JPH04125450A - Fluorescence spectrophotometer - Google Patents

Fluorescence spectrophotometer

Info

Publication number
JPH04125450A
JPH04125450A JP24403690A JP24403690A JPH04125450A JP H04125450 A JPH04125450 A JP H04125450A JP 24403690 A JP24403690 A JP 24403690A JP 24403690 A JP24403690 A JP 24403690A JP H04125450 A JPH04125450 A JP H04125450A
Authority
JP
Japan
Prior art keywords
light
fluorescence
specimen
intensity
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24403690A
Other languages
Japanese (ja)
Inventor
Minoru Owada
実 大和田
Hiroyuki Koshi
裕之 越
Yoshio Sugiura
杉浦 良夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24403690A priority Critical patent/JPH04125450A/en
Publication of JPH04125450A publication Critical patent/JPH04125450A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable simultaneous measurement of function mechanism estimation of blood platelet chemical and failure detection of blood platelet function by a constitution for leading fluorescent light from a specimen and specimen transmitted light to a fluorescence spectrometer by means of a combination of plane mirrors on a side of transmission of specimen application light. CONSTITUTION:Monochromatic light emitted from an excitation spectrometer 2 radiates a specimen vessel 3, and fluorescent light generated from the specimen passes through a beam splitter 12 and is subjected to wavelength selection in a fluorescence spectrometer 4. Then its intensity is measured by a sensor 5. Light which has transmitted through the specimen is reflected on a mirror A10 and a mirror B11, further reflected on the beam splitter 12 and is subjected to wavelength selection in the spectrometer 4, and then its intensity is measured by the sensor 5. Thus a change in fluorescence intensity from the specimen and change in intensity of the specimen transmitted light can be simultaneously measured by a single apparatus, so that simultaneous measurement of estimation of function mechanism of blood platelet chemical and failure detection of blood platelet function is possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、医学・薬学等で行なわれている細胞内のCa
”÷測定に関し、Caz+濃度変化と血小板凝集測定を
同時に測定可能とした分光蛍光光度計に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the treatment of intracellular Ca, which is carried out in medicine, pharmacy, etc.
Regarding measurement, this invention relates to a spectrofluorometer that can simultaneously measure Caz+ concentration changes and platelet aggregation measurements.

〔従来の技術〕[Conventional technology]

細胞の情報伝達機構の解明、抗血小板剤の作用機序の評
価、血小板機能異常の検出をするために細胞内Ca”十
濃度変化及び血小板凝測定が必須とされている。そのC
a2+濃度変化を測定する方法として分光蛍光光度計が
用いられている。又、血小板凝集変化を測定する方法と
して、分光光度計。
In order to elucidate the cellular information transmission mechanism, evaluate the mechanism of action of antiplatelet agents, and detect platelet function abnormalities, changes in intracellular Ca' concentration and measurement of platelet aggregation are essential.
A spectrofluorometer is used as a method to measure changes in a2+ concentration. Spectrophotometer is also used as a method to measure changes in platelet aggregation.

血小板凝集能測定装置が用いられている。A platelet aggregation measuring device is used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、Caz+濃度変化測定は、試料より発する蛍光
の強度変化を測定し、血小板凝集変化測定は、試料を透
過した光の強度変化を測定するため、分光蛍光光度計で
は、試料を透過する光は、測定することはできない。又
、同様に分光光度計、血小板凝集能測定装置では、試料
を透過する光の強度変化は、測定できるが蛍光の強度変
化を測定することはできない。このことにより、Ca2
+濃度変化と血小板凝集能変化を同時に測定することが
できないといった問題があった。又、透過光において光
強度が蛍光強度と桁違いに強いため、透過光を減衰さら
ないと同時測定及び、透過光の微弱変化を測定できない
といった問題があった。
However, Caz+ concentration change measurement measures the intensity change of fluorescence emitted from the sample, and platelet aggregation change measurement measures the intensity change of the light transmitted through the sample, so with a spectrofluorometer, the light transmitted through the sample is , cannot be measured. Similarly, spectrophotometers and platelet aggregation measuring devices can measure changes in the intensity of light that passes through a sample, but cannot measure changes in the intensity of fluorescence. By this, Ca2
+There was a problem in that it was not possible to simultaneously measure changes in concentration and changes in platelet aggregation ability. Furthermore, since the light intensity of transmitted light is orders of magnitude stronger than fluorescence intensity, there is a problem in that simultaneous measurement and weak changes in transmitted light cannot be measured unless the transmitted light is attenuated.

