JPH01295134A - Automatic chemical analyzer - Google Patents

Automatic chemical analyzer

Info

Publication number
JPH01295134A
JPH01295134A JP12488288A JP12488288A JPH01295134A JP H01295134 A JPH01295134 A JP H01295134A JP 12488288 A JP12488288 A JP 12488288A JP 12488288 A JP12488288 A JP 12488288A JP H01295134 A JPH01295134 A JP H01295134A
Authority
JP
Japan
Prior art keywords
light
optical axis
reaction
fluorescence
reaction container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12488288A
Other languages
Japanese (ja)
Inventor
Toshiaki Imai
敏明 今井
Kiyoshi Yamashita
清 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12488288A priority Critical patent/JPH01295134A/en
Publication of JPH01295134A publication Critical patent/JPH01295134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To miniaturize the apparatus and to facilitate an adjustment operation by disposing the respective optical axes of the incident light on and exit light from a reaction vessel on the same plane as the plane at which the reaction vessel is moved. CONSTITUTION:The incident white light on the reaction vessel 2 along the optical axis 10A by a spectroscope 6 from a light source 5 of a light irradiation part 4A is emitted as transmitted light along the optical axis 10B and enters a photodetection part 4B1 in case of measuring the absorbency of a reaction liquid 1. This light is subjected to the measurement of the quantity of the light of respective wavelengths by a photodetector 9 via a mirror 7 and a spectroscope 8. The white light of the light source 5 is spectrally split by the spectroscope 6 and the incident monochromatic light on the reaction vessel 2 along the optical axis 10A is emitted as fluorescence along the optical axis 10A and is measured by a photodetector 11. The optical axis 10A cast to the vessel 2, the optical axis 10B of the transmitted light emitted therefrom and the optical axis 10C of the fluorescence are all disposed on the same plane as the plane at which the vessel 2 moves.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、反応容器に光を照射し反応液が反映された少
なくとも透過光及び蛍光を各々検出する複数の光検出系
を備えた自動化学分析装置に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention provides a plurality of light detection systems that irradiate light onto a reaction container and detect at least transmitted light and fluorescence reflected by a reaction solution, respectively. This invention relates to an automatic chemical analyzer equipped with

(従来の技術) 例えば人体から採取した血清を試料(サンプル)として
用いこれに所望の試薬を反応させて、この反応液に光を
照射することにより透過光を基に吸光度を測定すると共
に、蛍光又は散乱光を測定して診断に供するようにした
自動化学分析装置が知られている。
(Prior art) For example, serum collected from a human body is used as a sample, a desired reagent is reacted with it, the reaction solution is irradiated with light, and the absorbance is measured based on the transmitted light. Also known is an automatic chemical analyzer that measures scattered light and uses it for diagnosis.

第5図(a)、(b)はこのような分析装置の概要を示
す構成図で、反応液1が収納された複数個の反応容器2
が円形状に反応容器列3を形成するように配列されて一
定のサイクルで所定方向に間欠移動され、反応容器1の
移動経路の途中位置には光検出系4が配置、されている
。光検出系4は白色光を発生する光源5と、白色光をこ
のまま通過させ又は白色光を単色光に分光して通過させ
る機能を有する干渉フィルタ、グレーティング等の分光
器6とを含んだ光照射部4Aと、後述の光検出部4Bと
から成っている。反応液1の吸光度を測定する場合には
分光器6は白色光を反応容器2に照射し、反応液1の蛍
光又は散乱光を測定する場合には分光器6は白色光を分
光した単色光を反応容器1に照射するように動作する。
FIGS. 5(a) and 5(b) are block diagrams showing the outline of such an analyzer, in which a plurality of reaction vessels 2 containing a reaction liquid 1 are shown.
are arranged to form a circular reaction vessel row 3 and are intermittently moved in a predetermined direction in a constant cycle, and a photodetection system 4 is arranged at a position midway along the movement path of the reaction vessels 1. The light detection system 4 includes a light source 5 that generates white light and a spectrometer 6 such as an interference filter or grating that has the function of passing the white light as it is or splitting the white light into monochromatic light and passing the light. It consists of a section 4A and a photodetector section 4B, which will be described later. When measuring the absorbance of the reaction solution 1, the spectrometer 6 irradiates the reaction container 2 with white light, and when measuring the fluorescence or scattered light of the reaction solution 1, the spectrometer 6 emits monochromatic light obtained by dispersing the white light. It operates to irradiate the reaction vessel 1 with.

