JP2006266868A - Absorption analyzer and absorption analysis method - Google Patents

Absorption analyzer and absorption analysis method Download PDF

Info

Publication number
JP2006266868A
JP2006266868A JP2005085304A JP2005085304A JP2006266868A JP 2006266868 A JP2006266868 A JP 2006266868A JP 2005085304 A JP2005085304 A JP 2005085304A JP 2005085304 A JP2005085304 A JP 2005085304A JP 2006266868 A JP2006266868 A JP 2006266868A
Authority
JP
Japan
Prior art keywords
light
filters
lights
optical path
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005085304A
Other languages
Japanese (ja)
Inventor
Hajime Sudo
肇 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005085304A priority Critical patent/JP2006266868A/en
Publication of JP2006266868A publication Critical patent/JP2006266868A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an absorption analyzer using a small quantity of a sample, reducing a workload and rapidly processing the sample. <P>SOLUTION: The absorption analyzer has a cell 1 for accommodating an analyzed fluid and transmitting a light through the fluid, a light source 2, an optical path 3 for guiding the light emitted from the light source 2 and transmitting the light through the cell 1, a branch optical path 5 for branching the light transmitted through the cell 1 into a plurality of the lights, a filter apparatus having various filters 6 arrayed and separately transmitting the lights passing through the branch optical path 5 over different wavelength ranges, and a plurality of photodetectors 7 for respectively detecting the lights transmitted through various filters 6. The filter apparatus includes a plurality of groups comprising various filters 6 corresponding to a plurality of the lights. The filters 6 for transmitting a plurality of lights can be selected in group. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はセル内の物質中に光を透過させてその透過光を検出することによってその物質を分析する吸光分析装置およびその吸光分析方法に関する。   The present invention relates to an absorption spectrometer that analyzes light by transmitting light into a substance in a cell and detecting the transmitted light, and an absorption analysis method thereof.

化学反応の測定手法の一つとして吸光分析によるものが知られている(たとえば特許文献1、2、3参照)。吸光分析においては一般に、セルと呼ばれる透明な容器内に分析対象流体を入れ、このセルの片側に配置された光源から光を当て、セル内の流体に光を通過させ、光源の反対側に配置された光検出器で計測する。これにより、測定対象が吸収した光の波長とその割合(吸光度)を評価し、その結果をライブラリーと比較することによって測定対象物を同定する。なお、セルの材料としては石英や一般的なガラスなどが用いられる。   One method for measuring chemical reaction is known as absorption spectroscopy (see, for example, Patent Documents 1, 2, and 3). In the spectrophotometric analysis, the fluid to be analyzed is generally placed in a transparent container called a cell, light is applied from a light source placed on one side of this cell, light is passed through the fluid in the cell, and placed on the opposite side of the light source. Measure with a light detector. Thus, the wavelength of light absorbed by the measurement object and its ratio (absorbance) are evaluated, and the measurement object is identified by comparing the result with the library. In addition, quartz, general glass, etc. are used as a material of a cell.

一般にこの測定系には、光源としてはハロゲンなどの波長帯域が広いランプが使用され、検出器としては回折格子などで周波数を空間的に分解し、必要な周波数成分の光軸方向に配設されたフォトダイオードアレイで当該光成分の強度を計測する、いわゆる分光器的な方法が用いられている。   In general, in this measurement system, a lamp having a wide wavelength band such as halogen is used as a light source, and a frequency is spatially resolved by a diffraction grating as a detector and arranged in the optical axis direction of a necessary frequency component. A so-called spectroscopic method of measuring the intensity of the light component with a photodiode array is used.

上記の系で使用されるセルは、通常、数ミリ角の底面を有し、ここに対象となる液体を数ミリ高さほど注入して計測が実施される。また、化学反応を効率的に行なうため、開口断面の代表寸法が数十μm〜1mm以下程度の微細流路を用いることがある。例えば特許文献1に示されているように、2種類の化学物質を混合するY字形状の流路が用いられる。この場合は流路(セル)が形成された基板を、上述した光源と検出器で挟み込むことによって光学的な測定を行なうことができる。
特開2002−221485号公報 特開2003−279537号公報 特表2004−530894号公報
The cell used in the above system usually has a bottom surface of several millimeters square, and the measurement is performed by injecting the target liquid into the height of several millimeters. In addition, in order to efficiently perform a chemical reaction, a fine channel having a representative dimension of an opening cross section of about several tens of μm to 1 mm or less may be used. For example, as shown in Patent Document 1, a Y-shaped channel that mixes two kinds of chemical substances is used. In this case, optical measurement can be performed by sandwiching the substrate on which the flow path (cell) is formed between the light source and the detector described above.
JP 2002-221485 A JP 2003-279537 A JP-T-2004-530894

