WO2023042985A1 - Automatic verification standard filter for multi-lane soot remote measurement device - Google Patents

Automatic verification standard filter for multi-lane soot remote measurement device Download PDF

Info

Publication number
WO2023042985A1
WO2023042985A1 PCT/KR2022/004927 KR2022004927W WO2023042985A1 WO 2023042985 A1 WO2023042985 A1 WO 2023042985A1 KR 2022004927 W KR2022004927 W KR 2022004927W WO 2023042985 A1 WO2023042985 A1 WO 2023042985A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
smoke
verification
standard filter
measurement
Prior art date
Application number
PCT/KR2022/004927
Other languages
French (fr)
Korean (ko)
Inventor
김계현
유한규
백완기
김지훈
이상록
이왕표
이기욱
임근태
장인태
정민준
Original Assignee
주식회사 자스텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 자스텍 filed Critical 주식회사 자스텍
Publication of WO2023042985A1 publication Critical patent/WO2023042985A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link

Definitions

  • the invention of the present application relates to an exhaust gas telemetry device for a vehicle in motion. More specifically, it relates to a technology for measuring soot generated from the rear of a running diesel vehicle using an optical method.
  • RSD Remote Sensing Device
  • the RSD equipment used in the United States is a light source (infrared, ultraviolet), detector (NDIR, UV spectrometer), reflective mirror module (CCM: Corner Cubic Mirror), speedometer (photoelectric tube type), CCD camera for license plate shooting, and data processing PC. etc., and the light source and detector are integrated (SDM: Source/Detector Module).
  • the invention of the present application is an apparatus for measuring exhaust fumes of a diesel vehicle operating on a road in an open-path manner.
  • road conditions are not constant and measurement results are changed due to climate change and fine dust, etc., soot in the exhaust gas of a vehicle in operation is incorrectly measured, it may cause inconvenience and damage to drivers and vehicle owners. Therefore, periodic inspection is essential.
  • the operating personnel takes the risk of having to cross the road to the light source on the other side of the road, and during the audit process, when manually operating the standard filter, fasten the standard filter for each optical path and check the correct fastening.
  • the testing process is very risky and inconvenient.
  • the invention of the present application is intended to automatically solve the above inspection or verification (Audit).
  • the transmitter transmits 520 nm smoke measurement light (visible light)
  • the receiver transmits the light transmitted from the transmitter through the exhaust of the moving vehicle, Verification of the smoke telemetry (Audit ) method
  • a light source generating light of 520 nm in the transmitter
  • a reflector for connecting an optical path of the light emitted from the light source to the 10 vertical transmitters
  • an automatic verification standard filter having at least one standard filter used for verification and a measurement hole at the rear end of the reflector;
  • the transmission reflector provides a method for verifying a smoke telemetry device, characterized in that reflection and transmission can be controlled by a control signal from a control unit.
  • T transmitted light (It) / incident light (Io)
  • Background noise (N) background measurement value (Ib); Receiver sensor value measured with the transmitter light source turned off and no measurement target present
  • the extinction coefficient e is a value that can be measured through experiments, and the distance L passing through the material is set to 100 mm in consideration of the diameter of the exhaust pipe of the car ⁇
  • a standard filter is used for the verification filter in the automatic verification standard filter, and the standard filter includes at least one standard filter among a standard filter with a concentration of 20%, a standard filter with a concentration of 40%, and a standard filter with a concentration of 60%.
  • a method for verifying a particulate matter telemetry device characterized in that it includes a filter that cuts off % and/or 40% and/or 60% of 520 nm light.
  • the automatic verification standard filter provides a verification method of a smoke telemetry device characterized in that it further includes a light blocking filter that blocks 100% of light in order to measure background noise measured by the surrounding environment.
  • the automatic verification standard filter is further provided with a position marker capable of confirming an initial position so that the position of the measurement hole can be accurately found.
  • the location marker can be indicated by a magnet, a small hole, or a color
  • the location sensor is a magnetic sensor or an optical sensor.
  • the automatic verification standard filter provides a verification method of a smoke telemetry device, characterized in that it is driven to enable accurate position control using a step motor, a server motor, and the like.
  • the transmitter transmits 520 nm smoke measurement light
  • the receiver passes through the exhaust gas of the moving vehicle, and the receiver transmits the light transmitted from the transmitter.