以下−例として反応液1の吸光度を測定する場合に例を
挙げて説明すると、分光器6は光源5からの白色光をそ
のまま通過させて反応容器2に入射する。反応液1を透
過して反応容器2から出射される光は反応液1の吸光度
が反映されてあり、第5図(b)のように反応容器2の
底部方向へと光路が変えられて光検出部4Bへ入射され
る。光検出部4Bは入射光を反射するミラー7と、この
反射光を単色光に分光するグレーティング等の分光器8
と、分光された単色光の各波長の光量を測定するフォト
ダイオードアレイ等の光検出器9とを含んでいる。
Hereinafter, an example will be described in which the absorbance of the reaction liquid 1 is measured.The spectrometer 6 allows white light from the light source 5 to pass through as it is and enters the reaction container 2. The light transmitted through the reaction solution 1 and emitted from the reaction container 2 reflects the absorbance of the reaction solution 1, and the light path is changed toward the bottom of the reaction container 2 as shown in FIG. 5(b). The light is incident on the detection section 4B. The light detection unit 4B includes a mirror 7 that reflects incident light, and a spectrometer 8 such as a grating that separates this reflected light into monochromatic light.
and a photodetector 9 such as a photodiode array for measuring the amount of light of each wavelength of the monochromatic light.

このようにして光検出器8により反応液1の吸光度が測
光されることになる。
In this way, the absorbance of the reaction solution 1 is measured by the photodetector 8.

反応液1の蛍光又は散乱光を測定する場合には分光器6
によって単色光が反応容器2に入射され、光検出部4B
の構成が少し異なるだけで同様な方法によって蛍光又は
散乱光が測定されることになる。
When measuring the fluorescence or scattered light of the reaction solution 1, a spectrometer 6 is used.
Monochromatic light is incident on the reaction container 2, and the light detection section 4B
Fluorescence or scattered light is measured by a similar method, with only a slight difference in configuration.

(発明が解決しようとする課題) ところで従来の分析装置では、光検出部が反応容器の移
動する平面に対して直交する方向に出射される光を検出
するように配置されているので、分析装置の小型化を図
る上で制約を受けると共に調整作業か煩雑になるという
問題がある。すなわち第5図(b)に示すように、光検
出部4Bは反応容器2の底部から出射される光を検出す
るように反応容器2の深さ方向に配置されているので、
この深さ方向の寸法はあまり小さくできないことになる
。又このように反応容器2の底部に光検出部4Bが配置
されていると、その調整作業が容易に行えず煩雑な作業
が必要となる。更に反応容器2の底部からの出射光を検
出する場合にはその底部の平面精度が重要となり、簡単
な引抜き成型では精度良い底面が形成できない。このた
め張合せ方法等の手間のかかる加工法が必要となるので
反応容器2のコストアップが避けられない。
(Problem to be Solved by the Invention) However, in conventional analyzers, the light detection section is arranged to detect light emitted in a direction perpendicular to the plane in which the reaction container moves. This poses a problem in that there are restrictions when trying to downsize the device, and adjustment work becomes complicated. That is, as shown in FIG. 5(b), the light detection section 4B is arranged in the depth direction of the reaction container 2 so as to detect the light emitted from the bottom of the reaction container 2.
This dimension in the depth direction cannot be made very small. Furthermore, if the photodetector 4B is disposed at the bottom of the reaction vessel 2 in this way, the adjustment work cannot be easily performed and requires complicated work. Furthermore, when detecting the light emitted from the bottom of the reaction vessel 2, the flatness of the bottom is important, and simple pultrusion cannot form a bottom with high precision. For this reason, a labor-intensive processing method such as a bonding method is required, so an increase in the cost of the reaction vessel 2 is unavoidable.

本発明は以上のような事情に対処してなされたもので、
小型化を可能にすると共に調整作業が容易に行えるよう
にした自動化学分析装置を提供することを目的とするも
のでおる。
The present invention was made in response to the above circumstances.
The object of the present invention is to provide an automatic chemical analyzer that can be miniaturized and allows easy adjustment work.

[発明の構成J (課題を解決するための手段) 上記目的を達成するために本発明は、反応容器に入射す
る光の光軸及び反応容器から出射する検出光の光軸を反
応容器を移動させる平面と同一平面上に配置するように
したものである。
[Structure J of the Invention (Means for Solving the Problems) In order to achieve the above object, the present invention moves the optical axis of the light incident on the reaction container and the optical axis of the detection light emitted from the reaction container by moving the reaction container. It is arranged on the same plane as the plane to be used.

