JPH04125975A - Semiconductor element and manufacture thereof - Google Patents

Semiconductor element and manufacture thereof

Info

Publication number
JPH04125975A
JPH04125975A JP24790890A JP24790890A JPH04125975A JP H04125975 A JPH04125975 A JP H04125975A JP 24790890 A JP24790890 A JP 24790890A JP 24790890 A JP24790890 A JP 24790890A JP H04125975 A JPH04125975 A JP H04125975A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
substrate
impurity concentration
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24790890A
Other languages
Japanese (ja)
Inventor
Kenji Suzuki
健司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP24790890A priority Critical patent/JPH04125975A/en
Publication of JPH04125975A publication Critical patent/JPH04125975A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the generation of an avalanche breakdown in bevel surfaces by a method wherein the thickness of a layer between a low-impurity concentration layer located on the side of one side of p-n junctions in a semiconductor substrate having positive bevels and a high-impurity concentration layer of the same conductivity type as that of the layer adjacent to the high-impurity concentration layer is made thin in the central part of the substrate. CONSTITUTION:The thickness of an n<+> layer 4 is formed thick in the central part of a silicon substrate 1 and the thickness of an n-type layer 2 is formed thinner in the central part of the substrate than that of the layer 2 at the peripheral parts of the substrate 1. When a reverse voltage is applied to this element, an avalanche breakdown is caused in the central part of the substrate earlier than those in bevel surfaces 5 where a defect and a dirt are easy to exist. Thereby, discharge on the bevel surfaces 5 and the deterioration of the bevel surfaces 5 can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、不純物濃度の低い第一導電型の第一層とそれ
より不純物濃度の高い第二導電型の層との間のPN接合
が、第二層に向がって面積が小さくなるよう傾斜をつけ
た半導体素板側面に露出する半導体素子およびその製造
方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a PN junction between a first layer of a first conductivity type with a low impurity concentration and a layer of a second conductivity type with a higher impurity concentration. , relates to a semiconductor element exposed on the side surface of a semiconductor element whose area is inclined so that the area becomes smaller toward a second layer, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

メサ型半導体素子と呼ばれる半導体素子は、第2図に示
すようにシリコン基板1のN層2をはさんで2層3およ
びN″屡4形成され、素板の主表面に平行なPN接合2
3およびNN’接合24を有する。そして2層3側の主
表面の面積が小さくなるような傾斜面、すなわちベベル
面5が形成され、PN接合23はこのベベル面に露出し
ている。そして、その露出部がガラス層6によって保護
されている。
As shown in FIG. 2, a semiconductor device called a mesa-type semiconductor device is made up of two layers 3 and N″ layer 4 sandwiching an N layer 2 of a silicon substrate 1, and a PN junction 2 parallel to the main surface of the base plate.
3 and NN' junction 24. Then, a sloped surface such that the area of the main surface on the side of the second layer 3 is reduced, that is, a beveled surface 5 is formed, and the PN junction 23 is exposed on this beveled surface. The exposed portion is protected by a glass layer 6.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第2図に示すダイオードに逆電圧を印加すると、第3図
に示すように空乏層7がPN接合23から対向する二つ
の主表面に向かって広がる。この時ベベル面5表面の空
乏層の幅13は、半導体素板内部の幅!!、に比較して
狭くなってしまう (l、〈18)ため、この半導体素
子は空乏層7の幅が最も狭いベベル面表面が絶縁破壊電
界に達したときにその表面でアバランシェ降伏を起こし
てしまう。
When a reverse voltage is applied to the diode shown in FIG. 2, the depletion layer 7 spreads from the PN junction 23 toward the two opposing main surfaces, as shown in FIG. At this time, the width 13 of the depletion layer on the surface of the beveled surface 5 is the width inside the semiconductor substrate! ! (l, <18), so when the beveled surface of the depletion layer 7, which has the narrowest width, reaches the dielectric breakdown electric field, avalanche breakdown occurs in this semiconductor device. .

すなわち、ベベル面表面にはアバランシェ降伏時に大き
な電流が流れ、また、アバランシェ降伏以前でも半導体
基板内部より大きな電界がかかっている。これは、この
素子のベヘルが負へベルとなっているためである。この
ような負ベベル面5には常に大きな負荷がかかっている
ため、表面を被覆している保護膜6あるいは保護膜6と
シリコン素板1の界面に欠陥や汚れなどが存在すると、
その部分より放電や劣化が起こってしまう、このため、
この種の半導体素子では、高い逆電圧印加時あるいはア
バランシェ降伏時に劣化しやすいという問題があった。
That is, a large current flows through the beveled surface during avalanche breakdown, and even before avalanche breakdown, a larger electric field is applied than inside the semiconductor substrate. This is because the Beher of this element is a negative Behr. Since such a negative bevel surface 5 is always subjected to a large load, if there are defects or dirt on the protective film 6 covering the surface or the interface between the protective film 6 and the silicon base plate 1,
Discharge and deterioration occur from that part, and for this reason,
This type of semiconductor device has a problem in that it is easily deteriorated when a high reverse voltage is applied or when avalanche breakdown occurs.

