JPS63205546A - Automatic analysis instrument - Google Patents

Automatic analysis instrument

Info

Publication number
JPS63205546A
JPS63205546A JP62037672A JP3767287A JPS63205546A JP S63205546 A JPS63205546 A JP S63205546A JP 62037672 A JP62037672 A JP 62037672A JP 3767287 A JP3767287 A JP 3767287A JP S63205546 A JPS63205546 A JP S63205546A
Authority
JP
Japan
Prior art keywords
biochemical
reaction container
measurements
measurement
immunological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62037672A
Other languages
Japanese (ja)
Inventor
Takejiro Yokosuka
横須賀 武次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Tectron Instruments Corp
Original Assignee
Japan Tectron Instruments Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tectron Instruments Corp filed Critical Japan Tectron Instruments Corp
Priority to JP62037672A priority Critical patent/JPS63205546A/en
Publication of JPS63205546A publication Critical patent/JPS63205546A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/51Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/82Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a precipitate or turbidity

Abstract

PURPOSE:To permit fully automatic high-speed processing by making selective use of the biochemical measurement by a colorimetry and the immunological measurement by a light scattering nephelometry. CONSTITUTION:The photocurrent from a spectral system 50 on the same optical axis as the optical axis of an incident system 26 is inputted through a current- voltage converter 52 to a multiplexer 54 and the photocurrent from a photodetector 48 for measuring scattered light is inputted via current-voltage converter 70 to the multiplexer 54. Further, the photocurrent from a photodetector 40 is inputted via a current-voltage converter 72 to the multiplexer 54. After the processing to select multiple signals is executed by the multiplexer 54, the signals are inputted through a LOG converter 56 and an AD converter 58 to a CPU 60. A reaction vessel 12 for biochemistry and a reaction vessel for immunity which is not shown are moved to an optical measurement position by a reaction vessel moving means 50', by which the biochemical measurement and immunological measurement and carried out. Computation to compensate turbidity in the immunological measurement and the processing of the measurement data are thus automated to permit high-speed analysis.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は自動分析装置に関し、とくに、比色分析法によ
る生化学的測定などと光散乱比濁法による免疫学的測定
などとを選択して使用する自動分析装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an automatic analyzer that can be used for biochemical measurements using colorimetric analysis and immunological measurements using light scattering turbidimetry. related to automatic analyzers used in

[従来の技術] 従来、この種の自動分析装置は比色分析法による生化学
的測定などや光散乱比濁法による免疫学−的測定などが
出来るように構成されている。
[Prior Art] Conventionally, this type of automatic analyzer has been configured to be able to perform biochemical measurements using colorimetric analysis, immunological measurements using light scattering turbidimetry, and the like.

生化学的測定を行う場合には、生化学的測定のための反
応液を収納した生化学用反応容器に入射系により光源か
ら出た光を導き、′入射透過させることにより、微量物
質の濃度に比例した吸光が行われ、透過光は回折格子に
より分光されて多波長分光光学針などを使用して吸光度
の微小変化量を検出することにより、反応液の特定成分
の定量が行われる。
When performing biochemical measurements, the light emitted from the light source is guided through an input system into a biochemical reaction container containing a reaction solution for biochemical measurements, and the concentration of trace substances is determined by transmitting the light. The transmitted light is separated by a diffraction grating, and the specific component of the reaction solution is quantified by detecting minute changes in absorbance using a multi-wavelength spectroscopic optical needle or the like.

また、免疫学的測定を行う場合には、免疫学的測定のた
めの反応液を収納した免疫用反応容器に入射系により光
源から出た光を導き、一定強度の光を照射すると、前記
反応容器内にて懸濁状態を呈する抗原・抗体反応に伴う
免疫反応物粒子により散乱され、その散乱光を集束して
受光素子により検出し、光散乱強度と免疫反応物との比
例関係による反応液の濁度変化を検出することにより、
反応液の特定成分の定量が行われる。
In addition, when performing an immunological measurement, the light emitted from the light source is guided by an input system into an immunological reaction container containing a reaction solution for the immunological measurement, and when the light of a certain intensity is irradiated, the reaction The reaction liquid is scattered by the immune reactant particles accompanying the antigen/antibody reaction that are suspended in the container, and the scattered light is focused and detected by a light receiving element, and the reaction liquid is determined by the proportional relationship between the light scattering intensity and the immune reactant. By detecting changes in turbidity,
A specific component of the reaction solution is quantified.

