JPS5973741A - Spectrophotometer - Google Patents

Spectrophotometer

Info

Publication number
JPS5973741A
JPS5973741A JP18279982A JP18279982A JPS5973741A JP S5973741 A JPS5973741 A JP S5973741A JP 18279982 A JP18279982 A JP 18279982A JP 18279982 A JP18279982 A JP 18279982A JP S5973741 A JPS5973741 A JP S5973741A
Authority
JP
Japan
Prior art keywords
coordinate axis
slit
axis
white light
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18279982A
Other languages
Japanese (ja)
Inventor
Toshiaki Imai
敏明 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18279982A priority Critical patent/JPS5973741A/en
Publication of JPS5973741A publication Critical patent/JPS5973741A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0294Multi-channel spectroscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/04Slit arrangements slit adjustment

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To obtain a spectrophotometer, which is best suited for measuring many channels and many wavelengths, by selecting white light beams from one of a plurality of optical fibers or a plurality of optical fibers, whose light beams are converged at one point, in correspondence with a reflecting mirror and a slit that can be moved, receiving a single color light beam having a different wavelength by one light receiving element sequentially by the movement of the slit or the rotation of a diffraction grating, and arranging a plurality of light receiving elements. CONSTITUTION:When light beams including many wavelengths, e.g., white light beams, are emitted from an optical fiber group 1, the white light beams are reflected by a reflecing mirror 2 in the direction of (x). Of the white light beams from optical fibers 1a, 1b, and 1c, only the white light beam from one optical fiber, e.g., the optical fiber 1a, is made to pass a slit 3. The white light beam, which has passed the slit 3, enters a diffraction grating 4. The light beam is divided into single color light beams having specified wavelengths by a scattering element, which is not shown. Each single color light beam enters each light receiving element 5a, which is arranged in an array shape. Thus, the spectrum measurement of multiple wavelengths can be performed with respect to a sample, which is arranged at the front stage of the optical fiber 1a.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は診断のための医療機器の技術分野に属し、さら
に詳しくは、分光光度計ll?に多チャンネル、多波長
分光光度計に関1−るものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention belongs to the technical field of medical devices for diagnosis, and more particularly, spectrophotometer II? This invention relates to a multi-channel, multi-wavelength spectrophotometer.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

自動化学分析装置例えば自動生化学分析装置においては
、被検体の血清等と試薬とを反応させ、こrLヲ分分光
度計を用いて分析することにより診断を行なっている。
In an automatic chemical analyzer, for example, an automatic biochemical analyzer, diagnosis is performed by reacting the serum of a subject with a reagent and analyzing the reaction using a spectrometer.

近年、患者の増加に伴い、多チャンネルでしかも多波長
の分光測定を行うことが強く要望さnている。この際、
各チャンネルの測定を行うにあたって何本もの光源の切
り換えが困難であり、従来より多チャンネル、多波長の
測定に最適な分光光度計が提供さnていなかった。
In recent years, as the number of patients has increased, there has been a strong demand for multi-channel and multi-wavelength spectroscopic measurements. On this occasion,
It is difficult to switch between multiple light sources when measuring each channel, and until now there has been no spectrophotometer that is optimal for multi-channel, multi-wavelength measurements.

〔発明の目的〕[Purpose of the invention]

本発明は前記事情に鑑みてなさnたものであり、多チャ
ンネル、多波長の測定に最適な分光光度計を提供するこ
とを目的とするものである。
The present invention was made in view of the above circumstances, and it is an object of the present invention to provide a spectrophotometer that is optimal for multi-channel, multi-wavelength measurements.