  • a light source generating light of 520 nm in the transmitter
  • a reflector for connecting an optical path of the light emitted from the light source to the 10 vertical transmitters
  • an automatic verification standard filter having a measuring hole and a light blocking filter at the rear end of the reflector
  • the transmission reflector controls reflection and transmission by a control signal from a controller
  • a method for verifying a smoke telemetry device characterized in that the background noise measured by the surrounding environment is measured using the light blocking filter.
  • T transmitted light (It) / incident light (Io)
  • Background noise (N) background measurement value (Ib); Receiver sensor value measured with the transmitter light source turned off and no measurement target present
  • the extinction coefficient e is a value that can be measured through experiments, and the distance L passing through the material is set to 100 mm in consideration of the diameter of the exhaust pipe of the car ⁇
  • a standard filter is used for the verification filter in the automatic verification standard filter, and the standard filter includes at least one standard filter among a standard filter with a concentration of 20%, a standard filter with a concentration of 40%, and a standard filter with a concentration of 60%.
  • a method for verifying a particulate matter telemetry device characterized in that it includes a filter that cuts off % and/or 40% and/or 60% of 520 nm light.
  • the automatic verification standard filter is further provided with a position marker capable of confirming an initial position so that the position of the measurement hole can be accurately found.
  • the location marker can be indicated by a magnet, a small hole, or a color
  • the location sensor is a magnetic sensor or an optical sensor.
  • the automatic verification standard filter provides a verification method of a smoke telemetry device, characterized in that it is driven to enable accurate position control using a step motor, a server motor, and the like.
  • the background noise measurement method measures 10 to 1000 signals measured for each of 10 channels provided in the receiver after blocking light from the transmitter, sets an average value as the background noise, and sets the background noise value as the background noise value.
  • a verification method of a smoke telemetry device characterized in that only the above signal is used as a measurement signal.
  • a sensor for temperature, humidity, wind direction and speed, and fine dust is further provided outside the lower end of the transmission unit, and the background noise measurement is added when one or more of the measured values such as temperature, humidity, wind speed, and fine dust exceeds a set value.
  • the exhaust gas telemetry is stopped and the exhaust gas telemetry is transmitted to a remote server.
  • a rain sensor is further provided at the top of the transmission unit to stop the telemetry of the exhaust gas when rain is detected by the rain sensor, and to transmit it to the remote server. provides a way
  • the present invention enables the remote monitoring of the exhaust gas telemetry at regular time intervals or according to the environment or when necessary, so that the operator does not need to visit for verification, and always checks the exhaust with the verified equipment. It has a measurable effect.
  • FIG. 4 is a schematic diagram of exhaust gas measurement of a running vehicle according to the present invention
  • 6 is a photo of some of the 10 transmitting units of the present application and a photo of applying a verification filter for verification
  • FIG. 7 is a photograph in which an automatic verification standard filter for automatic verification of the present application is installed between a light source and a transmitter
  • FIG. 10 is an installation diagram of a meteorological measurement sensor for measuring the measurement environment of the present application
  • the remote monitoring device is an effective device that can check whether the vehicle is in a state of excessive emission by measuring vehicle exhaust gas in real time.
  • Korea manages it through regular inspections, occasional inspections, and comprehensive inspections.
  • Comprehensive exhaust gas inspection of a vehicle in operation is a load test method (ASM2525) that inspects the exhaust gas emitted while the vehicle is operated in a certain driving mode (test cycle) on the chassis dynamometer.
  • ASM252525 load test method
  • IM240 which effectively reflects the actual driving condition of the vehicle, has been adopted for a long time in the emission test of vehicles in operation by this load test method.
  • the entire integrated system including the optical system must be developed, and the entire development items are as follows.
  • Measurement method Open path type exhaust gas measurement using optical method (using Green Laser)
  • Vehicle Number Recognition Development of Vehicle Number Recognizer using CCD camera and algorithm
  • Vehicle speed measurement Development of vehicle speed and acceleration measuring device using laser method or optical
  • Standard filter for verification or automatic verification standard filter standard filter for checking accuracy of telemetry
  • Smoke measurement logic check vehicle passing and calculate measurement time, develop smoke measurement value conversion program
  • the present invention intends to provide an open-path method smoke measurement device to which Green Laser is applied.