本発明の目的は、上記の問題を解決し、負ベベルのベベ
ル面におけるアバランシェ降伏の発生を防ぐことのでき
る、耐圧の高い半導体素子およびその製造方法を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor element with high breakdown voltage and a method for manufacturing the same, which can solve the above problems and prevent avalanche breakdown from occurring on the bevel surface of a negative bevel.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、本発明は、不純物濃度の
低い第一導電型の第一層とより不純物濃度の高い第二導
電型の第二層との間のPN接合が、第二層に向かって面
積が小さくなるよう傾斜をつけた半導体素板側面に露出
する半導体素子において、第一層の第二層と反対側に第
一層より不純物濃度の高い第一導電型の第三層が設けら
れ、第二層と第三層の間の第一層の厚さが素板の中央部
において周辺部より小さいものとする。また、本発明の
半導体素子の製造方法は、第一導電型の半導体基板の一
主表面からの不純物の拡散により均一な深さの第二導電
型の層を形成する工程と、基板の地主表面からの選択的
な不純物の拡散により格子状に浅い部分を有する高不純
物濃度の第一導電型の層を形成する工程と、その高不純
物濃度の第一導電型層の格子状の浅い部分に対向する半
導体基板の一主表面の領域からエツチングして最深部が
第二導電型層の深さより深い凹部を形成する工程と、そ
の凹部内面に保護膜を被着する工程と、半導体基板の両
主表面に電極を被着する工程と、前記凹部の最深部を通
る主表面に垂直な面で半導体基板を分割して半導体素板
を得る工程とを含むものとする。そして、高不純物濃度
の第一導電型層を、半導体基板、の地主表面上に格子状
の酸化膜を形成後、その酸化膜表面および基板露出面上
に不純物元素を含む層を被着し、次いで熱処理により不
純物を拡散させることで形成することが有効である。
In order to achieve the above object, the present invention provides that a PN junction between a first layer of a first conductivity type with a low impurity concentration and a second layer of a second conductivity type with a higher impurity concentration is formed in the second layer. In a semiconductor element exposed on the side surface of a semiconductor element whose area is sloped toward the side, a third layer of the first conductivity type having a higher impurity concentration than the first layer is formed on the opposite side of the second layer of the first layer. is provided, and the thickness of the first layer between the second layer and the third layer is smaller in the central part of the blank than in the peripheral part. Further, the method for manufacturing a semiconductor device of the present invention includes a step of forming a layer of a second conductivity type with a uniform depth by diffusion of impurities from one main surface of a semiconductor substrate of a first conductivity type; forming a highly impurity-concentrated first conductivity type layer having a lattice-shaped shallow portion by selectively diffusing impurities from the lattice-shaped shallow portion of the lattice-shaped shallow portion of the high impurity concentration first conductivity type layer; A process of etching from one main surface area of the semiconductor substrate to form a recess whose deepest part is deeper than the depth of the second conductivity type layer, and a process of depositing a protective film on the inner surface of the recess; The method includes a step of attaching an electrode to the surface, and a step of dividing the semiconductor substrate along a plane perpendicular to the main surface passing through the deepest part of the recess to obtain semiconductor blanks. Then, after forming a first conductivity type layer with a high impurity concentration on the main surface of the semiconductor substrate, a lattice-shaped oxide film is formed, and then a layer containing an impurity element is deposited on the oxide film surface and the exposed surface of the substrate, It is effective to then diffuse impurities through heat treatment.