たとえば血液の吸光分析による病気診断においては、患者から採取した血液に1種類または2種類の試薬を加えて化学反応を起こさせ、その化学反応の過程で2種類の波長の光の吸収を測定して分析するのが一般的である。ここで、測定対象となる光の波長は、検査項目(病気)の種類によって、それぞれ2種類が決められている。たとえば、(血清)総蛋白(濃度)を調べるためには、主波長として524nmの波長が用いられ、副波長として700nmの波長が用いられる。また、アスパラギン酸アミトランスフェラーゼを調べるためには主波長として234nmの波長が用いられ、副波長として380nmの波長が用いられる。   For example, in disease diagnosis by blood absorption analysis, one or two reagents are added to blood collected from a patient to cause a chemical reaction, and light absorption at two wavelengths is measured during the chemical reaction. Is generally analyzed. Here, two types of wavelengths of light to be measured are determined depending on the type of inspection item (disease). For example, in order to examine (serum) total protein (concentration), a wavelength of 524 nm is used as the main wavelength, and a wavelength of 700 nm is used as the sub wavelength. In order to examine aspartate amyltransferase, a wavelength of 234 nm is used as the main wavelength, and a wavelength of 380 nm is used as the sub wavelength.

血液の検査においては特に、個々に用いる血液は少量とし、多数の検査対象を少ない労力で迅速に処理することが求められるが、これまでそのような装置は知られていない。そこで、本発明は、少量の試料を用い、少ない労力で迅速に処理できる吸光分析装置または吸光分析方法を提供することを目的とする。   Particularly in the blood test, it is required to use a small amount of blood individually and to process a large number of test objects quickly with a small amount of labor, but no such device has been known so far. SUMMARY OF THE INVENTION An object of the present invention is to provide an absorption analysis apparatus or an absorption analysis method that uses a small amount of sample and can be quickly processed with little effort.

本発明は上記目的を達成するものであって、本発明に係る吸光分析装置は、光源と、前記光源から発した光が分析対象流体を収容するセルおよび前記分析対象流体を透過するようにその光を導く導入光路と、前記セルを透過した光を複数の光に分岐させる分岐光路と、前記分岐光路によって分岐された複数の光のそれぞれについて別個の波長領域で光が透過する複数種類のフィルタを配列したフィルタ装置と、前記複数種類のフィルタのうちの1種類ずつを透過した光をそれぞれ検出する複数の光検出部と、を有する。   The present invention achieves the above-described object, and the absorbance analyzer according to the present invention includes a light source, a cell containing the analysis target fluid, and a light containing the analysis target fluid so that light emitted from the light source passes through the analysis target fluid. An introduction optical path that guides light, a branch optical path that branches light that has passed through the cell into a plurality of lights, and a plurality of types of filters that transmit light in separate wavelength regions for each of the plurality of lights branched by the branch optical path And a plurality of light detection units that respectively detect light transmitted through each of the plurality of types of filters.

また、本発明に係る吸光分析方法は、光源から発した光が分析対象流体を収容するセルおよび前記分析対象流体を透過するようにその光を光路に沿って導くステップと、前記セルを透過した光を分岐光路で複数の光に分岐させるステップと、前記分岐光路を通った複数の光のそれぞれについて別個の波長領域で光が透過する複数種類のフィルタに透過させるステップと、前記複数種類のフィルタのうちの1種類ずつを透過した光をそれぞれの光検出器で検出するステップと、前記複数種類のフィルタを透過した光の検出結果に基づいて前記セル内の流体を分析するステップと、を有する。   In addition, the method for absorption spectrometry according to the present invention includes a cell that contains light to be analyzed by light emitted from a light source, a step of guiding the light along an optical path so as to pass through the fluid to be analyzed, and a light transmitted through the cell. Branching light into a plurality of lights through a branching optical path, passing through a plurality of types of filters that transmit light in separate wavelength regions for each of the plurality of lights passing through the branching optical path, and the plurality of types of filters Detecting each of the light transmitted through each of the light detectors, and analyzing the fluid in the cell based on the detection result of the light transmitted through the plurality of types of filters. .