本発明は、分光蛍光光度計において、試料に照射する光
の試料を通過した後に平面ミラーを組み合わせることに
より、試料の蛍光強度変化と透過率変化を同じ強度状態
で同時に測定できるので、Caz+濃度変化による抗血
小板剤の作用機序の評価、血小板凝集変化による血小板
機能異常の検出を同時測定可能とした。
The present invention enables a spectrofluorometer to measure fluorescence intensity changes and transmittance changes of a sample at the same time in the same intensity state by combining a flat mirror after the light irradiated onto the sample passes through the sample. This enables simultaneous measurement of the mechanism of action of antiplatelet agents and the detection of platelet function abnormalities due to changes in platelet aggregation.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために光源、この光源からの光を分
光し単色光を試料に照射する励起側分光器及び励起波長
駆動系、試料から発せられた蛍光を分光する蛍光側分光
器及び蛍光波長駆動系、この蛍光側分光器の出射光を検
知する検知器、検知器から出力される信号を増幅、A/
D変換する信号増幅器、その信号をデータ処理するコン
ピュータから構成される分光蛍光光度計において、試料
に照射する光の試料を通過する側に平面ミラーの組み合
せにより試料から発せられた蛍光と試料を通過した透過
光を蛍光側分光器に導くようにしたものである。
To achieve the above purpose, there is a light source, an excitation side spectrometer and excitation wavelength drive system that separates the light from this light source and irradiates the sample with monochromatic light, a fluorescence side spectrometer and fluorescence wavelength that separates the fluorescence emitted from the sample. Drive system, detector for detecting the emitted light from this fluorescence side spectrometer, amplification of the signal output from the detector, A/
In a spectrofluorometer that consists of a signal amplifier that performs D conversion and a computer that processes the signal, a flat mirror is used on the side where the light that irradiates the sample passes through the sample to combine the fluorescence emitted from the sample and the light that passes through the sample. The transmitted light is guided to a fluorescence spectrometer.

〔作用〕[Effect]

励起側分光器で分光された単色光は、試料に照射され、
試料より発せられた蛍光は、蛍光側分光器に導入され、
試料を通過した光は、ミラー系を経由して上記蛍光と同
様に蛍光側分光器に導入され分光される。その光は、検
知器にて検知され、信号として出力される。出力された
信号は、コンピュータにてデータ処理される。この時、
蛍光と透過光の試料に照射する単色光と蛍光側分光器で
分光される単色光は、それぞれ異なるので、コンピュー
タにより、励起波長駆動系、蛍光波長駆動系を制御し波
長を設定する必要がある。
The monochromatic light separated by the excitation side spectrometer is irradiated onto the sample,
The fluorescence emitted from the sample is introduced into the fluorescence side spectrometer,
The light that has passed through the sample is introduced into a fluorescence-side spectrometer via a mirror system and is spectrally analyzed in the same manner as the fluorescence described above. The light is detected by a detector and output as a signal. The output signal is data-processed by a computer. At this time,
The monochromatic light that irradiates the fluorescence and transmitted light sample and the monochromatic light that is separated by the fluorescence side spectrometer are different, so it is necessary to control the excitation wavelength drive system and fluorescence wavelength drive system and set the wavelength using a computer. .

この設定と同期して検知器からの信号をデータ処理する
ことにより、検知器に導入されている光、つまり、蛍光
、透過光でちらであるか区別するこ一3= とができる。又、平面ミラーの組み合せにより透過光強
度を減衰させ蛍光強度と同レベルで測定することができ
る。それによって、試料の蛍光、透過光の変化を同時に
測定することが可能となる。
By data processing the signal from the detector in synchronization with this setting, it is possible to distinguish whether the light introduced into the detector is fluorescence or transmitted light. Furthermore, by combining plane mirrors, the transmitted light intensity can be attenuated and measured at the same level as the fluorescence intensity. This makes it possible to simultaneously measure changes in fluorescence and transmitted light of the sample.