抗原・抗体反応における免疫足口法としてはラテックス
凝集反応を利用した測定法などを適用しうる。また、散
乱光強度の測定と同時に透過光強度も測定して、両者の
比率を求めて、抗原・抗体反応本来の変化量以外の干渉
因子に対する補償を行うことがなされている。
As the immunological foot-and-mouth method for antigen-antibody reactions, measurement methods using latex agglutination reactions can be applied. In addition, the intensity of transmitted light is also measured at the same time as the intensity of scattered light is measured, and the ratio of the two is determined to compensate for interference factors other than the amount of change inherent in the antigen-antibody reaction.

(例えば、三谷勝男、臨床検査、 30.11.198
6゜臨時増刊:特公昭58−11575など参照)[発
明が解決しようとする問題点] しかしながら、上記従来の自動分析装置では、比色分析
法による生化学的測定などや光散乱比濁法による免疫学
的測定などにざいし、光学系1分光測定系、散乱光測定
などがそれぞれ異る専用機器による測定を必要とするの
みならず、これを同一の自動分析装置をもちいて測定出
来るようにするためには、装置全体を複雑化させ高価に
させてしまい、かつ、取扱いも簡易に行うことができな
いという問題があった。
(For example, Katsuo Mitani, Clinical Examination, 30.11.198
6゜Temporary Special Issue: Special Publication No. 58-11575, etc.) [Problems to be Solved by the Invention] However, the above-mentioned conventional automatic analyzers cannot perform biochemical measurements using colorimetric analysis or light scattering turbidimetry. For immunological measurements, etc., it is not only necessary to use different specialized equipment for optical system, spectroscopic measurement system, scattered light measurement, etc., but it is also possible to perform measurements using the same automatic analyzer. However, there are problems in that the entire device becomes complicated and expensive, and it is not easy to handle.

本発明は、この様な従来の問題を解決するものであり、
同一の自動分析装置をもちいて比色分析法による生化学
的測定などや光散乱比濁法による免疫学的測定などを選
択して使用出来るようになり、しかも迅速かつ簡易に測
定できて、全自動式による高速処理を行うことができる
優れた自動分析装置を提供することを目的とするもので
ある。
The present invention solves these conventional problems,
Using the same automatic analyzer, it is now possible to selectively use biochemical measurements using colorimetric analysis, immunological measurements using light scattering nephelometric analysis, etc., and it is quick and easy to use, making all measurements possible. The purpose of this invention is to provide an excellent automatic analyzer that can perform automatic high-speed processing.

[問題点を解決するための手段] 本発明は上記目的を達成するために、比色分析法による
生化学的測定と光散乱比濁法による免疫学的測定とを行
う自動分析装置において、生化学的測定のための反応液
を収納する生化学用反応容器と免疫学的測定のための反
応液を収納する免疫用反応容器とを選択して光学測定位
置に移動させるための反応容器移動手段と、前記光学測
定位置に位置された反応容器への入射光を導くための入
射系と、生化学用反応容器からの透過光を分光させて光
検出するための透過光検出手段と、前記入射系に接続し
た免疫用反応容器からの散乱光を検、 出するための散
乱光検出手段とを備え、生化学的測定と免疫学的測定と
を選択して行うようにしたものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides an automated analyzer that performs biochemical measurements using colorimetric analysis and immunological measurements using light scattering turbidimetry. Reaction container moving means for selecting and moving a biochemical reaction container that stores a reaction solution for chemical measurements and an immune reaction container that stores a reaction solution for immunological measurements to an optical measurement position. an incident system for guiding incident light to the reaction container located at the optical measurement position; a transmitted light detection means for separating and detecting the transmitted light from the biochemical reaction container; It is equipped with a scattered light detection means for detecting and outputting scattered light from an immunological reaction container connected to the system, and is configured to selectively perform biochemical measurements and immunological measurements.