(作 用) 反応容器に対する入射光及び出射光の光軸を反応容器を
移動させる平面と同一平面上に配置することにより、光
検出部を反応容器の深さ方向に配置する必要がなくなる
。従って装置の深さ方向の寸法が小さくなるので小型化
を図ることができ、又これに伴い調整作業も容易に行う
ことができる。
(Function) By arranging the optical axes of the incident light and the emitted light to the reaction container on the same plane as the plane in which the reaction container is moved, it is no longer necessary to arrange the photodetector in the depth direction of the reaction container. Therefore, since the dimension of the device in the depth direction is reduced, it is possible to achieve miniaturization, and accordingly, adjustment work can be easily performed.

更に検出光を反応容器の底部から出射させることがなく
なるので、底部の平面精度は重要でなくなるため反応容
器を簡単な加工法で製造することができる。
Furthermore, since the detection light is no longer emitted from the bottom of the reaction vessel, the flatness of the bottom is no longer important, so the reaction vessel can be manufactured using a simple processing method.

(実施例) 以下図面を参照して本発明実施例を説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の自動化学分析装置の第1実施例を示す
構成図で、反応液1が収納された複数個の反応容器2が
円形状に反応容器列3を形成するように配列されて、一
定のサイクルで所定方向に間欠移動される。反応容器2
は円形状の横断面形状を有し、円形状の反応容器列3の
円の外側には光源5と分光器6とを含む光照射部4Aが
配置されている。光源5から分光器6を介して反応容器
2に照射される白色光又は単色光の光軸10Aは反応容
器2が移動する平面と同一平面上に配置される。分光器
6は反応液1の吸光度を測定する場合は光源5からの白
色光をそのまま反応容器2に−〇 − 照射し、分光器6は反応液1の蛍光又は散乱光(以下蛍
光に代表させて単に蛍光と称する)を測定する場合は光
源5からの白色光を単色光に分光してこれを励起光とし
て反応容器2に照射する。
FIG. 1 is a configuration diagram showing a first embodiment of an automatic chemical analyzer of the present invention, in which a plurality of reaction vessels 2 containing a reaction liquid 1 are arranged to form a circular reaction vessel row 3. It is intermittently moved in a predetermined direction in a constant cycle. Reaction container 2
has a circular cross-sectional shape, and a light irradiation unit 4A including a light source 5 and a spectroscope 6 is arranged outside the circle of the circular reaction vessel row 3. The optical axis 10A of white light or monochromatic light irradiated from the light source 5 to the reaction container 2 via the spectroscope 6 is arranged on the same plane as the plane in which the reaction container 2 moves. When measuring the absorbance of the reaction solution 1, the spectrometer 6 directly irradiates the reaction container 2 with white light from the light source 5, and the spectrometer 6 measures the fluorescence or scattered light (hereinafter referred to as fluorescence) of the reaction solution 1. When measuring fluorescence (simply referred to as fluorescence), the white light from the light source 5 is split into monochromatic light and the reaction vessel 2 is irradiated with this as excitation light.

反応液1の吸光度を測定する場合、光軸10Aに沿って
反応容器2に入射した白色光は透過光として光軸10B
に沿って光軸10Aの延長上に出射し光検出部4B1の
ミラー7に入射する。ミラー7で反射された光は分光器
8に入射しここで単色色に分光された後、光検出器9で
単色光の各波長の光量が測定されることにより吸光度(
透光光量〉が測定される。
When measuring the absorbance of the reaction solution 1, white light incident on the reaction container 2 along the optical axis 10A is transmitted along the optical axis 10B.
The light is emitted along the extension of the optical axis 10A and is incident on the mirror 7 of the light detection section 4B1. The light reflected by the mirror 7 enters the spectroscope 8, where it is separated into monochromatic colors, and then the light intensity of each wavelength of the monochromatic light is measured by the photodetector 9, which determines the absorbance (
amount of transmitted light> is measured.

一方反応液1の蛍光を測定する場合、光軸10Aに沿っ
て反応容器2に励起光として入射した単色光は反応液を
励起することにより、反応液から発生された蛍光が光軸
10Aと90’隔てた光軸10C上に出射し光検出器4
B2の光検出器11によって蛍光光量が測定される。こ
のような構成で反応容器2から出射される透過光の光軸
10B及び蛍光の光軸10Cは前記光軸10Aと同様に
反応容器2が移動する平面と同−平面−ヒに配置される
On the other hand, when measuring the fluorescence of the reaction solution 1, the monochromatic light that enters the reaction container 2 as excitation light along the optical axis 10A excites the reaction solution, so that the fluorescence generated from the reaction solution is transmitted along the optical axis 10A and 90. 'The photodetector 4 emits light onto the separated optical axis 10C.
The amount of fluorescence light is measured by the photodetector 11 of B2. With this configuration, the optical axis 10B of the transmitted light and the optical axis 10C of the fluorescent light emitted from the reaction container 2 are arranged in the same plane as the plane in which the reaction container 2 moves, similarly to the optical axis 10A.

