JPH0239725B2 - FUKUSUCHANNERUBUNKOKODOSOKUTEISOCHI - Google Patents

FUKUSUCHANNERUBUNKOKODOSOKUTEISOCHI

Info

Publication number
JPH0239725B2
JPH0239725B2 JP12692881A JP12692881A JPH0239725B2 JP H0239725 B2 JPH0239725 B2 JP H0239725B2 JP 12692881 A JP12692881 A JP 12692881A JP 12692881 A JP12692881 A JP 12692881A JP H0239725 B2 JPH0239725 B2 JP H0239725B2
Authority
JP
Japan
Prior art keywords
optical fiber
wavelength
light
channel
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12692881A
Other languages
Japanese (ja)
Other versions
JPS5827029A (en
Inventor
Jugoro Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP12692881A priority Critical patent/JPH0239725B2/en
Publication of JPS5827029A publication Critical patent/JPS5827029A/en
Publication of JPH0239725B2 publication Critical patent/JPH0239725B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/32Investigating bands of a spectrum in sequence by a single detector

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 この発明は生化学自動分析の分野などにおいて
検査項目を異にする多数の検体を同時分析する複
数チヤンネル分光光度測定装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-channel spectrophotometric measuring device for simultaneously analyzing a large number of specimens with different test items in the field of automatic biochemical analysis.

最近、臨床検査の重要性が増大し、検体の激増
から、省力化、多項目同時分析の要求が高まり、
種々の方法が開発されており、たとえば特開昭53
−122474号にて公開されている多チヤンネル二波
長分光光度計などは、かなり広く用いられてい
る。上記装置はX軸方向に配列された多数の試料
セル(このばあいフローセル)からの透過光を同
じX軸方向に長い1つのスリツトに焦点を結ばせ
たのち、これを回析格子などで分光し、その分光
された各セル透過光のスペクトル帯がY軸方向に
分散されたスペクトルとなるように配置した波長
分射光学系上に投光するとともに、上記単色光の
スペクトルの受光部を有し、この受光部はY軸方
向に配置される2個以上の検出素子からなる検出
部をもち、この各検出部は各スペクトル帯の出現
位置に対応してX軸方向に板状に配列されている
ものである。この構成によつて検体の検査項目に
て決まる参照波長と試料波長の選択組合せが容易
となり多数の検体の同時分析ができるのである
が、フローセルが照射光軸に直交して配置される
ため分析上必要な光路長を保つ関係からフローセ
ルの径を余り細くできず、さらにフローセルの位
置が上記光学系の一定位置に限定されているた
め、たとえば検体に試薬を分注し、反応させた試
料の容器から、フローセルへ順次導入する試料吸
引流路がある一定の長さから短かくできず、これ
らのキヤリオーバをなくすため余分の試料が要
り、結果として少量の試料では分析できないとい
う問題点がある。
Recently, the importance of clinical testing has increased, and due to the rapid increase in the number of specimens, the demand for labor-saving and simultaneous analysis of multiple items has increased.
Various methods have been developed, for example,
The multi-channel dual-wavelength spectrophotometer disclosed in No. -122474 is quite widely used. The above device focuses the transmitted light from a large number of sample cells (flow cells in this case) arranged in the X-axis direction onto a single long slit in the same X-axis direction, and then uses a diffraction grating to analyze the light. The light is projected onto a wavelength splitting optical system arranged so that the spectral band of the separated light transmitted through each cell becomes a spectrum dispersed in the Y-axis direction, and has a light receiving part for the spectrum of the monochromatic light. However, this light receiving section has a detection section consisting of two or more detection elements arranged in the Y-axis direction, and each detection section is arranged in a plate shape in the X-axis direction corresponding to the appearance position of each spectral band. It is something that This configuration makes it easy to select and combine the reference wavelength and sample wavelength, which are determined by the test item of the specimen, and allows simultaneous analysis of many specimens.However, since the flow cell is arranged perpendicular to the irradiation optical axis, it is In order to maintain the necessary optical path length, the diameter of the flow cell cannot be made too thin, and the position of the flow cell is limited to a certain position in the optical system, so for example, a container for a sample in which a reagent is dispensed and reacted with a sample is used. Therefore, the sample suction channel that sequentially introduces the sample into the flow cell cannot be shortened from a certain length, and extra samples are required to eliminate these carryovers, resulting in the problem that analysis cannot be performed with a small amount of sample.