[作 用] 本発明は上記のような構成により次のような作用を有す
る。すなわち、同一の自動分析装置をもちいて、比色測
定法による生化学的測定などや光散乱比濁法による免疫
学的測定などを選択して使用できるので、比較的簡易な
構成により装置を高価にすることなく、迅速な全自動式
による高速処理を行うことができ、かつ、取扱いも簡易
に行うことができるなど、実用上の効果は多大である。
[Function] The present invention has the following effects due to the above configuration. In other words, the same automatic analyzer can be used selectively for biochemical measurements using colorimetry, immunological measurements using light scattering turbidimetry, etc., so the equipment is relatively simple and expensive. It has great practical effects, such as being able to perform high-speed, fully automatic processing without having to do anything, and being easy to handle.

[実施例] 以下、本発明の実施例を図面について詳細に説明する。[Example] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1〜3図は本発明の一実施例の構成をしめすものであ
る。
1 to 3 show the structure of an embodiment of the present invention.

第1図において、(a)は比色分析法による生化学的測
定を行う自動分析装置の要部の具体的構造をしめし、(
b)は光散乱比濁法による免疫学的測定を行う自動分析
装置の要部の具体的構造をしめす。
In Figure 1, (a) shows the specific structure of the main parts of an automatic analyzer that performs biochemical measurements by colorimetric analysis;
b) shows the specific structure of the main parts of an automatic analyzer that performs immunological measurements using light scattering turbidimetry.

反応容器保持装置15には複数の生化学用反応容器12
および免疫用反応容器13を配列して保持しており、第
3図にしめす反応容器移動手段50によって所要の位置
に移送される。また、反応容器保持装置15の両側部に
は光路のための開口14.16がそれぞれ設けられてい
る。
The reaction container holding device 15 includes a plurality of biochemical reaction containers 12.
and immune reaction containers 13 are arranged and held, and are transferred to a desired position by reaction container moving means 50 shown in FIG. Furthermore, openings 14 and 16 for optical paths are provided on both sides of the reaction vessel holding device 15, respectively.

第1図(a)において、26は入射系をしめし、光源1
0.レンズ18.20によるコンデンサーレンズおよび
生化学用反応容器12などからなり、光源10からの入
射光は開口14を通過して生化学用反応容器12へ集中
するように導かれる。
In FIG. 1(a), 26 indicates the incident system, and the light source 1
0. It consists of a condenser lens with lenses 18 and 20, a biochemical reaction container 12, and the like, and incident light from the light source 10 is guided to pass through the aperture 14 and be concentrated into the biochemical reaction container 12.

このさい、生化学用反応容器12は反応容器移動手段5
0の作動によって光学測定位置17に位置せられている
At this time, the biochemical reaction container 12 is moved to the reaction container moving means 5.
0 is positioned at the optical measurement position 17.

レンズ22は生化学用反応容器12の透過光側に設けら
れ、入射スリン1−24.凹面回折格子30ならびに複
数の出射スリット32がローランド円28上に設けられ
ている。ざらに、出射スリット32の裏面には光検出器
34が設けられ、かくして透過光を分光させて光検出す
るための透過光検出手段が構成されている。
The lens 22 is provided on the transmitted light side of the biochemical reaction container 12, and the lens 22 is provided on the transmitted light side of the biochemical reaction container 12, and the lens 22 is provided on the transmitted light side of the biochemical reaction container 12, and the lens 22 is provided on the transmitted light side of the biochemical reaction container 12. A concave diffraction grating 30 and a plurality of exit slits 32 are provided on the Rowland circle 28 . Generally speaking, a photodetector 34 is provided on the back surface of the output slit 32, and thus constitutes a transmitted light detection means for separating the transmitted light and detecting the light.