次に本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

反応液1の吸光度を測定する場合、光照射部4Aの光源
5から分光器6によって光軸10Aに沿って反応容器2
に入射した白色光は、透過光として光軸10Aの延長上
の光軸10Bに沿って出射し光検出部481に入射する
。この光はミラー7、分光器8を介して単色光に分光さ
れ、光検出器9で各波長の光量が測定されることにより
吸光度が測定される。次に反応液1の蛍光を測定する場
合、光照射部4Aの光源5の白色光が分光器6によって
分光されて光軸10Aに沿って反応容器2に入射した単
色光は、蛍光として光軸10Aと90’隔った光軸10
Cに沿って出射し光検出部4B2に入射する。この光は
光検出器11によって蛍光光量が測定される。
When measuring the absorbance of the reaction solution 1, the light source 5 of the light irradiation unit 4A is used to measure the reaction container 2 along the optical axis 10A using the spectrometer 6.
The white light that has entered is emitted as transmitted light along an optical axis 10B that is an extension of the optical axis 10A, and enters the light detection section 481. This light is split into monochromatic lights via a mirror 7 and a spectroscope 8, and a photodetector 9 measures the amount of light at each wavelength, thereby measuring absorbance. Next, when measuring the fluorescence of the reaction solution 1, the white light from the light source 5 of the light irradiation section 4A is separated by the spectroscope 6 and the monochromatic light that enters the reaction container 2 along the optical axis 10A is converted into fluorescence. Optical axis 10 separated by 10A and 90'
The light is emitted along the line C and enters the light detection section 4B2. The amount of fluorescence of this light is measured by a photodetector 11.

このような各測定に用いられる分析装置において、反応
容器2に照射される白色光又は単色光の光軸”IOA、
反応容器2から出射される透過光の光軸10B及び蛍光
の光軸10Cは共に反応容器2が移動する平面と同一平
面上に配置されている。
In the analyzer used for each of these measurements, the optical axis "IOA" of the white light or monochromatic light irradiated onto the reaction container 2 is
The optical axis 10B of transmitted light and the optical axis 10C of fluorescence emitted from the reaction container 2 are both arranged on the same plane as the plane in which the reaction container 2 moves.

従ってこのような本実施例によれば、光検出部4−81
,4B2を反応容器2の深さ方向に配置する必要がなく
なるので、装置の深さ方向の寸法を小さくすることがで
きるため小型化を図ることかできる。又これに伴い装置
の調整作業も容易に行うことができる。更に反応容器2
の底部から透過光、蛍光等の検出光を出射させる必要が
なくなるので、底部の平面精度は不要となる。よって反
応容器を簡単な加工法で製造することができるので、コ
ストダウンを図ることができる。
Therefore, according to this embodiment, the photodetector section 4-81
, 4B2 in the depth direction of the reaction vessel 2, the size of the device in the depth direction can be reduced, and the device can be made smaller. Additionally, adjustment work for the device can also be easily performed. Furthermore, reaction vessel 2
Since it is no longer necessary to emit detection light such as transmitted light or fluorescence from the bottom of the sensor, flatness accuracy of the bottom is not required. Therefore, since the reaction container can be manufactured using a simple processing method, costs can be reduced.

第2図は本発明の第2実施例を示すもので、反応容器列
3を構成する各反応容器2の横断面形状が矩形状のもの
を用いた例を示すものである。本実施例によっても第1
実施例と同様な効果を得ることができる。
FIG. 2 shows a second embodiment of the present invention, in which each reaction container 2 constituting the reaction container row 3 has a rectangular cross-sectional shape. According to this embodiment, the first
Effects similar to those of the embodiment can be obtained.