本発明によれば、少量の試料を用い、少ない労力で迅速に吸光分析を行なうことができ、特に多種類の分析を順次迅速に処理することができる。   According to the present invention, a light absorption analysis can be performed quickly with a small amount of work using a small amount of sample, and in particular, various types of analysis can be sequentially processed quickly.

以下、本発明に係る吸光分析装置の実施形態を、図面を参照しながら説明する。   Hereinafter, an embodiment of an absorption spectrometer according to the present invention will be described with reference to the drawings.

図1は本発明に係る吸光分析装置の一実施形態の模式図である。測定対象としては、たとえば血液に1種類または2種類の試薬を注入して化学反応を起こしつつある液体(以下分析対象流体と呼ぶ)である。この装置ではセル1が多数(図1には6個を示す)並べられ、各セル1内に分析対象流体を収容する。セル1は、石英や一般ガラスなどの透明材料からなるのが望ましい。分析対象流体中を光が透過するように、セル1に透明な光学窓を設けることでもよい。光源2は、たとえばハロゲンなどの波長帯域が広いランプが好ましい。このランプは所定の周期でパルス光を発するものである。光源2から出た光は、導入光路である光ファイバ3の束(バンドル)を通して各セル1に導かれる。   FIG. 1 is a schematic view of an embodiment of an absorption spectrometer according to the present invention. The measurement target is, for example, a liquid (hereinafter referred to as an analysis target fluid) in which one or two types of reagents are injected into blood to cause a chemical reaction. In this apparatus, a large number of cells 1 (six cells are shown in FIG. 1) are arranged, and the analysis target fluid is accommodated in each cell 1. The cell 1 is preferably made of a transparent material such as quartz or general glass. A transparent optical window may be provided in the cell 1 so that light passes through the fluid to be analyzed. The light source 2 is preferably a lamp having a wide wavelength band such as halogen. This lamp emits pulsed light at a predetermined cycle. The light emitted from the light source 2 is guided to each cell 1 through a bundle of optical fibers 3 serving as an introduction optical path.

各セル1およびその内部の分析対象流体を透過した光は光ファイバ4を通してビームスプリッタ5(分岐光路)に導かれ、2分岐される。ビームスプリッタ5で分岐された光は光ファイバ30によってそれぞれ異なるフィルタ6に導かれてそのフィルタ6を透過し、さらに、光ファイバ7を通して光検出部8に導かれる。光検出部8は光信号を電気信号に変換するもので、たとえばNMOSセンサであって、多数の光検出部8を小さなスペースに並べることができる。光検出部8で得られた電気信号は、加算部9で、それぞれが所定時間にわたって加算される。これにより、光源2のパルス発光の変動が平均化される。   The light transmitted through each cell 1 and the fluid to be analyzed therein is guided to the beam splitter 5 (branching optical path) through the optical fiber 4 and branched into two. The light branched by the beam splitter 5 is guided to different filters 6 by optical fibers 30, passes through the filters 6, and further guided to the light detection unit 8 through the optical fiber 7. The light detection unit 8 converts an optical signal into an electrical signal, and is an NMOS sensor, for example, and can arrange a large number of light detection units 8 in a small space. The electrical signals obtained by the light detection unit 8 are added by the addition unit 9 over a predetermined time. Thereby, the fluctuation | variation of the pulse light emission of the light source 2 is averaged.