生化学用反応容器12内に収納された生化学的測定のた
めの反応液層を透過した透過光はレンズ22を通過して
入射スリット24に入り、凹面回折格子30によって分
光され、その回折光は出射スリット32から光検出器3
4により任意の位置における光検出器34からそれぞれ
の単色光の光量に応じた光電流の発生がみられ、導線3
6により信号を選び出すことができて多波長分光光度計
として使用され、例えば15波長の測定に使用すること
ができる。
The transmitted light that has passed through the reaction liquid layer for biochemical measurements housed in the biochemical reaction container 12 passes through the lens 22 and enters the entrance slit 24, where it is separated into spectra by the concave diffraction grating 30, and the diffracted light is is from the output slit 32 to the photodetector 3
4, the generation of photocurrent according to the amount of each monochromatic light is observed from the photodetector 34 at an arbitrary position, and the conductor 3
6, signals can be selected and used as a multi-wavelength spectrophotometer, for example, it can be used to measure 15 wavelengths.

第1図(b)において、第1図(a)と同一の符号にて
しめされた入射系26については、前記と同一の構成を
利用するものであり、重複して説明することを省略する
In FIG. 1(b), the incidence system 26 designated by the same reference numeral as in FIG. 1(a) uses the same configuration as above, and a redundant explanation will be omitted. .

このざい、免疫用反応容器13は反応容器移動手段50
の作動によって光学測定位置17に位置せられている。
In this case, the immunization reaction container 13 is moved to the reaction container moving means 50.
is positioned at the optical measurement position 17 by the actuation of.

前記の位置移動は測定項目に対応して選択して行われる
The above-mentioned positional movement is selectively performed in accordance with the measurement item.

レンズ46は免疫用反応容器13の散乱光側に設けられ
、ざらに光路上に光検出器48が設けられて散乱光を検
出するための散乱光検出手段が構成されている。
The lens 46 is provided on the scattered light side of the immune reaction container 13, and a photodetector 48 is provided roughly on the optical path to constitute a scattered light detection means for detecting the scattered light.

免疫用反応容器13内に収納された免疫学的測定のため
の反応液に入射系26からの一定強度の光を入射照射す
ると、免疫用反応容器13内にて懸濁状態を呈する抗原
・抗体反応に伴う免疫反応物粒子により散乱され、その
散乱光は開口16.レンズ46を通過して集束されて光
検出器48により濁度変化に伴う散乱光強度に応じた光
電流の発生が見られる。
When a reaction solution for immunological measurement stored in the immunization reaction container 13 is irradiated with light of a constant intensity from the input system 26, antigens and antibodies are suspended in the immunization reaction container 13. The scattered light is scattered by the immunoreactant particles accompanying the reaction, and the scattered light is transmitted through the aperture 16. The light passes through a lens 46 and is focused, and a photodetector 48 detects the generation of a photocurrent corresponding to the intensity of scattered light accompanying a change in turbidity.

また、第1図(a)にしめすごとく、ローランド円28
上には出側スリット38ならびに光検出器40が前記と
別に設けられ、免疫用反応容器13内に収納された免疫
学的測定のための反応液層からの透過光もレンズ22を
通過して入射スリット24に入り、凹面回折格子30に
よって分光され、その回折光は出射スリット38から光
検出器40により光電流が発生する。かくして前記の散
乱光強度の測定と同時に透過光強度も測定して、両者の
比率を求めて、抗原・抗体反応本来の変化量以外の溶血
などによる干渉因子に対する補償を行うことができる。
In addition, as shown in Figure 1 (a), the Roland circle 28
An exit slit 38 and a photodetector 40 are separately provided above, and the transmitted light from the reaction liquid layer for immunological measurement stored in the immune reaction container 13 also passes through the lens 22. The diffracted light enters the input slit 24 and is separated by the concave diffraction grating 30, and the diffracted light passes through the output slit 38 and generates a photocurrent at the photodetector 40. Thus, it is possible to measure the transmitted light intensity at the same time as the above-mentioned scattered light intensity measurement and find the ratio between the two, thereby making it possible to compensate for interference factors such as hemolysis other than the amount of change inherent in the antigen-antibody reaction.