この発明は以上の現況に鑑みてなされたもので
特開昭53−122474号など従来の多チヤンネル分光
計の問題点を解消するものである。すなわち従来
装置の波長分散光学系の単色光スペクトル結像面
に光フアイバーの入射端部を移動自在とすること
により任意の波長の光を取り出し、この光フアイ
バーによつて任意の場所たとえば反応した試料が
入れてある試料容器の真上に設けたフローセルの
位置まで上記光を伝導するという構成によつて、
まづ波長の選択が容易であり、つぎにフローセル
への光入射をたとえば試料流路方向とすることに
よつてフローセルを細く小形化でき、さらにフロ
ーセルへの試料導入流路を短かくでき、少量の試
料でも分析できる便宜な装置を提供するものであ
る。
This invention has been made in view of the above-mentioned current situation, and is intended to solve the problems of conventional multi-channel spectrometers such as those disclosed in Japanese Patent Application Laid-Open No. 53-122474. In other words, by making the input end of an optical fiber movable on the monochromatic light spectrum imaging plane of the wavelength dispersive optical system of the conventional device, light of any wavelength is extracted, and this optical fiber can be used to capture light at any location, such as a reacted sample. By transmitting the above light to the position of the flow cell installed directly above the sample container containing the
First, it is easy to select the wavelength, and secondly, by directing the light incident into the flow cell in the direction of the sample flow path, the flow cell can be made thinner and smaller.Furthermore, the flow path for introducing the sample into the flow cell can be shortened. This provides a convenient device that can analyze even the largest number of samples.