フィルタ6は、一つのセル1を透過した光が通る2個のフィルタが一組になっていて、図2に示すように、複数組が全体でフィルタ装置10に組み込まれている。すなわち、図2に示す例では、フィルタ装置10は光軸に平行な回転軸25の周りに回転できる円盤状の回転部12を有し、前記各組のフィルタ6がこの回転部12の半径方向に並べられ、これらのフィルタ6の組が周方向に間隔をあけて並べられている。図2の例では、8組のフィルタ6が並べられている。半径方向に2個ずつ並べられた各組のフィルタ6は異なる透過波長帯域を有し、各組はそれぞれ異なる波長帯域の組み合わせになっている。回転部12を適宜回転して検査項目に合った一組の波長に適合したフィルタ6の組を選択して光を透過させることができる。回転部12の外周に沿って、位置決め用のマーカ26が取り付けられている。   The filter 6 is a set of two filters through which light transmitted through one cell 1 passes, and a plurality of sets are incorporated in the filter device 10 as a whole as shown in FIG. That is, in the example shown in FIG. 2, the filter device 10 has a disk-like rotating part 12 that can rotate around a rotating shaft 25 parallel to the optical axis, and the filter 6 of each set is in the radial direction of the rotating part 12. These sets of filters 6 are arranged at intervals in the circumferential direction. In the example of FIG. 2, eight sets of filters 6 are arranged. Each set of filters 6 arranged two by two in the radial direction has different transmission wavelength bands, and each set has a combination of different wavelength bands. By rotating the rotating unit 12 as appropriate, a set of filters 6 suitable for a set of wavelengths suitable for the inspection item can be selected to transmit light. A positioning marker 26 is attached along the outer periphery of the rotating unit 12.

上述の構成により、1回の回転方向の動作で2個一組のフィルタ6の位置決めができるので短時間で設定ができる。   With the above-described configuration, a set of two filters 6 can be positioned by one operation in the rotational direction, so that the setting can be performed in a short time.

図3は図2と異なるフィルタ装置20の例を示す。この場合は2個一組のフィルタ6が横(図1では左右方向)に並んでおり、これらが縦方向(図1では紙面に垂直な方向)にフィルタの組の数(図では8組)だけ直線的に並んでいて、このフィルタ6の配列全体が長方形の移動枠27とともに縦方向に移動できるようになっている。これらのフィルタ6の各組が異なる透過波長帯域の組み合わせであることは、図2の例と同様である。これにより、2個一組のフィルタ6の位置決めが1回の動作でできるので短時間で設定できる。図3の例では特に、8組のフィルタ6の配列の全体の横幅を小さくできるので、多数のセル1を配列して多数の移動枠27を横方向に並べることにより、フィルタ装置20全体をコンパクトにすることができる。そして、それにより、吸光分析装置全体を小型化することができる。   FIG. 3 shows an example of a filter device 20 different from FIG. In this case, a set of two filters 6 are arranged horizontally (in the left-right direction in FIG. 1), and these are the number of filter sets in the vertical direction (the direction perpendicular to the paper surface in FIG. 1) (eight sets in the figure). The entire arrangement of the filters 6 can be moved in the vertical direction together with the rectangular moving frame 27. It is the same as the example of FIG. 2 that each set of these filters 6 is a combination of different transmission wavelength bands. As a result, the two filters 6 can be positioned in a single operation, and can be set in a short time. In particular, in the example of FIG. 3, the overall horizontal width of the array of eight sets of filters 6 can be reduced. Therefore, the entire filter device 20 can be made compact by arranging a large number of cells 1 and arranging a large number of moving frames 27 in the horizontal direction. Can be. And thereby, the whole absorption spectrometer can be reduced in size.

図4は、図1と異なるビームスプリッタを含む分岐光路の例を示す。図4の例では、ビームスプリッタ5にさらにもう一つのプリズム31を組み合わせることにより、分岐した後の光が互いに平行になるように構成されている。このため、ビームスプリッタ5を出た光は光ファイバを通さずに直接フィルタ6に導くこともできる。このような構成により、装置の小型化が可能である。   FIG. 4 shows an example of a branched optical path including a beam splitter different from that in FIG. In the example of FIG. 4, the beam splitter 5 is further combined with another prism 31 so that the branched light beams are parallel to each other. For this reason, the light emitted from the beam splitter 5 can be directly guided to the filter 6 without passing through the optical fiber. With such a configuration, the apparatus can be reduced in size.

以上、本発明の実施形態について説明したが、これらは単なる例示であって、本発明の範囲はこれらに限定されるものではない。たとえば、上記実施形態では一つのセルについて2個のフィルタを用いて2種類の波長の吸光を調べるものとしたが、一つのセルについて3個以上のフィルタを用いて3種類以上の波長の吸光を調べることも可能である。   As mentioned above, although embodiment of this invention was described, these are only illustrations, Comprising: The scope of the present invention is not limited to these. For example, in the above embodiment, the absorption of two types of wavelengths is examined using two filters for one cell, but the absorption of three or more types of wavelengths is used using three or more filters for one cell. It is also possible to investigate.