  • soot emitted from the vehicle in motion In order to measure the soot emitted from the vehicle in motion, it measures the soot by using an open-path method that directly measures the soot emitted from the vehicle into the atmosphere without inhaling a sample of the target gas to be measured on the road.
  • the concentration of the substance to be measured decreases as it diffuses to the outside and is affected by the outside, so the measurement accuracy is lower than that of the close-path method using a measurement sample cell, but it is effectively excessive in vehicles on the road. It is a method that can measure the exhausted soot.
  • FIG. 1 is an operation flowchart of a smoke telemetry device according to the present application.
  • the license plate shooting camera photographs the license plate of the vehicle to be measured and saves the image
  • VSP specific output
  • FIG. 2 shows the overall configuration of the smoke telemetry device of the present application.
  • the smoke telemetry device of the present application includes a transmitter and a receiver; and a vehicle recognition camera that recognizes the number of a vehicle in order to obtain vehicle information of a running vehicle, and an integrated control PC that reads and controls sensing values of the transmitter, receiver, camera, and speed sensor.
  • FIG. 3 shows a picture of smoke telemetry of the present application. Smoke is measured immediately after the vehicle passes through.
  • the soot telemetry device of the present application measures the amount of light emitted from the transmission unit passing through the exhaust gas sprayed to the rear of the vehicle and then being absorbed by the exhaust gas and remaining transmitted when the light source is received by the receiver unit.
  • This value is the absorbance calculated by Beer-Lambert's law, and the concentration of soot is measured using this value.
  • T transmitted light (It) / incident light (Io)
  • Background noise (N) background measurement value (Ib); Receiver sensor value measured with the transmitter light source turned off and no measurement target present
  • the extinction coefficient e is a value that can be measured through experiments, and the distance L passing through the material is set to 100mm in consideration of the diameter of the exhaust pipe of the car.
  • FIG. 5 illustrates states before, during, and after entering a vehicle of a beam measured by a receiving unit when measuring smoke according to an exemplary embodiment of the present application, and a time point of smoke measurement. It is normal that no measurement takes place before the vehicle enters.
  • the transmitting unit transmits light and senses the entry of the vehicle through the speed measuring device. As the vehicle enters, the receiver measures several signals. Depending on the shape of the vehicle, signals from the transmission unit may be measured through windows or radiated from 10 vertically arranged sensors, or signals may be measured when external light is reflected on the body of the vehicle.
  • the receiving unit measures the light intensity by passing only the 520 nm wavelength light transmitted by the transmitting unit through the band pass filter. When the vehicle passes through the transmission unit and the reception unit, the signal of the exhaust emitted to the rear of the vehicle is measured from that moment. This is explained by dividing it into the sections a, b, and c.
  • FIG. 6 is a photo of some of the 10 transmitters of the present application and a photo to which a verification filter for verification is applied.
  • accuracy of measurement is very important in the device for measuring the soot of a moving vehicle.
  • a vehicle emitting a lot of soot travels on the road and emits a lot of soot, causing a problem.
  • the sensitivity of the sensor is measured on a periodic basis to verify whether or not the measurement is accurate.
  • a standard measurement filter as shown in FIG. 6 should be provided and periodically verified by inserting it into each of the 10 channels.
  • three types of filters are used.
  • the measurement sensitivity may differ depending on the light intensity, and for this purpose, a filter capable of blocking 20%, 40%, or 60% light is provided and verified. Currently, 30 filter replacements are required to verify the measurement of 10 channels. The invention of this application seeks to solve this problem.
  • FIG. 7 is a photograph in which the automatic verification standard filter (filter link) for automatic verification of the present application is installed between a light source and a transmitter.
  • the light from the light source passes through the reflector and is transmitted to the 10-channel transmitter.
  • an automatic verification standard filter Frter Link
  • the verification method by inserting an external filter was improved. That is, a rotation filter that blocks 20%, 40%, 60%, and 100% light is provided, and the automatic verification standard filter (filter link) is rotated as necessary to verify the smoke telemetry.
  • the automatic verification standard filter may be coupled with a step motor capable of controlling and rotating the rotational position of the automatic verification standard filter or a servo motor equipped with an encoder, and a marker for detecting the position of the automatic verification standard filter is a magnet, It can be displayed as a hole or color, and a hall sensor (magnetic sensor), an optical sensor, or the like can be used as a means for detecting it.