以下図面によつてこの発明の実施例を説明す
る。第1図はこの発明の実施例装置正面から見た
分散光学系SLの子午面図、第2図は装置上面か
ら見た同じく分散光学系SLの球欠面図である。
1は白色光光源、2は球面レンズ、3はシリンド
カルレンズ、4は入口スリツトであり、以上が光
源からの光を集光させる光学系である。4の入口
スリツトは第2図の光束の幅Wに対応する横長の
スリツトでもよいが、迷光防止のため図に示すよ
うに横方向(X軸方向とする)に一列に並んだ孔
状のスリツトとし、4Mがマスクを形成している
ものとする。5,7は球面鏡、6は回折格子また
はプリズムなどの分散素子、8は単色光のスペク
トル結像面に設けた光フアイバー固定板で磁性部
材で作られ複数の孔8Hが穿設されている。9は
光フアイバーの光入射端側を示し、その先端9i
にたとえばフエライトマグネツト10を付けてい
るので、容易に任易の位置に移動しうるものであ
る。第3図は上記光フアイバー固定板8の一例を
示す図でY軸方向にたとえば8列、X軸方向に9
列の孔8Hが設けられ、Y軸方向の各列は上記ス
リツト4のマスク4Mで区分され、X軸方向は出
現スペクトルの同一波長のものに対応している。
Y軸方向の8列はたとえば700nmから340nmの波
長のほぼ50μmごとに対応させている。このよう
な光フアイバー固定板8によつて優に20チヤンネ
ルの自動分析ができるものであるがY軸方向の8
列は更に数列増して、たとえば670、628、574、
415nm……などの中間波長を対応させるようにし
てもよい。第4図は光フアイバー9によつて伝導
された任意の単色光をフローセル11に入射し、
その透過光強度を検出する検出部の構成図であ
る。12は光フアイバー9の出射端部9oに設け
た一般にセルフオツクスレンズまたはロツドレン
ズと呼ばれるガラス素材にてなる集束型フアイバ
ーレンズであり、これを設けることにより出射光
の焦点距離や集束スポツト径を自在に設定できる
ものとなる。さらに第1図で示す光フアイバー9
の入射端部に上記レンズ12を設けることによつ
て光フアイバー9の外径dを細くすることがで
き、可撓性の向上し、装置を作り易くしうるもの
である。13は反応管で試料Sの反応完了の時点
でフローセル11の真下に図示しないコンベアで
運ばれ、試料Sをフローセル11に吸い上げられ
る。このように吸引チユーブ14がきわめて短か
くできるので、チユーブ内壁の洗浄がごく僅かの
試料で十分に行われ、これが分析に必要な試料量
が少量でもよいという特徴となるのである。フロ
ーセル11は図のように光軸方向に長さを有する
形状とするので光路長を約10mmで直径1.5〜2mm
の小径のものが使用できる。15はたとえばホト
ダイオードなどの光検出素子で上記フローセル1
1内の試料透過光の光強度を検出する。一波長・
二波長または多波長シングルビーム測光のばあい
は検出素子は15だけでよいが、ダブルビーム測
光法とするときは光フアイバー出射端部9oとフ
ローセル間にハーフミラー16を設け、出射光の
1/2を今1つの光検出素子17にてその強度を検
出する。この構成によつて光フアイバー9の透光
特性の変化を補正し、測定精度を高めることがで
きる。上記ハーフミラーは単なるガラスでもよ
い。第5図は上記した二波長以上の多波長測光の
ばあい、波長の異なる複数の単色光Lλ1,Lλ2
3……を第3図で示した光フアイバー固定板8
上から取出したのち、これを択一的に試料の入射
する波長選択器部を示す図である。今Lλ1,Lλ2
3……のそれぞれ波長の異なる単色光を光フア
イバー9A,9B,9Cによつて前述の光学系か
らセクター18の前面に伝導する。セクター18
は図示しない機構によつて回転または往復動運動
をして上記3波長のいづれか1つの波長の光(図
はLλ1のばあいを示す)だけをその孔18Hを通
じ集光レンズ19を介して1本の光フアイバー9
Dの入射端部に投光する。光フアイバー9Dの出
射端部以降の構成は第4図と同じである。出射端
部のセルフオツクスレンズ12は設けないばあい
もある。このようにして次々にLλ2,Lλ3をフロ
ーセル11に入射させ、その透過光強度を検出す
ることによつて任意の波長の組合せによる多波長
測光ができるものとなる。第5図の構成はフロー
セル1個に対応するものであり、装置としてたと
えば第3図のようにY軸方向の波長の異なる列の
数だけ設ければその数のフローセルの検体情報が
同時に得られる。この多波長測光法は溶血、混
濁、高ビリルビンなどの検体情報を得るに適する
ものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a meridional view of a dispersive optical system SL seen from the front of an apparatus according to an embodiment of the present invention, and FIG. 2 is a spherical cutaway view of the same dispersive optical system SL seen from the top of the apparatus.
1 is a white light source, 2 is a spherical lens, 3 is a cylindrical lens, 4 is an entrance slit, and the above is an optical system for condensing light from the light source. The entrance slit No. 4 may be a horizontally long slit corresponding to the width W of the luminous flux in Fig. 2, but in order to prevent stray light, it may be a hole-shaped slit arranged in a line in the horizontal direction (X-axis direction) as shown in the figure. It is assumed that 4M forms a mask. 5 and 7 are spherical mirrors, 6 is a dispersion element such as a diffraction grating or prism, and 8 is an optical fiber fixing plate provided on the monochromatic light spectrum imaging plane, which is made of a magnetic material and has a plurality of holes 8H. 9 indicates the light incident end side of the optical fiber, and its tip 9i
For example, since a ferrite magnet 10 is attached to it, it can be easily moved to any desired position. FIG. 3 shows an example of the optical fiber fixing plate 8, with eight rows in the Y-axis direction and nine rows in the X-axis direction.
Rows of holes 8H are provided, each row in the Y-axis direction is divided by the mask 4M of the slit 4, and the X-axis direction corresponds to the same wavelength of the appearing spectrum.
The eight rows in the Y-axis direction correspond to approximately every 50 μm of wavelengths from 700 nm to 340 nm, for example. By using such an optical fiber fixing plate 8, automatic analysis of easily 20 channels can be performed.