第3図は本発明の第3実施例を示すもので、反応容器2
として矩形状のものを用い照射光の光軸10Aを反応容
器列3の接線方向に配置した列を−〇 − 示すものである。本実施例によれば第1実施例と同様な
効果が得られる他に、光照射部4A、光検出部4B1.
4B2をすべて円形状の反応容器列3の円の外側に配置
することにより、装置の製造。
FIG. 3 shows a third embodiment of the present invention, in which the reaction vessel 2
-0- shows a row in which a rectangular one is used and the optical axis 10A of the irradiation light is arranged in the tangential direction of the reaction container row 3. According to this embodiment, in addition to obtaining the same effects as in the first embodiment, the light irradiation section 4A, the light detection section 4B1.
Fabrication of the device by placing all 4B2 outside the circle of the circular reaction vessel row 3.

調整等が容器になるという効果が得られる。This provides the effect of using a container for adjustment, etc.

第4図は本発明の第4実施例を示すもので、光照射部4
Aを円形状の反応容器列3の円の内側に配置し、又光検
出部482を反応容器列3の接線方向に配置した例を示
すものである。本実施例によっても第1実施例と同様な
効果を得ることができる。
FIG. 4 shows a fourth embodiment of the present invention, in which the light irradiation section 4
This shows an example in which A is arranged inside the circle of the circular reaction container row 3 and the photodetector 482 is arranged in the tangential direction of the reaction container row 3. This embodiment also provides the same effects as the first embodiment.

[発明の効果] 以上述べたように本発明によれば、反応容器に対する入
射光及び出射光の各光軸を反応容器を移動させる平面と
同一平面上に配置したので、装置の小型化が可能になる
と共に調整作業が容易になる。
[Effects of the Invention] As described above, according to the present invention, the optical axes of the incident light and the outgoing light to the reaction vessel are arranged on the same plane as the plane in which the reaction vessel is moved, so it is possible to miniaturize the apparatus. This makes adjustment work easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の自動化学分析装置の第1実施例を示す
構成図、第2図は本発明の第2実施例を示す構成図、第
3図は本発明の第3実施例を示す構成図、第4図は本発
明の第4実施例を示す構成図、第5図(a)、(b)は
従来例の構成図である。 1・・・反応液、  2・・・反応容器、3・・・反応
容器列、4・・・光検出系、4A・・・光照射部、4B
1,482・・・光検出部、6.8・・・分光器、9,
11・・・光検出器。
Fig. 1 is a block diagram showing a first embodiment of an automatic chemical analyzer of the present invention, Fig. 2 is a block diagram showing a second embodiment of the present invention, and Fig. 3 is a block diagram showing a third embodiment of the present invention. FIG. 4 is a block diagram showing a fourth embodiment of the present invention, and FIGS. 5(a) and 5(b) are block diagrams of a conventional example. DESCRIPTION OF SYMBOLS 1... Reaction liquid, 2... Reaction container, 3... Reaction container row, 4... Light detection system, 4A... Light irradiation part, 4B
1,482...Photodetector, 6.8...Spectrometer, 9,
11... Photodetector.

Claims (5)

【特許請求の範囲】[Claims] (1)反応液が収納された反応容器に光を照射し反応液
が反映された少なくとも透過光及び蛍光を各々検出する
複数の光検出系を備えた自動化学分析装置において、前
記照射光の光軸、透過光の検出光軸及び蛍光の検出光軸
を前記反応容器を移動させる平面と同一平面上に配置し
たことを特徴とする自動化学分析装置。
(1) In an automatic chemical analyzer equipped with a plurality of light detection systems that irradiate light onto a reaction container containing a reaction solution and detect at least transmitted light and fluorescence, each of which reflects the reaction solution, the light of the irradiation light An automatic chemical analyzer characterized in that an optical axis for detecting transmitted light and an optical axis for detecting fluorescence are arranged on the same plane as a plane in which the reaction container is moved.
(2)照射光光軸と蛍光検出光軸とが90°隔てて配置
された請求項1記載の自動化学分析装置。
(2) The automatic chemical analyzer according to claim 1, wherein the irradiation light optical axis and the fluorescence detection optical axis are arranged 90 degrees apart.
(3)反応容器が複数個円形状に配列された請求項1記
載の自動化学分析装置。
(3) The automatic chemical analyzer according to claim 1, wherein a plurality of reaction vessels are arranged in a circular shape.
(4)反応容器の横断面形状が円形状又は矩形状である
請求項1記載の自動化学分析装置。
(4) The automatic chemical analyzer according to claim 1, wherein the cross-sectional shape of the reaction container is circular or rectangular.
(5)円形状に配列された反応容器列の接線方向に照射
光光軸が配置された請求項3記載の自動化学分析装置。
(5) The automatic chemical analyzer according to claim 3, wherein the optical axis of the irradiation light is arranged in the tangential direction of the row of reaction vessels arranged in a circular shape.
JP12488288A 1988-05-24 1988-05-24 Automatic chemical analyzer Pending JPH01295134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12488288A JPH01295134A (en) 1988-05-24 1988-05-24 Automatic chemical analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12488288A JPH01295134A (en) 1988-05-24 1988-05-24 Automatic chemical analyzer

