06-02
US4504194A (en) * 1982-05-24 1985-03-12 Varian Associates, Inc. Air lock vacuum pumping methods and apparatus
JPS59148061U (en) * 1983-03-23 1984-10-03 日本電子株式会社 Vacuum exhaust equipment for electron microscopes, etc.
US4651171A (en) * 1985-04-25 1987-03-17 Image Graphics, Inc. Vacuum system for a charged particle beam recording system
JP2647922B2 (en) * 1988-09-22 1997-08-27 日本電子株式会社 Exhaust system of electron microscope
JPH0719669B2 (en) * 1988-10-18 1995-03-06 三菱電機株式会社 Laser excited X-ray generator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52102668A (en) * 1976-02-25 1977-08-29 Hitachi Ltd Electron microscope and resemble apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52102668A (en) * 1976-02-25 1977-08-29 Hitachi Ltd Electron microscope and resemble apparatus

Also Published As

Publication number Publication date
JPS5464459A (en) 1979-05-24

Similar Documents

Publication Publication Date Title
JPH03165435A (en) Electron microscope
JPS5812700B2 (en) electron beam equipment
JP2642907B2 (en) X-ray exposure equipment
JP2001332204A (en) Pumping unit for electron microscope
JP2868542B2 (en) Vacuum piping
JPH04215240A (en) Charged particle beam device
JPS6086748A (en) Ambient sample chamber for electron microscope
JP5530917B2 (en) Sample holder exhaust method and apparatus
JP3146035B2 (en) Infrared introduction structure to vacuum chamber
JPH03157585A (en) Vacuum device and usage thereof
JPH11166477A (en) Cryopump
JP2647922B2 (en) Exhaust system of electron microscope
JP2619731B2 (en) Apparatus and method for detecting desorbed gas
JP2008226521A (en) Scanning electron microscope
US4081222A (en) Combined vacuum baffle and valve for diffusion pump
JPS61101686A (en) Evacuating device
JPH1140094A (en) Exhaust system and exhaust method of vacuum device
JP2596636B2 (en) X-ray extraction window with valve
JP4634295B2 (en) Electron microscope vacuum exhaust system
Marcus et al. Improvements in an Electron Microscope for Clean, Quiet, Vibrationless Operation
JPS5986144A (en) Ambience sample manufacturing chamber for side entry inclining apparatus
JPH0546202Y2 (en)
JPH05258701A (en) Electron beam device
JP3794984B2 (en) X-ray microscope vacuum system
JPH0136901B2 (en)