〔発明の概要〕 前記目的を達成するための本発明の概要は、1点に交わ
る6軸を第1.第2.第6の座標軸とし、光軸を第6の
座標軸方向に沿って配列した複数の元ファイバと、第1
の座標軸に沿って移動可能に設けら扛ると共に前記元フ
ァイバからの光を第1の座標軸方向に反#Jjる反射ミ
ラーと、該反射ミラーの光の反グJ系路途中に第2の座
標軸に沿って移動可能に設けらnたスリットと、該スリ
ットを介して入射する元を単色光に分光すると共に第3
の座標軸を中心に回■tb可能な回折格子と、該回折格
子からの単色yt、を受光するように第1.第2の座標
軸で構成さt′Lる面上に複数配列した受光素子とを有
することを特徴とする分光光度計である。
[Summary of the Invention] The outline of the present invention for achieving the above object is that six axes that intersect at one point are arranged as a first... Second. a plurality of original fibers whose optical axes are arranged along the direction of the sixth coordinate axis;
a reflecting mirror which is movable along the coordinate axis and which reflects the light from the original fiber in the direction of the first coordinate axis; A slit is provided movably along the coordinate axis, and a source incident through the slit is split into monochromatic light, and a third
The first . The spectrophotometer is characterized in that it has a plurality of light receiving elements arranged on a plane t'L formed by the second coordinate axis.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面を参照して説明する。第
1図は本発明の第1の実施例である分光光度削の概略斜
視図である。尚、以下の説明において、1点に交わる第
1.第2.第6の座標軸を、相直交する座標軸” * 
3’ t z古して説明する。第1図において、1は元
ファイバ群であり、例えば光軸をX軸とした元ファイバ
Ia、1b、ICをy方向に沿って配列することにより
構成している。元ファイバ1a、1b、1Cは、試料を
透過した白色光を導光するものである。2は反射ミラー
であり、前記元ファイバ群1からの光を入射し、こnを
X方向に?Fjって反射するように配置さ几ている。6
はスリットであり、前記反射ミラー2からの光の反射糸
路途中のy −z面に面するように配置さ几、y方向に
沿って移動自在となっている。4は回折格子であり、前
記スリット3を介して入射した光を分光する。5は検出
器であシ、例えば受光素子5α1に、f方向に沿ってア
レイ状に配列することにより構成さnている。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic perspective view of spectrophotometric machining, which is a first embodiment of the present invention. In the following explanation, the first . Second. The sixth coordinate axis is the orthogonal coordinate axis” *
3' t z Let me explain. In FIG. 1, reference numeral 1 denotes an original fiber group, which is constructed by arranging original fibers Ia, 1b, and IC along the y direction, for example, with the optical axis as the X axis. The original fibers 1a, 1b, and 1C guide the white light that has passed through the sample. Reference numeral 2 denotes a reflecting mirror, which receives the light from the original fiber group 1 and reflects this n in the X direction. Fj is arranged so as to reflect. 6
is a slit, which is disposed so as to face the y-z plane in the middle of the reflection path of the light from the reflecting mirror 2, and is movable along the y direction. Reference numeral 4 denotes a diffraction grating, which separates the light incident through the slit 3 into spectra. Reference numeral 5 denotes a detector, which is constructed by arranging, for example, a light receiving element 5α1 in an array along the f direction.

以上のように構成さnた分光光度a1の作用について説
明する。元ファイバ群1より多くの波長を含む元例えば
白色光が出射さnると、こ1tを入射する反射ミラー1
j:白色光をX方向に沼って反射させる。各光ファイバ
1α、Ih、1(?からの白色光は、スリット6におい
て1本の元ファイバ例えば元ファイバ1αの白色光のみ
を通過させる。スリット6を通過した白色光は回折格子
4に入射し、図示しない分散素子によって各特定波長の
単色光に分光さnる。こ1tら各単色光は、アレイ状に
配列した各受光素子5aにそnぞオ゛シ入射1−ること
になり、光ファイバ1aの前段に配置さnた試料に対し
て多波長の分″#、測定を行うことができる。次に、前
記スリット5′ff:’/刀向に移動して、元ファイバ
1αの白色光に換えて光ファイバ1hの白色光を通過さ
せる。元ファイバ1hからの白色光も、前記と同様にし
て回折格子4によって各Qj色光に分光さ1、る。そし
て、こnら各単色光を各受光素子5αで恢出することに
より、光ファイバ1hの前段に配f6さ几た試F)に対
して多波長の分)Y;測定を行うことができる。スリッ
ト6をさらにy方向に移動して、光ファイバ1Cの白色
光f、2「1元するようにすnば、う“Cファイバ1C
の前段に配置した試料に対して多波長の分光測定を行う
ことができる。このように、先ファイバ群1においてそ
扛ぞn異なる試料の透過光ヲ樽ひき、こnをスリット6
によって1000次選択して通過させるようにす717
ば、多チャンネル、多波長の分光測定を行うことができ
る。
The effect of the spectral luminosity a1 configured as described above will be explained. When a source, for example, white light, containing more wavelengths than the source fiber group 1 is emitted, the reflection mirror 1 that enters the source 1t.
j: White light is reflected in the X direction. The white light from each optical fiber 1α, Ih, 1(?) passes only the white light from one source fiber, for example, the source fiber 1α, at the slit 6.The white light that has passed through the slit 6 enters the diffraction grating 4. , are separated into monochromatic lights of specific wavelengths by a dispersion element (not shown).These monochromatic lights are incident on each of the light receiving elements 5a arranged in an array. It is possible to perform measurements at multiple wavelengths on a sample placed in front of the optical fiber 1a.Next, the slit 5'ff:' is moved in the direction of the original fiber 1a. The white light from the optical fiber 1h is passed through instead of the white light.The white light from the original fiber 1h is also split into each Qj color light by the diffraction grating 4 in the same manner as described above. By extracting the light with each light receiving element 5α, it is possible to measure multiple wavelengths (Y) with respect to the sample F) arranged at the front stage of the optical fiber 1h. If you move the white light f and 2 of the optical fiber 1C to 1 element,
Multi-wavelength spectroscopic measurements can be performed on a sample placed in the front stage. In this way, the transmitted light of different samples is filtered through the fiber group 1, and this is connected to the slit 6.
Select the 1000th order and pass it by 717
For example, multi-channel, multi-wavelength spectroscopic measurements can be performed.