第2図は第1図(a)、 (b)にしめした光学系の側
面図を表したものである。
FIG. 2 shows a side view of the optical system shown in FIGS. 1(a) and 1(b).

第2図において、入射系26は光学測定位置17ならび
に凹面回折格子30と同一光軸となるように配列されて
いることがしめされており、また、入射系26に接続し
た免疫用反応容器13からの散乱光を測定するための光
軸は前記光軸と所要の角度となるように配列することに
より充分な散乱光強度を測定することが出来るようにさ
れている。
In FIG. 2, it is shown that the input system 26 is arranged on the same optical axis as the optical measurement position 17 and the concave diffraction grating 30, and the immune reaction vessel 13 connected to the input system 26 is shown. By arranging the optical axis for measuring the scattered light from the optical axis at a predetermined angle with the optical axis, it is possible to measure a sufficient scattered light intensity.

第3図は自動分析装置の自動測定の記録、データ処理な
らびに制御のための回路の基本構成をしめすものである
FIG. 3 shows the basic configuration of a circuit for automatic measurement recording, data processing, and control of the automatic analyzer.

入射系26と同一の光軸上にある多波長分光光度計から
なる分光系50からの光電流は電流・電圧変換器52に
より電圧に変換され、これを増幅してマルチプレクサ5
4により、多重信号の選択処理を行った後、LOG変換
器56に接続され、出力信号はA/D変換器58により
デジタル化されて、CP U 60に入力される。
A photocurrent from a spectroscopic system 50 consisting of a multi-wavelength spectrophotometer located on the same optical axis as the input system 26 is converted into a voltage by a current/voltage converter 52, which is amplified and sent to a multiplexer 5.
4 performs selection processing on the multiplexed signal, and then is connected to the LOG converter 56, and the output signal is digitized by the A/D converter 58 and input to the CPU 60.

CP tJ 60にはROM62.RAM64が付属さ
れ、プリンタ66、操作パネル68などの機器が接続さ
れている。
CP tJ 60 has ROM62. A RAM 64 is attached, and devices such as a printer 66 and an operation panel 68 are connected.

また、散乱光を測定するための光検出器48からの光電
流は電流・電圧変換器70により電圧に変換され、これ
を増幅してマルチプレクサ54に接続される。
Further, the photocurrent from the photodetector 48 for measuring scattered light is converted into a voltage by a current/voltage converter 70, amplified, and connected to the multiplexer 54.

ざらに、分光系50の光検出器40からの光電流は電流
・電圧変換器72により電圧に変換されこれを増幅して
マルチプレクサ54に接続される。
Roughly speaking, the photocurrent from the photodetector 40 of the spectroscopic system 50 is converted into a voltage by the current/voltage converter 72, amplified, and connected to the multiplexer 54.

かくして、CP U 60をもちいて、生化学用反応容
器12ならびに免疫用反応容器13とを選択して光学測
定位置に移動させ、比色分析法による生化学的測定と光
散乱比濁法による免疫学的測定法とを行って、測定項目
に対応した反応液の特定成分の定量をなし、免疫学的測
定における濁度の補償演算などをはじめとする自動計算
などがプログラムのもとて高速にて行われ、ざらに、自
動測定の記録等のデータ処理を行なう事ができる。
Thus, using the CPU 60, the biochemical reaction container 12 and the immunological reaction container 13 are selected and moved to the optical measurement position, and biochemical measurement by colorimetric analysis and immunological measurement by light scattering turbidimetry are performed. The program performs automatic calculations such as turbidity compensation calculations in immunological measurements at high speed. It is possible to roughly perform data processing such as recording automatic measurements.