〔作用〕[Effect]

PN接合の一方の側の低不純物濃度の第一導電型の層の
厚さが中央部で薄いため、この半導体素子に逆電圧を印
加すると、空乏層は低電圧領域では従来の素子と同様に
広がるが、さらに電圧が高くなって空乏層が高不純物濃
度の第一導電型の層に達すると、半導体素板内部での空
乏層の広がりは抑止され、低不純物濃度の第一導電型の
層の厚さが厚い周辺部よりベベル面にかけては空乏層は
そのまま広がる。従って、空乏層幅はベベル面において
半導体素板内部より大きくなり、アバランシェ降伏も素
板内部で起こる。このように高電圧からアバランシェ降
伏に至る領域では、ベベル面より半導体素板内部に負荷
がかかるようになるため、ベベル面での放電や劣化は大
幅に減少し、耐圧が向上する。
Since the thickness of the first conductivity type layer with low impurity concentration on one side of the PN junction is thin in the center, when a reverse voltage is applied to this semiconductor device, the depletion layer is reduced in the low voltage region as in the conventional device. However, when the voltage becomes higher and the depletion layer reaches the layer of the first conductivity type with a high impurity concentration, the expansion of the depletion layer inside the semiconductor substrate is suppressed and the layer of the first conductivity type with a low impurity concentration is suppressed. The depletion layer spreads as it is from the periphery where the thickness is thicker to the bevel surface. Therefore, the depletion layer width becomes larger on the bevel surface than inside the semiconductor blank, and avalanche breakdown also occurs inside the blank. In this region where high voltage leads to avalanche breakdown, the load is placed more on the inside of the semiconductor substrate than on the beveled surface, so discharge and deterioration on the beveled surface are significantly reduced, and the withstand voltage is improved.

〔実施例〕〔Example〕

第1図は本発明の一実施例のダイオード素子の断面を示
し、第2図、第3図と共通の部分には同一の符号が付さ
れている0図から明らかなように、N゛層4厚さはシリ
コン素板1の中央部で厚(なっており、その結果、N 
FJ 2の厚さは中央部で周辺部より薄くなっている。
FIG. 1 shows a cross section of a diode element according to an embodiment of the present invention, and as is clear from FIG. 4 The thickness is the thickness at the center of the silicon base plate 1, and as a result, N
The thickness of FJ 2 is thinner at the center than at the periphery.

第4図はその素子に逆電圧を印加した状態を示し、pN
接合23からの空乏層7の広がりは、高不純物濃度層4
によって抑えられるので、j!、 >1.となる。
Figure 4 shows the state in which a reverse voltage is applied to the element, pN
The depletion layer 7 spreads from the junction 23 to the high impurity concentration layer 4
Since it is suppressed by j! , >1. becomes.