次に、本発明の第2の実施例をEn 2図を参照して説
明する。絹2図に示す分光光度計が第1図に示す分光光
度計と相違する点り%Z軸を光軸とする元ファイバ杯f
:x方向に沿って配列したことと、反射ミラー2tx方
向に移動自在としたことと、スリット6を固定し回折格
子4を回動自在としたこととである。
Next, a second embodiment of the present invention will be described with reference to Fig. En 2. The spectrophotometer shown in Fig. 2 is different from the spectrophotometer shown in Fig. 1. Original fiber cup f with the Z-axis as the optical axis.
: The reflective mirrors 2 are arranged along the x direction, the reflective mirrors 2 are movable in the tx direction, and the slits 6 are fixed and the diffraction gratings 4 are rotatable.

以上のような構成により、反射ミラー2のX方向の設定
位置に応じて任意の元ファイバを選択することができる
。又、反射ミラー2の設定位置がX方向に多少ずn、た
としても回折格子4に人別する白色光は2方向にずnる
のみであり、各単色光の波長精度には影響が生じない。
With the above configuration, any source fiber can be selected depending on the set position of the reflection mirror 2 in the X direction. Furthermore, even if the setting position of the reflecting mirror 2 is slightly different in the X direction, the white light that is differentiated by the diffraction grating 4 will only be shifted in two directions, which will affect the wavelength accuracy of each monochromatic light. do not have.

任意の光ファイバからの白色光を、zIIIllIを回
転軸として回動する回折格子4によって、模出器5にお
ける−の受光素子5αに物足波長の単色光を順次検出す
ることができる。尚、第1図と同様に恢U)器5のアレ
イ状に配列した各受te素子5αにおいて検出する場合
には、回折格子4全回動することなく多波長の分光測定
か可能である。
White light from an arbitrary optical fiber can be sequentially detected as monochromatic light of sufficient wavelength by the diffraction grating 4 which rotates about zIIIllI as a rotation axis on the negative light receiving element 5α of the emulator 5. Incidentally, when detecting with each receiving element 5α arranged in an array of the detector 5 as in FIG. 1, multi-wavelength spectroscopic measurement is possible without rotating the diffraction grating 4 all the way.

次に、本発明の第6の実施例を第6図tl−徊照して説
明する。第6図に示す分i光度計が第1図に示す分光光
度計と相違する点は、X方向に配列した元ファイバ群1
の光軸が、固足さ几た反射ミラー2の一点に集束するよ
うに配置したことと、俣出器5における受光素子5aを
2軸方向に配列したこととである。
Next, a sixth embodiment of the present invention will be described with reference to FIG. The difference between the spectrophotometer shown in FIG. 6 and the spectrophotometer shown in FIG. 1 is that the original fiber group 1 is arranged in the X direction.
The optical axis of the mirror 2 is arranged so that it is focused on a single point on the fixed reflecting mirror 2, and the light-receiving elements 5a of the light receiving device 5 are arranged in two axial directions.