このように、上記実施例によれば、入射系を共用した同
一の自動分析装置をもちいて比色測定法による生化学的
測定などや光散乱比濁法による免疫学的測定などを選択
して使用できるので、比較的簡易な構成により装置を高
価にすることなく迅速な全自動式による高速処理を行う
ことができ、かつ、取扱いも簡易に行うことができるな
ど実用上の効果は多大である。
In this way, according to the above embodiment, biochemical measurements using colorimetry, immunological measurements using light scattering turbidimetry, etc. can be selected using the same automatic analyzer that shares the input system. Because it can be used, it has a relatively simple configuration and can perform fully automatic high-speed processing without making the equipment expensive, and it has great practical effects, such as being easy to handle. .

[発明の効果] 本発明は上記実施例より明らかなように、入射系を共用
した同一の自動分析装置をもちいて生化学的測定などや
免疫学的測定などを選択して使用できるようにしたもの
であり、比較的簡易な構成により装置を小型化できて高
価にすることなく迅速な全自動式による高速処理を行う
ことができ、かつ、取扱いも簡易に行うことができるな
ど実用上の効果は多大である。
[Effects of the Invention] As is clear from the above embodiments, the present invention makes it possible to selectively use biochemical measurements, immunological measurements, etc. using the same automatic analyzer that shares the input system. It has practical effects such as being able to miniaturize the device due to its relatively simple configuration, allowing for quick, fully automatic high-speed processing without increasing costs, and being easy to handle. is huge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る自動分析装置の光学系
をしめす平面図、第2図は同装置の光学系の側面図、第
3図は同装置の回路説明図である。 12・・・生化学用反応容器 13・・・免疫用反応容
器11・・・光学測定位置   26・・・入射系50
・・・反応容器移動手段 出 願 人  日本テクトロン株式会社第2図
FIG. 1 is a plan view showing the optical system of an automatic analyzer according to an embodiment of the present invention, FIG. 2 is a side view of the optical system of the same device, and FIG. 3 is a circuit diagram of the same device. 12... Reaction container for biochemistry 13... Reaction container for immunity 11... Optical measurement position 26... Incidence system 50
...Applicant for reaction container transportation means Nippon Techtron Co., Ltd. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 比色分析法による生化学的測定と光散乱比濁法による免
疫学的測定とを行う自動分析装置において、生化学的測
定のための反応液を収納する生化学用反応容器と免疫学
的測定のための反応液を収納する免疫用反応容器とを選
択して光学測定位置に移動させるための反応容器移動手
段と、前記光学測定位置に位置された反応容器への入射
光を導くための入射系と、生化学用反応容器からの透過
光を分光させて光検出するための透過光検出手段と、前
記入射系に接続した免疫用反応容器からの散乱光を検出
するための散乱光検出手段とを備え、生化学的測定と免
疫学的測定とを選択して行うことを特徴とする自動分析
装置。
In an automatic analyzer that performs biochemical measurements using colorimetric analysis and immunological measurements using light scattering turbidimetry, a biochemical reaction container that stores a reaction solution for biochemical measurements and an immunological measurement are used. a reaction container moving means for selecting and moving an immunization reaction container containing a reaction solution for the reaction to an optical measurement position; and an input device for guiding incident light to the reaction container located at the optical measurement position. system, a transmitted light detection means for separating and detecting the transmitted light from the biochemical reaction container, and a scattered light detection means for detecting the scattered light from the immune reaction container connected to the incident system. An automatic analyzer characterized in that it is equipped with the following and selectively performs biochemical measurements and immunological measurements.
JP62037672A 1987-02-20 1987-02-20 Automatic analysis instrument Pending JPS63205546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62037672A JPS63205546A (en) 1987-02-20 1987-02-20 Automatic analysis instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62037672A JPS63205546A (en) 1987-02-20 1987-02-20 Automatic analysis instrument