Add several more columns, for example 670, 628, 574, etc.
An intermediate wavelength such as 415 nm may also be used. FIG. 4 shows that arbitrary monochromatic light transmitted by the optical fiber 9 is incident on the flow cell 11,
It is a block diagram of the detection part which detects the transmitted light intensity. Reference numeral 12 denotes a converging fiber lens made of a glass material, generally called a self-ox lens or rod lens, provided at the output end 9o of the optical fiber 9, and by providing this, the focal length of the output light and the diameter of the converging spot can be freely adjusted. It can be set to Furthermore, the optical fiber 9 shown in FIG.
By providing the lens 12 at the input end of the optical fiber 9, the outer diameter d of the optical fiber 9 can be reduced, flexibility can be improved, and the device can be manufactured easily. A reaction tube 13 is conveyed by a conveyor (not shown) directly below the flow cell 11 when the reaction of the sample S is completed, and the sample S is sucked up into the flow cell 11. Since the suction tube 14 can be made extremely short in this way, the inner wall of the tube can be sufficiently cleaned with a very small amount of sample, and this is a characteristic that only a small amount of sample is required for analysis. The flow cell 11 has a shape with a length in the optical axis direction as shown in the figure, so the optical path length is approximately 10 mm and the diameter is 1.5 to 2 mm.
Small diameter ones can be used. Reference numeral 15 denotes a photodetecting element such as a photodiode, which is connected to the flow cell 1.
Detect the light intensity of the sample transmitted light within 1. One wavelength
In the case of dual-wavelength or multi-wavelength single-beam photometry, only 15 detection elements are required, but in the case of double-beam photometry, a half mirror 16 is provided between the optical fiber output end 9o and the flow cell, and a half mirror 16 is provided between the optical fiber output end 9o and the flow cell. 2 is detected by one photodetecting element 17. With this configuration, changes in the light transmission characteristics of the optical fiber 9 can be corrected and measurement accuracy can be improved. The above-mentioned half mirror may be simply glass. FIG. 5 shows a plurality of monochromatic lights Lλ 1 , Lλ 2 , and
3 ... is shown in Figure 3 as the optical fiber fixing plate 8.
FIG. 7 is a diagram showing a wavelength selector section into which a sample is alternatively incident after being taken out from above. Now Lλ 1 , Lλ 2 ,
The monochromatic lights Lλ 3 . sector 18
is rotated or reciprocated by a mechanism not shown, and only the light of one of the three wavelengths (the figure shows the case of Lλ 1 ) is transmitted through the hole 18H and through the condenser lens 19. book optical fiber 9
Light is projected onto the incident end of D. The configuration after the output end of the optical fiber 9D is the same as that shown in FIG. 4. The self-oxygen lens 12 at the output end may not be provided in some cases. In this way, by making Lλ 2 and Lλ 3 enter the flow cell 11 one after another and detecting the transmitted light intensity, multi-wavelength photometry can be performed using any combination of wavelengths. The configuration shown in Figure 5 corresponds to one flow cell, and if the device is provided with the same number of columns with different wavelengths in the Y-axis direction as shown in Figure 3, sample information for that number of flow cells can be obtained simultaneously. . This multi-wavelength photometry method is suitable for obtaining specimen information such as hemolysis, turbidity, and hyperbilirubin.