このような11′り成により、光フアイバ群1からの白
色光tま、スリット3を介して回折格子4におけるz 
11’+lI−Jmの異なる位僅でそ几ぞIL分光光n
1分光さ几た即色元がz@l++c沿った配fit l
、た異なる受光素子”ytK受う°Lさnる。このよう
に、反射ミラー2の一点に集束する元ファイバ群1の白
色亢奮そnぞ71. Jli色元に分光し、同時に異な
る受′)Y、素子5αに受ブCさぜることができる。
With such a configuration, the white light t from the optical fiber group 1 is transmitted through the slit 3 to z at the diffraction grating 4.
11'+lI-Jm, there are only a few different IL spectroscopy n.
Immediate color source after 1 minute of light is distributed along z@l++c
In this way, the white light of the original fiber group 1 that is focused on a single point on the reflecting mirror 2 is enhanced. ) Y, the receiver C can be inserted into the element 5α.

次に、本発明の第4の実施例看:2n4崗を参照して説
、明する。第4の実施例tよ第1図と第2図とに示ず実
施例ケ組み合わせたものである。第4図に示すように、
光す)11をz’t’lllとした元ファイバ群1をx
、y平面上に縦楢に配置し、反射ミラー2をX方向に移
動することにより、前記光フアイバ群1のうちのX列を
選択し、スリン) 3’e3’方向に移動′1−ること
によりFiiJ制元ファイバr+’f’ 1のうちのy
外音選択するようにしたものである。このような構成に
より、x 、 y平面に縦横に配列さnた元ファイバ群
1のうちの任意の光ファイバからの白色光を選択し、こ
f′L、全回折格子4によって多波長に分光することに
より、多チャンネル、多波長の分光測定を行うことがで
きる。
Next, a fourth embodiment of the present invention will be described and explained with reference to a 2n4 motor. The fourth embodiment t is a combination of embodiments not shown in FIGS. 1 and 2. As shown in Figure 4,
The original fiber group 1 with 11 as z't'llll
, are arranged vertically on the y plane, and by moving the reflecting mirror 2 in the X direction, select the X row of the optical fiber group 1 and move it in the 3'e3' direction. Therefore, FiiJ-based fiber r+'f' y out of 1
This allows you to select external sounds. With such a configuration, white light from an arbitrary optical fiber of the original fiber group 1 arranged vertically and horizontally in the x, y plane is selected, and the white light is separated into multiple wavelengths by the total diffraction grating 4. By doing so, multi-channel, multi-wavelength spectroscopic measurements can be performed.

次に、本発明の第5の実施例を第5図を参照して説明す
る。第5の実施例は第1図と第3図とに示す実施例を組
み合わtたものである。第5図に示すように、光ファイ
バの光軸が反射ミラー2の一点に集束するように、X方
向に配列した光ファイバ群1全y方向に複数列配置して
元ファイバ群1としている。そして、このうY;ファイ
バ群1がら出射さ几る白色光を、スリット3のX方向の
移動によってX方向の位置毎に通過させ、こnf回折格
子4に入射することにより、一点に集束する各光ファイ
バからの白色光を各波長の単色光に同時に分光すること
ができる。従って、受光素子5aをx −z面上に縦横
に配列しておくことにより多チャンネル、多波長の分光
1i111足全効率よく行うことができる。
Next, a fifth embodiment of the present invention will be described with reference to FIG. The fifth embodiment is a combination of the embodiments shown in FIGS. 1 and 3. As shown in FIG. 5, a group of optical fibers 1 arranged in the X direction are all arranged in multiple rows in the Y direction so that the optical axes of the optical fibers are focused on one point on the reflecting mirror 2 to form the original fiber group 1. Then, the white light emitted from the fiber group 1 is passed through each position in the X direction by moving the slit 3 in the X direction, and is focused at one point by entering the nf diffraction grating 4. White light from each optical fiber can be simultaneously split into monochromatic light of each wavelength. Therefore, by arranging the light receiving elements 5a vertically and horizontally on the x-z plane, multi-channel, multi-wavelength spectroscopy can be performed with full efficiency.