また、上記実施形態では、一組のフィルタが同一平面内に置かれて、これらの組が同一平面内に配列されるものとしたが、各フィルタの面が光軸に対してほぼ垂直であれば、同一組のフィルタが同一平面になくともよい。すなわち、ビームスプリッタで分岐した光の方向が平行でない場合に、その光の向きを変えて平行な光線にする代わりに、平行でない光の方向に合わせてフィルタの向きを設定することもできる。   In the above embodiment, a set of filters are placed in the same plane and these sets are arranged in the same plane. However, the surface of each filter may be substantially perpendicular to the optical axis. For example, the same set of filters may not be on the same plane. That is, when the direction of the light branched by the beam splitter is not parallel, the direction of the filter can be set in accordance with the direction of the non-parallel light instead of changing the direction of the light to make a parallel light beam.

また、加算部9に替えて、または加算部9に加えて、フィルタ6を透過した光をそれぞれの光検出部8で検出した結果の信号の差を演算するための差積算部を設けることもできる。   In addition to the addition unit 9 or in addition to the addition unit 9, a difference integration unit for calculating a difference between signals as a result of detecting the light transmitted through the filter 6 by the respective light detection units 8 may be provided. it can.

本発明に係る吸光分析装置の一実施形態の模式的構成図。1 is a schematic configuration diagram of an embodiment of an absorption spectrometer according to the present invention. FIG. 図1のフィルタ装置のA−A線矢視平面図。The AA arrow top view of the filter apparatus of FIG. 本発明に係る吸光分析装置のフィルタ装置の他の例を示す斜視図。The perspective view which shows the other example of the filter apparatus of the absorption spectrometer which concerns on this invention. 本発明に係るビームスプリッタの他の例を示す模式的断面図。The typical sectional view showing other examples of the beam splitter concerning the present invention.

符号の説明Explanation of symbols

1…セル、2…光源、3…光ファイバ、4…光ファイバ、5…ビームスプリッタ、6…フィルタ、7…光ファイバ、8…光検出部、9…加算部、10…フィルタ装置、12…回転部、20…フィルタ装置、25…回転軸、26…マーカ、30…光ファイバ、31…プリズム DESCRIPTION OF SYMBOLS 1 ... Cell, 2 ... Light source, 3 ... Optical fiber, 4 ... Optical fiber, 5 ... Beam splitter, 6 ... Filter, 7 ... Optical fiber, 8 ... Optical detection part, 9 ... Addition part, 10 ... Filter apparatus, 12 ... Rotating unit, 20 ... filter device, 25 ... rotating shaft, 26 ... marker, 30 ... optical fiber, 31 ... prism

Claims (11)