〔実施例〕〔Example〕

以下本発明の一実施例を図面により説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は、一般的な分光光度計の構成を示す。光源1か
ら出射された光束は、励起側分光器2により単色光にさ
れ、試料容器3に照射される。試料から発せられる蛍光
は、蛍光側分光器4により波長選択された後、検知器5
により、その強度が測定される。検知器5から出力され
る信号は、信号増幅器8により増幅、A/D変換された
後、コンピュータ9に送られる。また励起側分光器2は
、励起波長駆動系6を介してコンピュータ9により波長
を制御されており、同様に蛍光側分光器4は、蛍光波長
駆動系7を介してコンピュータ9により波長を制御され
ている。
FIG. 1 shows the configuration of a typical spectrophotometer. The light beam emitted from the light source 1 is converted into monochromatic light by the excitation side spectrometer 2, and is irradiated onto the sample container 3. After the wavelength of the fluorescence emitted from the sample is selected by the fluorescence side spectrometer 4, it is sent to the detector 5.
Its strength is measured by The signal output from the detector 5 is amplified and A/D converted by a signal amplifier 8, and then sent to a computer 9. Further, the wavelength of the excitation side spectrometer 2 is controlled by the computer 9 via the excitation wavelength drive system 6, and similarly, the wavelength of the fluorescence side spectrometer 4 is controlled by the computer 9 via the fluorescence wavelength drive system 7. ing.

第2図は、本発明の基本原理を示す。FIG. 2 shows the basic principle of the invention.

励起側分光器2より出射された単色光は、試料容器3に
照射される。試料から発せられた蛍光は、ビームスプリ
ッタ12を通過し蛍光側分光器4により波長選択された
後、検知器5によりその強度が測定される。又試料を通
過した透過光は、ミラーA10、ミラーBllにて反射
され、さらにビームスプリッタ12に反射し蛍光側分光
器4により波長選択された後、検知器5によりその強度
が測定される。
The monochromatic light emitted from the excitation side spectrometer 2 is irradiated onto the sample container 3 . The fluorescence emitted from the sample passes through the beam splitter 12 and has its wavelength selected by the fluorescence spectrometer 4, and then its intensity is measured by the detector 5. The transmitted light that has passed through the sample is reflected by the mirror A10 and the mirror Bll, and is further reflected by the beam splitter 12, and after being wavelength-selected by the fluorescence side spectrometer 4, its intensity is measured by the detector 5.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、試料より発せられる蛍光の強度変化と
試料を通過した光の強度変化を、1つの装置で同時に測
定できるので、Ca”十濃度変化による抗血小板剤の作
用機序の評価及び血小板凝集能変化による血小板機能異
常の検出を同時に測定できる効果がある細胞内の伝達機
構の解明にもつながる。
According to the present invention, it is possible to simultaneously measure changes in the intensity of fluorescence emitted from a sample and changes in the intensity of light passing through the sample with one device. It will also lead to the elucidation of the intracellular transmission mechanism, which is effective in simultaneously detecting platelet function abnormalities due to changes in platelet aggregation ability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を実現するために必要な装置
構成を表わす図、第2図は本発明の基本原理を示す図で
ある。 1・・・光源、2・・・励起側分光器、3・・・試料容
器、4・・蛍光側分光器、5・・・検知器、6・・・励
起波長駆動系、7・・・蛍光波長駆動系、8・・・信号
増幅器、9・・・コンピュータ、10・・・平面ミラー
A、11・・・平面ミラーB、12・・・ビームスプリ
ッタ。
FIG. 1 is a diagram showing a device configuration necessary to realize an embodiment of the present invention, and FIG. 2 is a diagram showing the basic principle of the present invention. DESCRIPTION OF SYMBOLS 1... Light source, 2... Excitation side spectrometer, 3... Sample container, 4... Fluorescence side spectrometer, 5... Detector, 6... Excitation wavelength drive system, 7... Fluorescence wavelength drive system, 8... Signal amplifier, 9... Computer, 10... Plane mirror A, 11... Plane mirror B, 12... Beam splitter.