以上説明した第1〜箱5の実施例では、貌す1の便宜上
相直交する座標軸、τv9 gzとして説明したが、こ
のJ4≦標tiltは直交するものに限らず、互いに一
点に交わるJ41″:徨すリ11であ1しげよい。又、
測定に供さILる試料を、回折格子4と49′!出器5
との光路に交差して移動可能に配置タシても、前記と同
様の効果を奏することができる。
In the embodiments of Boxes 1 to 5 described above, the coordinate axes τv9 gz are orthogonal to each other for the sake of convenience. However, this J4≦mark tilt is not limited to orthogonal, but intersects each other at one point J41'': You can give it a try in Wandering 11.Also,
Diffraction gratings 4 and 49'! Output device 5
The same effect as described above can be obtained even if the optical path is movably arranged to intersect the optical path of the optical path.

〔グト、明の効果〕[Guto, light effect]

以上説明したように、この発明によると、第1のrト標
軸に活って移動可能な反身1ミラーと、絹2のり引1に
浴って移重り01能なスリットとの股足位fNに応じで
、複数の元ファイバのうちの1又は1点に集束する複数
の光ファイバからの白色光を選択し、こnをスリットの
移動又は回折格子の回動によって1の受う1−素子に対
してl1lI′i次異なる波長の崖「1色光を受ブ〔5
さぜることかできる。従って、複数の受yt素子の配列
により多チャンネル、多波長のfA+J足に最僧な分光
元度削全提供することができる。
As explained above, according to the present invention, the crotch position of the mirror 1, which is movable by living on the first reference axis, and the slit, which can move the weight by applying the glue 1 of the silk 2, is Depending on fN, one of the plurality of original fibers or white light from a plurality of optical fibers focused on one point is selected, and this light is reflected by moving the slit or rotating the diffraction grating. For the element, a cliff of l1lI′i different wavelengths “receives one color light” [5
I can even stir it. Therefore, by arranging a plurality of receiver yt elements, it is possible to provide the best spectral reduction for multi-channel, multi-wavelength fA+J legs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5商6本発明の実施例を示す概略余1視図
である。 1・・・光フアイバ群、  2・・・反射ミラー、  
6・・・スリット、  4・・・回折格子、  5・・
・恢出器 5a・・・受光素子。
FIGS. 1 to 5 are schematic views showing an embodiment of the present invention; FIG. 1... Optical fiber group, 2... Reflection mirror,
6...Slit, 4...Diffraction grating, 5...
・Digger 5a... Light receiving element.

Claims (6)

【特許請求の範囲】[Claims] (1)1点に交わる6軸を第1.22 、i3の座標軸
とし、元軸を第6の座標軸方向に沿って配列し次複数の
元ファイバと、第1の座標軸に浴って移動可能に設けら
nると共に前記元ファイバからの光を第1の座標軸方向
に反射する反射ミラーと、該反射ミラーの光の反射糸路
途中に第2の座標軸に沼って移B111可能に設けらn
たスリットと、該スリットを介して入射する光を単色光
に分光すると共に第3の座標軸を中心に回動可能な回折
格子と、該回折格子からの単色光を受光するように第1
゜第2の座標軸で構成さ扛る面上に複数配列した受光素
子とを有することを特徴とする分子c、光度計。
(1) The 6 axes that intersect one point are the 1st, 22nd and i3 coordinate axes, and the source axes are arranged along the direction of the 6th coordinate axis, allowing multiple source fibers to move along the first coordinate axis. a reflecting mirror for reflecting the light from the source fiber in the direction of the first coordinate axis; n
a slit, a diffraction grating that splits the light incident through the slit into monochromatic light and is rotatable about a third coordinate axis;
A molecule c photometer characterized by having a plurality of light receiving elements arranged on a surface formed by a second coordinate axis.
(2)前記光ファイバは第6の座標軸を光軸とし、第2
の座標軸に沿って複数配列したことを特徴とする特許請
求の範囲第1項に記載の分光光度計。
(2) The optical fiber has the sixth coordinate axis as the optical axis and the second
2. The spectrophotometer according to claim 1, wherein a plurality of spectrophotometers are arranged along the coordinate axis.
(3)  前記元ファイバは第6の座標軸を元軸とし、
第1のJ′B標軸に清って複数配列したことを特徴とす
る特許請求の範囲第1項に記4・(の分光光度計。
(3) The original fiber has the sixth coordinate axis as the original axis,
A spectrophotometer according to claim 1, characterized in that a plurality of spectrophotometers are arranged along the first J'B reference axis.
(4)前記九ファイバは、各光軸が前記ミラーの一点に
交わるように、第1の座標軸に沿って配列したことを特
徴とする特許請求の範1/il第1項に記載の分光光度
計。
(4) The nine fibers are arranged along the first coordinate axis so that each optical axis intersects one point of the mirror. Total.
(5)  前Me光ファイバは第6の座標軸を元軸とし
、第1の座標軸と第2の座標軸とに沿って複数配列した
こと全特徴と1″る特許請求の範囲第1項に記載の分光
光度計。
(5) The first Me optical fiber has the sixth coordinate axis as its original axis, and is arranged in plurality along the first coordinate axis and the second coordinate axis. Spectrophotometer.
(6)  nil記元ファイバはMS 11111が前
記反射ミラーの一点に交わるように第1の座標軸に沿っ
て配列した元ファイバの束を、第2の座標軸に沿って複
数束配列したことを特徴とする特許請求の範囲第1項に
記載の分光光度計。
(6) The nil index fiber is characterized in that a bundle of original fibers arranged along the first coordinate axis so that the MS 11111 intersects with one point of the reflecting mirror is arranged in plural bundles along the second coordinate axis. A spectrophotometer according to claim 1.
JP18279982A 1982-10-20 1982-10-20 Spectrophotometer Pending JPS5973741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18279982A JPS5973741A (en) 1982-10-20 1982-10-20 Spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18279982A JPS5973741A (en) 1982-10-20 1982-10-20 Spectrophotometer