光源と、
前記光源から発した光が分析対象流体を収容するセルおよび前記分析対象流体を透過するようにその光を導く導入光路と、
前記セルを透過した光を複数の光に分岐させる分岐光路と、
前記分岐光路によって分岐された複数の光のそれぞれについて別個の波長領域で光が透過する複数種類のフィルタを配列したフィルタ装置と、
前記複数種類のフィルタのうちの1種類ずつを透過した光をそれぞれ検出する複数の光検出部と、
を有する吸光分析装置。
A light source;
A cell containing the fluid to be analyzed by the light emitted from the light source, and an introduction optical path for guiding the light so as to pass through the fluid to be analyzed;
A branching optical path for branching the light transmitted through the cell into a plurality of lights;
A filter device in which a plurality of types of filters that transmit light in separate wavelength regions for each of a plurality of lights branched by the branching optical path;
A plurality of light detection units that respectively detect light transmitted through one of the plurality of types of filters;
Absorbance analyzer.
前記フィルタ装置は、それぞれが前記複数の光に対応する複数種類のフィルタからなる組を複数組含み、前記複数の光が透過するフィルタの組を組ごとに選択可能に構成されていること、
を特徴とする請求項1に記載の吸光分析装置。
The filter device includes a plurality of sets each including a plurality of types of filters corresponding to the plurality of lights, and is configured to be able to select a set of filters through which the plurality of lights are transmitted for each set.
The absorption spectrometer according to claim 1.
前記分岐光路は分岐した光が互いにほぼ平行になるように前記フィルタ装置に導くものであることこと、を特徴とする請求項1または2に記載の吸光分析装置。   The absorption spectrometer according to claim 1 or 2, wherein the branched light path guides the branched light to the filter device so that the branched lights are substantially parallel to each other. 前記フィルタ装置は、前記複数の光に対応する複数種類のフィルタからなる各組を、それらのフィルタを通る光の方向と異なる第1の方向に並べ、これらのフィルタの組を前記第1の方向とは異なりしかもそれらのフィルタを通る光の方向とも異なる第2の方向に平面的に配列したフィルタ配列を有し、さらに、このフィルタ配列を、前記分岐光路で分岐された光に対して相対的に前記第2の方向に駆動して、前記複数の光が透過するフィルタの組として特定のフィルタの組を選択できるように構成されていること、を特徴とする請求項3に記載の吸光分析装置。   The filter device arranges each set of a plurality of types of filters corresponding to the plurality of lights in a first direction different from the direction of the light passing through the filters, and sets the sets of these filters in the first direction. And a filter array arranged in a plane in a second direction different from the direction of the light passing through the filters, and the filter array is relative to the light branched in the branch optical path. The spectrophotometric analysis according to claim 3, wherein the filter is configured to be driven in the second direction so that a specific filter set can be selected as a filter set through which the plurality of lights are transmitted. apparatus. 前記フィルタ装置は、前記フィルタ配列を回転させる回転部を有し、前記第1の方向は回転の径方向であり、前記第2の方向は回転の周方向であること、を特徴とする請求項4に記載の吸光分析装置。   The said filter apparatus has a rotation part which rotates the said filter arrangement | sequence, A said 1st direction is a radial direction of rotation, The said 2nd direction is a circumferential direction of rotation, The said rotation direction is characterized by the above-mentioned. 5. The absorbance analyzer according to 4. 前記フィルタ装置は、前記フィルタ配列を、前記フィルタを透過する光の方向と異なる方向に前記フィルタ配列を直線的に駆動する直線駆動部を有し、前記第1の方向は前記直線駆動部の駆動方向と異なる方向であり、前記第2の方向は前記直線駆動部の駆動方向であること、を特徴とする請求項4に記載の吸光分析装置。   The filter device includes a linear drive unit that linearly drives the filter array in a direction different from a direction of light that passes through the filter, and the first direction drives the linear drive unit. The absorbance analyzer according to claim 4, wherein the second analyzer is a direction different from a direction, and the second direction is a drive direction of the linear drive unit. 前記光源は所定周期でパルス光を発するものであり、
前記光検出部で検出された信号を所定時間にわたって加算する加算部を有すること、
を特徴とする請求項1ないし6のいずれかに記載の吸光分析装置。
The light source emits pulsed light at a predetermined period,
An adder that adds the signals detected by the light detector over a predetermined time;
The absorption spectrometer according to any one of claims 1 to 6.
前記導入光路は光ファイバを有すること、を特徴とする請求項1ないし7のいずれかに記載の吸光分析装置。   The absorption spectrometer according to claim 1, wherein the introduction optical path includes an optical fiber. 前記フィルタ装置は2種類のフィルタを有し、これらのフィルタを透過した光をそれぞれの前記光検出部で検出した結果の信号の差を演算する差演算部をさらに有すること、を特徴とする請求項1ないし8のいずれかに記載の吸光分析装置。   The filter device includes two types of filters, and further includes a difference calculation unit that calculates a difference between signals obtained by detecting the light transmitted through these filters by the respective light detection units. Item 10. The absorption spectrometer according to any one of Items 1 to 8. 前記光源1個に対して前記セルが複数個あって、それらの各セルごとに前記導入光路および分岐光路が設けられていること、を特徴とする請求項1ないし9のいずれかに記載の吸光分析装置。   The light absorption according to any one of claims 1 to 9, wherein a plurality of the cells are provided for one light source, and the introduction optical path and the branch optical path are provided for each of the cells. Analysis equipment. 光源から発した光が分析対象流体を収容するセルおよび前記分析対象流体を透過するようにその光を光路に沿って導くステップと、
前記セルを透過した光を分岐光路で複数の光に分岐させるステップと、
前記分岐光路を通った複数の光のそれぞれについて別個の波長領域で光が透過する複数種類のフィルタに透過させるステップと、
前記複数種類のフィルタのうちの1種類ずつを透過した光をそれぞれの光検出器で検出するステップと、
前記複数種類のフィルタを透過した光の検出結果に基づいて前記セル内の流体を分析するステップと、
を有する吸光分析方法。
Directing the light along the optical path so that light emitted from the light source passes through the cell containing the fluid to be analyzed and the fluid to be analyzed;
Branching light transmitted through the cell into a plurality of lights in a branching optical path;
Passing through a plurality of types of filters that transmit light in separate wavelength regions for each of the plurality of lights that have passed through the branched optical path;
Detecting light transmitted through one type of the plurality of types of filters with respective photodetectors;
Analyzing the fluid in the cell based on detection results of light transmitted through the plurality of types of filters;
Absorbance analysis method.
JP2005085304A 2005-03-24 2005-03-24 Absorption analyzer and absorption analysis method Pending JP2006266868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005085304A JP2006266868A (en) 2005-03-24 2005-03-24 Absorption analyzer and absorption analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005085304A JP2006266868A (en) 2005-03-24 2005-03-24 Absorption analyzer and absorption analysis method