Claims (1)

【特許請求の範囲】[Claims] 1、光源、この光源からの光を分光し単色光を試料に照
射する励起側分光器及び励起波長駆動系、試料から発せ
られた蛍光を分光する蛍光側分光器及び蛍光波長駆動系
、この蛍光側分光器の出射光を検知する検知器、検知器
から出力される信号を増幅、A/D変換する信号増幅器
、その信号をデータ処理するコンピュータから構成され
る分光蛍光光度計において、試料に照射する光の透過側
にミラー系を設け、試料の蛍光強度の時間変化と吸収の
時間変化を同時に測定可能とし、そのミラー系を平面ミ
ラーの組み合せとし透過光強度を減衰させ得ることを特
徴とする分光蛍光光度計。
1. A light source, an excitation side spectrometer and excitation wavelength drive system that separates the light from this light source and irradiates the sample with monochromatic light, a fluorescence side spectrometer and fluorescence wavelength drive system that separates the fluorescence emitted from the sample, and this fluorescence A spectrofluorometer consists of a detector that detects the emitted light from the side spectrometer, a signal amplifier that amplifies and A/D converts the signal output from the detector, and a computer that processes the signal. A mirror system is provided on the transmitting side of the light to enable simultaneous measurement of time changes in fluorescence intensity and time changes in absorption of the sample, and the mirror system is a combination of plane mirrors to attenuate the intensity of the transmitted light. Spectrofluorometer.
JP24403690A 1990-09-17 1990-09-17 Fluorescence spectrophotometer Pending JPH04125450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24403690A JPH04125450A (en) 1990-09-17 1990-09-17 Fluorescence spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24403690A JPH04125450A (en) 1990-09-17 1990-09-17 Fluorescence spectrophotometer

Publications (1)

Publication Number Publication Date
JPH04125450A true JPH04125450A (en) 1992-04-24

Family

ID=17112759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24403690A Pending JPH04125450A (en) 1990-09-17 1990-09-17 Fluorescence spectrophotometer

Country Status (1)

Country Link
JP (1) JPH04125450A (en)

Similar Documents

Publication Publication Date Title
AU769362B2 (en) Method and apparatus for detecting mastitis by using visible light and/or near infrared light
JP4640797B2 (en) Biomolecular interaction measuring apparatus and measuring method
JPH04504662A (en) Whole blood glucose determination method and cuvette and photometer for carrying out the method
JP2008008794A (en) Analyzing device
ATE443858T1 (en) DATA PROCESSING DEVICE FOR X-RAY FLUORESCENCE SPECTROSCOPY WHICH TAKES INTO ACCOUNT THE SENSITIVITY OF THE MEASURING DEVICE FOR THE CHEMICAL ELEMENTS INDEPENDENT OF THE MEASURING CONDITIONS
US9551659B2 (en) Optical apparatus and method for fluorescence measurement of analytes comprising backscattering detection
US20130105371A1 (en) Detection device and method
JP2001208745A (en) Food condition evaluating method and device therefor
CN112955742A (en) Blood sample analysis method and blood coagulation analyzer
US11119043B2 (en) Analyzer
JPH05288674A (en) Sacchari meter
JPH01214723A (en) Spectral fluorescence photometer
US11408825B2 (en) Forensic detector and the system thereof
JPH04125450A (en) Fluorescence spectrophotometer
JP6476275B2 (en) Analysis apparatus and analysis method thereof
US9976950B2 (en) Optical detector module, measurement system and method of detecting presence of a substance in a test material
JP6011394B2 (en) Fluorometer
JP2006098228A (en) Spectrophotometer, biochemical analyzer and measuring method
JPH01295134A (en) Automatic chemical analyzer
JP2006266868A (en) Absorption analyzer and absorption analysis method
JPS57147039A (en) Data discriminating device for photometer
JPS6127703B2 (en)
JP2512423B2 (en) Method and apparatus for measuring gas concentration and partial pressure
JP2008157771A (en) Analysis method of material containing hemoglobin
JP2023059170A (en) fluorescence detector