以上がこの発明の実施例であり、複数チヤンネ
ル分光光度測定装置の各要素を説明したものであ
るが、この発明は任意の波長による一波長分光装
置にも適用できることはいうまでもない。またこ
の発明は図示や説明に限定されるものではなく、
たとえば光フアイバー固定板も光フアイバー入射
端部の固定手段を工夫すれば透明板とすることが
可能であり、波長の選択が完全に自在となるなど
である。
The above is an embodiment of the present invention, and each element of a multi-channel spectrophotometry device has been explained, but it goes without saying that the present invention can also be applied to a single-wavelength spectrometer using any wavelength. Furthermore, this invention is not limited to the illustrations and explanations;
For example, the optical fiber fixing plate can be made into a transparent plate by devising a means for fixing the optical fiber entrance end, and the wavelength can be completely selected.

この発明は以上のように構成されているので従
来の一般の生化学分析装置ならびに特開昭53−
122474号などの多チヤンネル二波長分光光度計の
欠点や問題点を解消するものである。すなわち従
来の後分光方式を光フアイバーの利用によつて前
分光方式に改良することで波長分散光学系のスペ
クトル結像面と試料−セルとの相対位置関係を自
在とし、フローセルの小型化を可能し、さらに上
記フローセルへの試料導入流路を短縮し、少量の
試料にてもキヤリオーバのない測定が複数チヤン
ネルででき、しかも一波長から多波長までシング
ルまたはダブルビームを自在に使い分けできる便
宜な装置を提供しえたものである。
Since this invention is constructed as described above, it can be used in conjunction with conventional general biochemical analyzers as well as in Japanese Patent Application Laid-open No.
This eliminates the drawbacks and problems of multi-channel dual-wavelength spectrophotometers such as No. 122474. In other words, by improving the conventional rear spectroscopy method to a front spectroscopy method by using optical fibers, the relative positional relationship between the spectral imaging plane of the wavelength dispersion optical system and the sample and the cell can be adjusted freely, making it possible to downsize the flow cell. In addition, it is a convenient device that shortens the sample introduction channel to the flow cell, allows measurement with multiple channels without carryover even with a small amount of sample, and can freely use single or double beams from one wavelength to multiple wavelengths. We were able to provide the following.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例としてのマルチチヤ
ンネル分光光度測定装置の光学系の子午面図、第
2図は同じく上記光学系の球欠面図、第3図は単
色光スペクトル結像面の光フアイバー固定板の1
例図、第4図は上記装置の光フアイバー出射端
部、フローセルならびにダブルビーム測光の検出
素子の関係を示す図、第5図は上記装置を多波長
測光にするばあいの波長選択セクター部の構成図
である。 SL……波長分散光学系、1……白色光光源、
2,3……集光レンズ、4……入口スリツト(迷
光防止マスク付)、5,7……球面鏡、6……分
散素子、8……単色光スペクトル結像面(光フア
イバー固定板)、8H……光フアイバー固定板の
孔、9……光フアイバー、9i……光フアイバー
の入射端部、9o……光フアイバー射端部、11
……試料セル(フローセル)、12……セルフオ
ツクレンズ、14……ハーフミラー、15,17
……光検出器、18……波長選択器、S……試
料。
Fig. 1 is a meridional view of the optical system of a multi-channel spectrophotometer as an embodiment of the present invention, Fig. 2 is a spherical cutaway view of the optical system, and Fig. 3 is a monochromatic light spectrum imaging plane. Optical fiber fixing plate 1
An example diagram, FIG. 4 is a diagram showing the relationship between the optical fiber output end of the above device, the flow cell, and the detection element for double beam photometry, and FIG. 5 is the configuration of the wavelength selection sector section when the above device is used for multi-wavelength photometry. It is a diagram. SL...Wavelength dispersion optical system, 1...White light source,
2, 3... Condensing lens, 4... Entrance slit (with stray light prevention mask), 5, 7... Spherical mirror, 6... Dispersion element, 8... Monochromatic light spectrum imaging surface (optical fiber fixing plate), 8H... Hole of optical fiber fixing plate, 9... Optical fiber, 9i... Incoming end of optical fiber, 9o... Outgoing end of optical fiber, 11
... Sample cell (flow cell), 12 ... Self-cleaning lens, 14 ... Half mirror, 15, 17
...Photodetector, 18...Wavelength selector, S...Sample.

Claims (1)

【特許請求の範囲】 1 光源の白色光を1つの長いX方向スリツトを
介して分光し、この分光されたスペクトル帯が前
記スリツトと直交するY方向に分散された単色光
のスペクトルとなるように配置したX・Y2次元
波長分散照射光学面上に投光し、そのスペクトル
結像面のY方向波長選択位置ならびにX方向複数
分割位置に光フアイバーの入射端部を設け、選択
波長の単色光をX・Y面選択位置から取出すよう
にするとともに、前記光フアイバーの出射端部に
対向して試料セル・検出器を設け、前記単色光の
試料セル透過光強度を検出するようにしたことを
特徴とする複数チヤンネル分光光度測定装置。 2 波長分散照射光学面を複数の孔を備えた板と
し、これらの孔に光フアイバーの入射端部を装着
してなる特許請求の範囲第1項記載の複数チヤン
ネル分光光度測定装置。 3 光フアイバーの端部にセルフオツクスレンズ
を設けてなる特許請求の範囲第1項または第2項
記載の複数チヤンネル分光光度測定装置。 4 光フアイバーの出射端部と試料セルの中間に
ハーフミラーを設け、ダブルビーム測光を行うよ
うにしてなる特許請求の範囲第1項ないし第3項
のいずれかに記載の複数チヤンネル分光光度測定
装置。 5 波長の異なる複数本の光フアイバーの出射光
を択一的に一本の光フアイバーに入射する波長選
択器を設け、多波長測光を行うようにしてなる特
許請求の範囲第1ないし第4項のいずれかに記載
の複数チヤンネル分光光度測定装置。 6 波長分散光学系のスリツトに迷光防止のマス
クを付してなる第1項ないし第5項のいずれかに
記載の複数チヤンネル分光光度測定装置。
[Claims] 1. White light from a light source is separated through one long slit in the X direction, so that the separated spectral band becomes a spectrum of monochromatic light dispersed in the Y direction perpendicular to the slit. The light is projected onto the arranged X/Y two-dimensional wavelength dispersion irradiation optical surface, and the input end of the optical fiber is provided at the wavelength selection position in the Y direction and the multiple division positions in the X direction of the spectral imaging surface, and the monochromatic light of the selected wavelength is emitted. The monochromatic light is taken out from a selected position on the X and Y planes, and a sample cell/detector is provided opposite the output end of the optical fiber to detect the intensity of the monochromatic light transmitted through the sample cell. A multi-channel spectrophotometric measurement device. 2. A multi-channel spectrophotometry device according to claim 1, wherein the wavelength dispersion irradiation optical surface is a plate with a plurality of holes, and the incident end of an optical fiber is attached to these holes. 3. A multi-channel spectrophotometric measuring device according to claim 1 or 2, wherein a self-ox lens is provided at the end of an optical fiber. 4. A multi-channel spectrophotometry device according to any one of claims 1 to 3, which is configured to perform double beam photometry by providing a half mirror between the output end of the optical fiber and the sample cell. . 5. Claims 1 to 4 are provided with a wavelength selector that selectively inputs the emitted light from a plurality of optical fibers having different wavelengths into one optical fiber, thereby performing multi-wavelength photometry. The multi-channel spectrophotometer according to any one of the above. 6. The multi-channel spectrophotometry device according to any one of items 1 to 5, wherein a mask for preventing stray light is attached to the slit of the wavelength dispersion optical system.
JP12692881A 1981-08-12 1981-08-12 FUKUSUCHANNERUBUNKOKODOSOKUTEISOCHI Expired - Lifetime JPH0239725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12692881A JPH0239725B2 (en) 1981-08-12 1981-08-12 FUKUSUCHANNERUBUNKOKODOSOKUTEISOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12692881A JPH0239725B2 (en) 1981-08-12 1981-08-12 FUKUSUCHANNERUBUNKOKODOSOKUTEISOCHI