第5図(8)〜(elは本発明の一実施例のダイオード
素子製造工程を示し、前出の各図と共通の部分には同一
の符号が付されている。まず、N型の半導体基板10の
表面に1050〜1150℃での熱酸化により酸化11
Nを形成し、フォトエツチングにより下面の酸化膜11
をパターニングして格子状の部分を残す (第5図(a
l)、次に両面にオキシ塩化りん等のりん拡散l1l1
2を塗布し (第5図(b))、次いで上面の酸化膜1
1を除去し、はう素拡散源13を塗布する(第5図(C
))  このあと1250℃付近で拡散を行うと、第5
図(d]に示すように主表面に平行なPN接合23と段
付きのNN”接合24が形成される。この場合、格子状
の酸化膜11の上に塗布されたりん拡散源12からもり
んが拡散することにより、基板10の表面層に浅いN゛
層4形成される。そして、そのN゛層4浅い部分に対向
する表面に開口部ををするレジスト膜を形成してエツチ
ングによりメサ溝8を形成し、そのメサ溝8の内面にガ
ラスを塗布して保護膜6を形成する (第5図(e))
。図示しないが、最後に基板10の両主表面14.15
に電橋を被着し、ダイサにてメサ溝8の最深部を遣って
切断し、第1図に示すような半導体素子を得る。
FIGS. 5(8) to 5(el) show the manufacturing process of a diode element according to an embodiment of the present invention, and the same parts as those in the previous figures are given the same reference numerals. First, an N-type semiconductor Oxidation 11 is applied to the surface of the substrate 10 by thermal oxidation at 1050 to 1150°C.
oxide film 11 on the lower surface by photoetching.
pattern to leave a grid-like part (Fig. 5 (a)
l), then phosphorus diffusion such as phosphorus oxychloride on both sides l1l1
2 (Fig. 5(b)), and then coated with oxide film 1 on the top surface.
1 is removed and a boron diffusion source 13 is applied (Fig. 5 (C)
)) After this, when diffusion is performed at around 1250℃, the fifth
As shown in Figure (d), a PN junction 23 parallel to the main surface and a stepped NN'' junction 24 are formed. Due to the diffusion of phosphorus, a shallow N' layer 4 is formed on the surface layer of the substrate 10. Then, a resist film with an opening is formed on the surface opposite to the shallow part of the N' layer 4, and a mesa is formed by etching. A groove 8 is formed, and glass is applied to the inner surface of the mesa groove 8 to form a protective film 6 (Fig. 5(e)).
. Although not shown, finally both main surfaces 14 and 15 of the substrate 10
An electric bridge is applied to the substrate, and the mesa groove 8 is cut using a dicer using the deepest part to obtain a semiconductor device as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、負ベベルを有する半導体素板のPN接
合の一方の側にある低不純物濃度の隣接する同一導電型
の高不純物濃度層との間の厚さを素板中央部で薄<シ、
アバランシェ降伏が欠陥や汚れの存在しゃすいベベル面
よりも先に中央部で起こるようにすることにより、ベベ
ル面での放電や劣化が大幅に減少する。従って、素板中
央部での低不純物濃度層の厚さを従来と同じにすれば従
来の素子より耐圧の向上した素子が、また耐圧が低下し
ない程度に従来より薄くすればオン電圧の低減した素子
が得られる。このような素子は、半導体基板に格子状に
不純物拡散深さを浅くし、その部分に対向する主表面か
らメサ溝を形成し、メサ溝の最深部を通って基板を分割
することによって容易に製造でき、格子状に不純物拡散
深さを浅くすることは、半導体基板表面に格子状の酸化
膜パターンを形成し、全面からの不純物拡散により容易
に実現できる。
According to the present invention, the thickness between a low impurity concentration layer and an adjacent high impurity concentration layer of the same conductivity type on one side of a PN junction of a semiconductor substrate having a negative bevel is reduced at the center of the substrate. C,
By allowing avalanche breakdown to occur at the center before the bevel surface where defects or dirt exist, electrical discharge and deterioration on the bevel surface are significantly reduced. Therefore, if the thickness of the low impurity concentration layer in the center of the substrate is kept the same as before, a device with improved breakdown voltage can be obtained compared to the conventional device, and if it is made thinner than before to the extent that the breakdown voltage does not decrease, the on-state voltage can be reduced. An element is obtained. Such devices can be easily fabricated by making the impurity diffusion depth shallow in a lattice pattern in a semiconductor substrate, forming mesa grooves from the main surface facing that area, and dividing the substrate through the deepest part of the mesa groove. It can be easily manufactured and the impurity diffusion depth can be made shallow in a lattice-like manner by forming a lattice-like oxide film pattern on the surface of a semiconductor substrate and diffusing impurities from the entire surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のダイオード素子の半導体素
板断面図、第2図は従来のダイオード素子の半導体素数
の断面図、第3図、第4図は第2図、第1図の素子への
逆耐圧印加時の空乏層の広がりをそれぞれ示す断面図、
第5図は本発明の一実施例のダイオード素子製造工程を
(a)〜to+の順に示す断面図である。 1:シリコン素板、2:N層、3:2層、4:N・層、
5:ベベル面、6:ガラス層、10:シリコ ン基板、 11 : 酸化膜、 12: りん拡散源、 13: は う素拡散源、 23: PN接合。 代JI人せ謹上 山 口 巌 23 PNJk咎 第1図 而2q 千30 第j図
Fig. 1 is a cross-sectional view of a semiconductor element of a diode element according to an embodiment of the present invention, Fig. 2 is a cross-sectional view of a semiconductor element of a conventional diode element, and Figs. 3 and 4 are Figs. Cross-sectional diagrams showing the spread of the depletion layer when reverse breakdown voltage is applied to the device,
FIG. 5 is a cross-sectional view showing the manufacturing process of a diode element according to an embodiment of the present invention in the order of (a) to to+. 1: Silicon base plate, 2: N layer, 3: 2 layers, 4: N layer,
5: bevel surface, 6: glass layer, 10: silicon substrate, 11: oxide film, 12: phosphorus diffusion source, 13: boron diffusion source, 23: PN junction. 1st JI Iwao Yamaguchi 23 PNJk 1st figure 2q 130th figure j

Claims (1)