Publications (1)

Publication Number Publication Date
JPS5973741A true JPS5973741A (en) 1984-04-26

Family

ID=16124618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18279982A Pending JPS5973741A (en) 1982-10-20 1982-10-20 Spectrophotometer

Country Status (1)

Country Link
JP (1) JPS5973741A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2588656A1 (en) * 1985-10-16 1987-04-17 Bertin & Cie OPTICAL FIBER SPECTRO COLORIMETRY APPARATUS
EP0278738A2 (en) * 1987-02-10 1988-08-17 Shiley Incorporated Multichannel optical system
CN104062006A (en) * 2013-03-18 2014-09-24 精工爱普生株式会社 Light Measuring Device, Printing Apparatus, And Image Display Apparatus
JP2019517674A (en) * 2016-06-10 2019-06-24 ボミル アクティエボラーグ Detector system with multiple light guides and spectrometer with detector system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2588656A1 (en) * 1985-10-16 1987-04-17 Bertin & Cie OPTICAL FIBER SPECTRO COLORIMETRY APPARATUS
EP0278738A2 (en) * 1987-02-10 1988-08-17 Shiley Incorporated Multichannel optical system
CN104062006A (en) * 2013-03-18 2014-09-24 精工爱普生株式会社 Light Measuring Device, Printing Apparatus, And Image Display Apparatus
JP2019517674A (en) * 2016-06-10 2019-06-24 ボミル アクティエボラーグ Detector system with multiple light guides and spectrometer with detector system

Similar Documents

Publication Publication Date Title
US4477190A (en) Multichannel spectrophotometer
US5615008A (en) Optical waveguide integrated spectrometer
JPS5970946A (en) Apparatus for measuring absorbance
US7151869B2 (en) Fiber-optic channel selecting apparatus
US10386232B2 (en) Compact spectroscopic optical instrument
US4966458A (en) Optical system for a multidetector array spectrograph
JP2001141563A (en) Spectrometry, its device, temperature measuring device, and film pressure measurement device
US4566792A (en) Multi-channel spectrophotometric measuring device
EP0340915A2 (en) Optical system for a multidetector array spectrograph
US5212748A (en) Fiber optic mixer and spectrometer
US4950077A (en) Photoelectric measuring apparatus for use in automatic analyzer
JPS634650B2 (en)
CA1108429A (en) Spectrophotometer
JPS5973741A (en) Spectrophotometer
JPS6073343A (en) Spectrophotometer
JPH0239725B2 (en) FUKUSUCHANNERUBUNKOKODOSOKUTEISOCHI
JP2001091357A (en) Simultaneous analysis method of multiple optical spectrum
JPS59138930A (en) Absorbancy measuring device
JPH06331540A (en) Spectrophotometer
JPS63205546A (en) Automatic analysis instrument
CN219417203U (en) Multichannel photometry device
JPS6385414A (en) Multibeam photometry instrument
JPS58219435A (en) Spectrophotometer with two luminous fluxes
JPS6219945Y2 (en)
JPH0486534A (en) Photometer for multi-wavelength simultaneous photometry