Publications (1)

Publication Number Publication Date
JP2006266868A true JP2006266868A (en) 2006-10-05

Family

ID=37203004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005085304A Pending JP2006266868A (en) 2005-03-24 2005-03-24 Absorption analyzer and absorption analysis method

Country Status (1)

Country Link
JP (1) JP2006266868A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101172012B1 (en) * 2010-02-25 2012-08-08 심환보 Spectrophotometer apparatus using color filter array
KR102389031B1 (en) * 2021-09-17 2022-04-22 주식회사 자스텍 Automatic verification standard filter for multi-lane soot telemetry
WO2022086275A1 (en) * 2020-10-22 2022-04-28 주식회사 테크로스 Concentration measuring apparatus and method using absorption photometry

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101172012B1 (en) * 2010-02-25 2012-08-08 심환보 Spectrophotometer apparatus using color filter array
WO2022086275A1 (en) * 2020-10-22 2022-04-28 주식회사 테크로스 Concentration measuring apparatus and method using absorption photometry
KR102389031B1 (en) * 2021-09-17 2022-04-22 주식회사 자스텍 Automatic verification standard filter for multi-lane soot telemetry
WO2023042985A1 (en) * 2021-09-17 2023-03-23 주식회사 자스텍 Automatic verification standard filter for multi-lane soot remote measurement device

Similar Documents

Publication Publication Date Title
US11674882B2 (en) Scanning infrared measurement system
US7274455B2 (en) Optical detection apparatus for multi-channel multi-color measurement and multi-channel sample analyzer employing the same
JP4791625B2 (en) Spectrophotometric / turbidimetric detection unit
US7791728B2 (en) System for optically analyzing a substance with a selected single-wavelength
US7151869B2 (en) Fiber-optic channel selecting apparatus
US7576855B2 (en) Spectrophotometric method and apparatus
JP2010517043A (en) Chemical analyzers for industrial process control
JP3524419B2 (en) Absorbance measurement device
US11137290B2 (en) Accessory for infrared spectrophotometer
US7251032B2 (en) Optical monitoring system with molecular filters
JP2006266868A (en) Absorption analyzer and absorption analysis method
JP2003021594A (en) Specimen examination device
KR19990029895A (en) Concentration measuring device and measuring method of specific ingredient
US20070127027A1 (en) Photometer having multiple light paths
JP2000206037A (en) Spectroscopic analytical method
JPS61173141A (en) Particle analyzing instrument
JPS62273435A (en) Spectroscopic absorption analyzer
US20230375468A1 (en) Multi-monochromatic light source system for slope spectroscopy
JPH04270943A (en) Spectrum analyzer
CN212255059U (en) Spectrophotometry detection system with all-in-one light source
US20230296438A1 (en) Absorbance spectroscopy analyzer and method of use
JP2008058155A (en) Medical photometer
CN117916579A (en) Raman photometer for simultaneous multicomponent analysis; measurement system and computer program product
JPS58205839A (en) Spectrochemical analyzer
CN112014343A (en) Spectrophotometry detection system with all-in-one light source

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A02 Decision of refusal

Effective date: 20080318

Free format text: JAPANESE INTERMEDIATE CODE: A02