  • a step motor capable of controlling and rotating the rotational position of the automatic verification standard filter or a servo motor equipped with an encoder
  • a marker for detecting the position of the automatic verification standard filter is a magnet, It can be displayed as a hole or color, and a hall sensor (magnetic sensor), an optical sensor, or the like can be used as a means for detecting it.
  • the verification method using the filtering filter is as follows.
  • the intensity Io of the light source is measured, and after applying the standard filter 20, which is the 20% standard filter, the light intensity is measured in the light receiver.
  • the standard filter 20 which is the 20% standard filter
  • 80% of the intensity Io of the light source should be measured.
  • the value measured by the light receiver is stored in the 20% calibration value of the corresponding channel.
  • the measurement values measured by applying the 40% and 60% reduction standard filters are registered as the calibration values of the corresponding channels, respectively.
  • FIG 8 is a configuration diagram of an automatic verification standard filter (filter link) of the present application. As described above, 20%, 40%, 60% and 100% light blocking filters are provided in the automatic verification standard filter. In order to transmit light without the light loss, a hole may be drilled in the automatic verification standard filter.
  • FIG. 9 shows a software screen for automatically verifying a particulate matter telemeter remotely after installing the automatic verification standard filter (Filter Link) of the present application.
  • the light blocking of the filter used for verification is selected, and the light intensity received for each channel is measured.
  • a standard filter is used to verify the measurement accuracy of the smoke telemetry device, but as a method, after installing the smoke telemetry device, an operator at the installation site inserts a standard filter of each concentration for each optical path, It uses a method to verify that the reading of the measured value is within the tolerance.
  • a standard filter is used to verify the measurement accuracy in the case of an optical transmission type smoke meter by sampling by a probe used in a general automobile inspection station.
  • the work time is increased because the inspector manually inserts a standard filter between the light source and the detector to check whether the light-transmitting smoke smoke meter reads the measured value within the tolerance. The reality is that the inspection efficiency is low.
  • Verification by the standard soot filter for such a light-transmitting soot meter is legalized to be carried out at least once a day in accordance with the domestic law, the regulation on the implementation guidelines for vehicle emission inspection, etc. (Ministry of Environment Notice No. 2019-255).
  • the present invention provides a means for measuring background noise using a filter that blocks 100% of the light.
  • Background noise is a signal measured in a measurement unit that is generated despite the absence of a measurement signal.
  • the light receiver is very sensitive to temperature, and when measured on a road, reflected light from the road or traffic lights reflected by fine dust in the air can be measured by the light receiver at all times, and all of these can be measurement noise.
  • fine dust in the air may also interfere with smoke measurement, and in the case of humidity, a lot of light scattering and light absorption may occur, so it is necessary to remove the effect of humidity. Therefore, the measurement error was reduced by measuring the environment around the measuring instrument.
  • a sensor for measuring temperature, humidity, fine dust, and wind speed may be further provided on the outer surface of the transmitter.
  • a rain sensor may be further provided at the installation location of the smoke telemetry device according to the present application to stop measurement when it rains.
  • the invention of the present application is a device for measuring soot in an open-pass method, and the optical path environment between the transmitter and the receiver is very important for measurement. The cleaner the better, but it can't always be clean. Therefore, in addition to periodic verification of the device, a technique for reducing errors by periodically measuring the change in light intensity due to the influence of background noise, fine dust and humidity with the meteorological sensor is required, and this application is applied in the present invention. there is.
  • the normal operation of the channel is confirmed and, if necessary, the integrated control program can be repaired.
  • ALARM is displayed to the operating personnel, and if there is a problem with the measurement result for each channel, the corresponding channel is not used for smoke measurement. In this way, when a specific channel cannot be measured, it is possible to predict whether the measured vehicle exceeds the permissible amount of smoke emission by predicting the measurement value of a channel adjacent to the corresponding channel from the existing measurement data result according to the vehicle type.
  • a camera capable of checking all the surfaces of the 10 channels of the transmitter may be additionally installed at the top of the transmitter.
  • a camera capable of checking all surfaces of the 10 channels of the receiver can be additionally installed on top of the receiver in order to check the contamination on the surface of the receiver.
  • the measurement of the smoke telemetry device may be stopped and the information may be notified remotely through the server.
  • an impact sensor may be further provided in the transmission unit and/or the reception unit to detect collision or damage to the smoke telemetry device by a pedestrian or a vehicle remotely.