Publications (2)

Publication Number Publication Date
JPS5827029A JPS5827029A (en) 1983-02-17
JPH0239725B2 true JPH0239725B2 (en) 1990-09-06

Family

ID=14947360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12692881A Expired - Lifetime JPH0239725B2 (en) 1981-08-12 1981-08-12 FUKUSUCHANNERUBUNKOKODOSOKUTEISOCHI

Country Status (1)

Country Link
JP (1) JPH0239725B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58178645U (en) * 1982-05-24 1983-11-29 積水化学工業株式会社 irradiation spectrometer
JPS59178324A (en) * 1983-03-28 1984-10-09 Shimadzu Corp Multi-wavelength photometer
JPS6353378U (en) * 1986-09-19 1988-04-09
US8264680B2 (en) 1999-05-28 2012-09-11 Yokogawa Electric Corporation Biochip reader and electrophoresis system
JP5134862B2 (en) * 2007-05-16 2013-01-30 株式会社日立ハイテクノロジーズ Analysis equipment
NO20180965A1 (en) * 2018-07-10 2020-01-13 Norsk Elektro Optikk As Hyperspectral camera

Also Published As

Publication number Publication date
JPS5827029A (en) 1983-02-17

Similar Documents

Publication Publication Date Title
US6791676B1 (en) Spectrophotometric and nephelometric detection unit
US5515169A (en) Spectral wavelength discrimination system and method for using
EP1830174B1 (en) Multi-channel fluorescence sample analyzer
US5615008A (en) Optical waveguide integrated spectrometer
US7782454B2 (en) Universal multidetection system for microplates
JPS5970946A (en) Apparatus for measuring absorbance
EP1632762A2 (en) Optical detection apparatus for multi-channel multi-color measurement and multi-channel sample analyzer employing the same
US4636074A (en) Optics system for emission spectrometer
JPS628729B2 (en)
US20240142366A1 (en) Methods and systems for fast recompensation of flow cytometery data
US4566792A (en) Multi-channel spectrophotometric measuring device
US11041756B2 (en) Method and apparatus of filtering light using a spectrometer enhanced with additional spectral filters with optical analysis of fluorescence and scattered light from particles suspended in a liquid medium using confocal and non confocal illumination and imaging
JP2004522163A (en) Imaging and analysis parameters of micro-moving objects such as cells
US6208413B1 (en) Hadamard spectrometer
JPH0239725B2 (en) FUKUSUCHANNERUBUNKOKODOSOKUTEISOCHI
JPH0224535A (en) Particle analyzing apparatus
US20070127027A1 (en) Photometer having multiple light paths
IE53138B1 (en) Optical beam splitter
JPS61173141A (en) Particle analyzing instrument
US4468121A (en) Spectrophotometric analyzer having dual monochromators
US6414753B1 (en) Low stray light czerny-turner monochromator
JPS5973741A (en) Spectrophotometer
JPS6385414A (en) Multibeam photometry instrument
JPS61233326A (en) Multiwaveform simultaneous photometric photometer
JPH02115749A (en) Spectrophotometer