【特許請求の範囲】 1)不純物濃度の低い第一導電型の第一層とより不純物
濃度の高い第二導電型の第二層との間のPN接合が、第
二層に向かって面積の小さくなるよう傾斜をつけた半導
体素板側面に露出するものにおいて、第一層の第二層と
反対側に第一層より不純物濃度の高い第一導電型の第三
層が設けられ、第二層と第三層の間の第一層の厚さが素
板の中央部において周辺部より小さいことを特徴とする
半導体素子。 2)第一導電型の半導体基板の一主表面からの不純物の
拡散により均一な深さの第二導電型の層を形成する工程
と、基板の他主表面からの選択的な不純物の拡散により
格子状に浅い部分を有する高不純物濃度の第一導電型の
層を形成する工程と、その高不純物濃度の第一導電型層
の格子状の浅い部分に対向する半導体基板の一主表面の
領域からエッチングして最深部が第二導電型層の深さよ
り深い凹部を形成する工程と、その凹部内面に保護膜を
被着する工程と、半導体基板の両主表面に電極を被着す
る工程と、前記凹部の最深部を通る主表面に垂直な面で
半導体基板を分割して半導体基板を得る工程とを含むこ
とを特徴とする半導体素子の製造方法。 3)請求項2記載の方法において、高不純物濃度の第一
導電型層を、半導体基板の他主表面上に格子状の酸化膜
を形成後、その酸化膜表面および基板露出面上に不純物
元素を含む層を被着し、次いで熱処理により不純物を拡
散させる半導体素子の製造方法。
[Claims] 1) A PN junction between a first layer of a first conductivity type with a low impurity concentration and a second layer of a second conductivity type with a higher impurity concentration has an area of A third layer of the first conductivity type having a higher impurity concentration than the first layer is provided on the side opposite to the second layer of the first layer, and the second layer is A semiconductor device characterized in that the thickness of the first layer between the first layer and the third layer is smaller in the central part of the blank than in the peripheral part. 2) Forming a layer of a second conductivity type with a uniform depth by diffusion of impurities from one main surface of the semiconductor substrate of the first conductivity type, and selective diffusion of impurities from the other main surface of the substrate. A step of forming a highly impurity-concentrated first conductivity type layer having a shallow lattice-shaped portion, and a region of one main surface of a semiconductor substrate facing the lattice-shaped shallow portion of the high impurity concentration first conductivity type layer. forming a recess whose deepest part is deeper than the second conductivity type layer by etching, a step of depositing a protective film on the inner surface of the recess, and a step of depositing electrodes on both main surfaces of the semiconductor substrate. A method for manufacturing a semiconductor device, comprising the steps of: obtaining a semiconductor substrate by dividing the semiconductor substrate along a plane perpendicular to the main surface passing through the deepest part of the recess. 3) In the method according to claim 2, after forming the highly impurity-concentrated first conductivity type layer on the other main surface of the semiconductor substrate to form a lattice-shaped oxide film, an impurity element is added to the oxide film surface and the exposed surface of the substrate. A method of manufacturing a semiconductor device, which comprises depositing a layer containing a compound and then diffusing impurities by heat treatment.
JP24790890A 1990-09-18 1990-09-18 Semiconductor element and manufacture thereof Pending JPH04125975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24790890A JPH04125975A (en) 1990-09-18 1990-09-18 Semiconductor element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24790890A JPH04125975A (en) 1990-09-18 1990-09-18 Semiconductor element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04125975A true JPH04125975A (en) 1992-04-27

Family

ID=17170349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24790890A Pending JPH04125975A (en) 1990-09-18 1990-09-18 Semiconductor element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04125975A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000101098A (en) * 1998-09-17 2000-04-07 Sansha Electric Mfg Co Ltd Soft recovery diode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000101098A (en) * 1998-09-17 2000-04-07 Sansha Electric Mfg Co Ltd Soft recovery diode

Similar Documents

Publication Publication Date Title
JPS6145396B2 (en)
JPS63147368A (en) Double side gate electrostatic induction thyristor and manufacture thereof
US20200168714A1 (en) Semiconductor device and method for manufacturing the same
JP2005183891A (en) Structure of bidirectional block type planar device and method of manufacturing the same
JPH04125975A (en) Semiconductor element and manufacture thereof
JP3738127B2 (en) High voltage semiconductor device
JP2018133493A (en) Semiconductor device
JPH01238174A (en) Vertical mosfet
JPH07249737A (en) Planar semiconductor and its fabrication
JP2002141505A (en) Field-effect transistor
JPH07235660A (en) Manufacture of thyristor
JPH0282580A (en) Vertical mos fet
TWI708364B (en) Semiconductor device and manufacturing method thereof
JP4294016B2 (en) Manufacturing method of semiconductor device
JPH02202063A (en) Semiconductor device
JPS63141376A (en) Semiconductor element
TW466807B (en) Laser diode and method for fabricating the same
JPS61128554A (en) Semiconductor device
JPS60171768A (en) Planar semiconductor device
KR810000754B1 (en) Insulated gate field effect transistor
JPS59208731A (en) Manufacture of semiconductor device
JPH09181336A (en) Semiconductor device
JPS5816333B2 (en) Semiconductor device and its manufacturing method
JPH03150850A (en) Semiconductor device and manufacture thereof
JPS5936433B2 (en) Manufacturing method of thyristor