Abstract

The invention of the present application relates to a device for measuring soot on a road in an open pass manner. However, in case that road conditions are not constant and the measurement results are changed due to climate change, fine dust, and the like to cause incorrect measurement of soot in an exhaust gas of a moving vehicle, drivers, vehicle owners, and the like may experience inconvenience and damage. Therefore, periodic inspection of such a soot measurement device is indispensable. However, when the device is installed at a remote place such as a suburb road, the device requires large manpower and high cost because an operator has to visit the site for inspection. To solve the problem, provided is a means including an automatic verification standard filter (filter-link) including at least one verification filter between vertical transmission/reception parts of a soot remote measurement device so as to remotely verify the measurement device. By the aforementioned means, the invention of the present application can allow the soot remote measurement device to be verified remotely at regular intervals or when necessary, according to the environment, so that an operator can always measure soot by using verified equipment without the need to visit the site for verification.

Description

[규칙 제26조에 의한 보정 22.04.2022] 다차선 매연 원격 측정기를 위한 자동 검증 표준필터[Correction 22.04.2022 by Rule 26]  Automatic verification standard filter for multi-lane smoke telemetry
본 출원 발명은 운행 중인 차량의 매연 원격 측정장치에 관한 것이다. 더욱 자세하게는 광학방식을 이용하여 운행 경유 자동차의 후미에서 발생하는 매연을 측정하는 기술에 관한 것이다.The invention of the present application relates to an exhaust gas telemetry device for a vehicle in motion. More specifically, it relates to a technology for measuring soot generated from the rear of a running diesel vehicle using an optical method.
본 출원 발명과 관련된 선행연구는 1980년에 미국 콜로라도 주 덴버대학(University of Denver)의 Donald Stedman 교수가 미국 환경부 (EPA : Environment Protection Agency)의 연구비로 CO 측정용 시제품을 개발한데서 시작되었다.Prior research related to the invention of the present application began in 1980 when Professor Donald Stedman of the University of Denver, Colorado, USA developed a prototype for measuring CO with research funds from the US Department of Environment (EPA).
초기에는 연구용 장비로 개발되었으나, 이후 ESP사와 공동연구를 통해 1991년 RSD(Remote Sensing Device) 장비를 상용화 하는데 성공하였다. RSD 장비는 초기에는 CO와 CO2만을 측정하도록 개발되었으나, 이후 지속적인 개발로 현재는 HC, NO, 매연(SF, Smoke Factor; 단위 연료당 생성되는 매연 입자수) 등의 측정기능이 추가되었다.It was initially developed as research equipment, but later succeeded in commercializing RSD (Remote Sensing Device) equipment in 1991 through joint research with ESP. RSD equipment was initially developed to measure only CO and CO2, but with continuous development, measurement functions such as HC, NO, and soot (SF, Smoke Factor; the number of soot particles generated per unit fuel) have been added.
RSD의 본격적인 활용을 위해 미국 환경부(USEPA)에서 규정한 RSD 관련 지침으로는 RSD를 이용한 과다배출차량선별에 관한 지침 “User Guide and Description For full-scale utilization of RSD, the RSD-related guidelines prescribed by the U.S. Department of Environment (USEPA) are “User Guide and Description on Selection of Excessive Emissions Vehicles Using RSD”
For Interim Remote Sensing Program Credit Utility”, 저농도배출차량선별에 관한 지침 “Program User Guide for Interim Vehicle Clean Screening Credit Utility”, 그리고 운행차 배출가스제도 평가에 관한 지침 “Guidance on Use of Remote Sensing for Evaluation of I/M Program Performance”이 있다.For Interim Remote Sensing Program Credit Utility”, Guidelines for Low Emissions Vehicle Selection “Program User Guide for Interim Vehicle Clean Screening Credit Utility”, and Guidelines for Evaluation of Vehicle Emissions System “Guidance on Use of Remote Sensing for Evaluation of I /M Program Performance”.