Publications (1)

Publication Number Publication Date
JPS63205546A true JPS63205546A (en) 1988-08-25

Family

ID=12504125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62037672A Pending JPS63205546A (en) 1987-02-20 1987-02-20 Automatic analysis instrument

Country Status (1)

Country Link
JP (1) JPS63205546A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009740A (en) * 1998-06-19 2000-01-14 Aloka Co Ltd Blood text device and dispensation device
EP2541233A1 (en) * 2010-02-25 2013-01-02 Hitachi High-Technologies Corporation Automatic analysis device
JP2013068442A (en) * 2011-09-21 2013-04-18 Hitachi High-Technologies Corp Automatic analyzer
WO2014013820A1 (en) * 2012-07-20 2014-01-23 株式会社日立ハイテクノロジーズ Automatic analysis device
JP2015007649A (en) * 2009-07-10 2015-01-15 株式会社日立ハイテクノロジーズ Autoanalyzer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009740A (en) * 1998-06-19 2000-01-14 Aloka Co Ltd Blood text device and dispensation device
JP2015007649A (en) * 2009-07-10 2015-01-15 株式会社日立ハイテクノロジーズ Autoanalyzer
EP2541233A1 (en) * 2010-02-25 2013-01-02 Hitachi High-Technologies Corporation Automatic analysis device
EP2541233A4 (en) * 2010-02-25 2014-05-21 Hitachi High Tech Corp Automatic analysis device
US8858882B2 (en) 2010-02-25 2014-10-14 Hitachi High-Technologies Corporation Automatic analysis device
JP2013068442A (en) * 2011-09-21 2013-04-18 Hitachi High-Technologies Corp Automatic analyzer
WO2014013820A1 (en) * 2012-07-20 2014-01-23 株式会社日立ハイテクノロジーズ Automatic analysis device
JP2014020999A (en) * 2012-07-20 2014-02-03 Hitachi High-Technologies Corp Automatic analyzer
CN104428653A (en) * 2012-07-20 2015-03-18 株式会社日立高新技术 Automatic analysis device
US9658237B2 (en) 2012-07-20 2017-05-23 Hitachi High-Technologies Corporation Automatic analyzer

Similar Documents

Publication Publication Date Title
US6188476B1 (en) Determination of light absorption pathlength in a vertical-beam photometer
US6995844B2 (en) Determination of light absorption pathlength in a vertical-beam photometer
US7151869B2 (en) Fiber-optic channel selecting apparatus
US7713751B2 (en) Method of optical detection of binding of a material component to a sensor substance due to a biological, chemical or physical interaction and apparatus for its embodiment (variants)
JP2879141B2 (en) Concentration measuring device and method
US4988630A (en) Multiple beam laser instrument for measuring agglutination reactions
JPH01145552A (en) Automatic apparatus for analysis
EP2466292B1 (en) System for performing scattering and absorbance assays
JPS638537A (en) Absorbance measuring apparatus for microplate
US4950077A (en) Photoelectric measuring apparatus for use in automatic analyzer
JPS6039533A (en) Spectrochemical analysis device with microplate
US4657398A (en) Simultaneous multiple wavelength photometer
JPS63205546A (en) Automatic analysis instrument
JPH1189799A (en) Concentration measuring device for specified ingredient
WO1982000356A1 (en) Analyzer
JPH11173982A (en) Method and apparatus for measuring concentration of protein in serum
JPS617426A (en) Photometer
RU2251668C2 (en) Spectrometer
JP2005049109A (en) Chemical analysis equipment
JP7094390B2 (en) A spectrophotometer, a spectrophotometer, and a method for manufacturing a spectrophotometer.
JP2006098228A (en) Spectrophotometer, biochemical analyzer and measuring method
JPS62273435A (en) Spectroscopic absorption analyzer
JPH01295134A (en) Automatic chemical analyzer
JPH0285745A (en) Automatic chemical analysis apparatus
JPS5973741A (en) Spectrophotometer