Publications (1)

Publication Number Publication Date
JPH01295134A true JPH01295134A (en) 1989-11-28

Family

ID=14896430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12488288A Pending JPH01295134A (en) 1988-05-24 1988-05-24 Automatic chemical analyzer

Country Status (1)

Country Link
JP (1) JPH01295134A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014602A (en) * 2007-07-06 2009-01-22 Toshiba Corp Automatic analysis apparatus
WO2011004781A1 (en) 2009-07-10 2011-01-13 株式会社日立ハイテクノロジーズ Automatic analyzer
WO2011105464A1 (en) 2010-02-25 2011-09-01 株式会社日立ハイテクノロジーズ Automatic analysis device
WO2014013820A1 (en) * 2012-07-20 2014-01-23 株式会社日立ハイテクノロジーズ Automatic analysis device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719634U (en) * 1980-07-08 1982-02-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719634U (en) * 1980-07-08 1982-02-01

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014602A (en) * 2007-07-06 2009-01-22 Toshiba Corp Automatic analysis apparatus
WO2011004781A1 (en) 2009-07-10 2011-01-13 株式会社日立ハイテクノロジーズ Automatic analyzer
US8852511B2 (en) 2009-07-10 2014-10-07 Hitachi High-Technologies Corporation Automatic analyzer
US9023282B2 (en) 2009-07-10 2015-05-05 Hitachi High-Technologies Corporation Automatic analyzer
US10113962B2 (en) 2009-07-10 2018-10-30 Hitachi High-Technologies Corporation Automatic analyzer
WO2011105464A1 (en) 2010-02-25 2011-09-01 株式会社日立ハイテクノロジーズ Automatic analysis device
US8858882B2 (en) 2010-02-25 2014-10-14 Hitachi High-Technologies Corporation Automatic analysis device
WO2014013820A1 (en) * 2012-07-20 2014-01-23 株式会社日立ハイテクノロジーズ Automatic analysis device
JP2014020999A (en) * 2012-07-20 2014-02-03 Hitachi High-Technologies Corp Automatic analyzer
CN104428653A (en) * 2012-07-20 2015-03-18 株式会社日立高新技术 Automatic analysis device
US9658237B2 (en) 2012-07-20 2017-05-23 Hitachi High-Technologies Corporation Automatic analyzer

Similar Documents

Publication Publication Date Title
JP4791625B2 (en) Spectrophotometric / turbidimetric detection unit
US6188476B1 (en) Determination of light absorption pathlength in a vertical-beam photometer
JP4640797B2 (en) Biomolecular interaction measuring apparatus and measuring method
US20070037272A1 (en) System for optically analyzing a substance
JP2013541021A (en) System and method for detecting and imaging a two-dimensional sample array
US20050064427A1 (en) Method and/or system for identifying fluorescent, luminescent and/or absorbing substances on and/or in sample carriers
US7511818B2 (en) Apparatus for measuring the optical absorbency of samples of liquids, method and reaction container for its implementation
JPH01295134A (en) Automatic chemical analyzer
JPH0224535A (en) Particle analyzing apparatus
EP3752819B1 (en) Analyzer
JPS61173141A (en) Particle analyzing instrument
JPH11173982A (en) Method and apparatus for measuring concentration of protein in serum
CN116601481A (en) Optical absorption spectrometer, optical device, and optical absorption spectroscopy
JPH09133628A (en) Analyzer provided with built-in composite element
JP2006098228A (en) Spectrophotometer, biochemical analyzer and measuring method
JPS63205546A (en) Automatic analysis instrument
JPS6385414A (en) Multibeam photometry instrument
RU2251668C2 (en) Spectrometer
US20230296438A1 (en) Absorbance spectroscopy analyzer and method of use
JPS63289426A (en) Fourier transform spectroanalyser
JP2001091455A (en) Biochemical analyzer
WO2022123968A1 (en) Raman analysis plate, raman analysis device, analysis system, and raman analysis method
JPH0285745A (en) Automatic chemical analysis apparatus
JP2008058155A (en) Medical photometer
JPS5973741A (en) Spectrophotometer