현재 RSD를 제도화하여 시행중인 주(州)는 콜로라도, 버지니아, 텍사스, 오하이오 총 4개주이며, 매사추세츠 주에서도 RSD를 활용하여 공공버스에 대한 과다배출선별 및 수리제도를 운영하고 있다. 이밖에도 캘리포니아, 켄사스, 네바다, 뉴욕, 로드아일랜드, 메릴랜드, 펜실베니아, 애리조나, 일리노이즈, 인디애나, 커넥티컷, 미시건주 등 여러 주에서 검사대상 차량군의 0.5%에 대한 배출가스 모니터링 등을 위해 RSD를 활용하고 있으며, 테네시 주에서도 RSD 제도 도입을 위한 시범사업을 진행 중이다(2011년 기준).Currently, four states that have institutionalized RSD and are implementing it are Colorado, Virginia, Texas, and Ohio, and Massachusetts also operates an excessive emission screening and repair system for public buses using RSD. In addition, several states, including California, Kansas, Nevada, New York, Rhode Island, Maryland, Pennsylvania, Arizona, Illinois, Indiana, Connecticut, and Michigan, use the RSD to monitor emissions of 0.5% of the vehicle fleet inspected. A pilot project for the introduction of the RSD system is also underway in Tennessee (as of 2011).
현재 미국에서 활용하고 있는 RSD 장비는 광원(적외선, 자외선), 검출기(NDIR, UV 분광계), 반사거울모듈(CCM : Corner Cubic Mirror), 속도계(광전관식), 번호판 촬영용 CCD 카메라, 데이터처리용 PC 등으로 구성되며, 광원과 검출기는 일체화되어 있다(SDM : Source/Detector Module).Currently, the RSD equipment used in the United States is a light source (infrared, ultraviolet), detector (NDIR, UV spectrometer), reflective mirror module (CCM: Corner Cubic Mirror), speedometer (photoelectric tube type), CCD camera for license plate shooting, and data processing PC. etc., and the light source and detector are integrated (SDM: Source/Detector Module).
본 출원 발명은 오픈패스방식으로 도로에서 운행하는 경유 자동차의 매연을 측정하는 장치이다. 그러나, 도로의 여건이 일정하지 않고 기후 변화와 미세먼지 등으로 측정 결과가 변화되어 운행 중인 차량의 배기가스 중에 매연을 잘못 측정할 경우 운전자와 차량 소유주 등에 불편과 피해를 끼칠 수 있다. 따라서, 주기적인 점검이 필수이나. 운영도중 검증(Audit)을 위해 운영요원이 도로 건너편 광원부까지 도로를 횡단하여야 하는 위험을 감수하는 문제점과 검증(Audit)과정에서 표준필터 수동 조작 시 각 광로별로 표준필터를 체결하고 정확한 체결을 확인하고 시험하는 과정이 매우 위험하고 불편한 문제가 있다.The invention of the present application is an apparatus for measuring exhaust fumes of a diesel vehicle operating on a road in an open-path manner. However, if road conditions are not constant and measurement results are changed due to climate change and fine dust, etc., soot in the exhaust gas of a vehicle in operation is incorrectly measured, it may cause inconvenience and damage to drivers and vehicle owners. Therefore, periodic inspection is essential. During operation, for audit, the operating personnel takes the risk of having to cross the road to the light source on the other side of the road, and during the audit process, when manually operating the standard filter, fasten the standard filter for each optical path and check the correct fastening. The testing process is very risky and inconvenient.
특히, 외곽도로 등에 고정식 무인운영용으로 설치된 경우 검증(Audit)을 위하여 운영요원이 방문해야하기 때문에 점검인력과 비용이 많이 드는 문제가 있어왔다.In particular, when it is installed for fixed unmanned operation on outer roads, etc., there has been a problem in that it requires a lot of inspection personnel and costs because an operating personnel must visit for audit.
본 출원 발명은 상기와 같은 점검 또는 검증(Audit)을 자동으로 해결하고자 하는 것이다.The invention of the present application is intended to automatically solve the above inspection or verification (Audit).
상기와 같은 문제를 해결하고자 하기의 과제해결 수단을 제공한다.In order to solve the above problems, the following problem solving means are provided.
10개의 수직형 송신부와 10개의 수직형 수신부를 구비하고, 상기 송신부에서는 520nm의 매연 측정용 광(가시광선)을 송신하고, 상기 수신부에서는 상기 송신부에서 송신된 광이 운행차량의 매연을 통과하며, 차량에서 배출된 매연의 양에 비례하여 흡수된 흡광을 측정하여, 상기 송신부에서 송신된 광량과의 비율을 하기의 식에 의하여 매연의 양을 측정하는 매연 원격측정기를 이용한 매연 원격측정기의 검증(Audit)방법에 있어서,10 vertical transmitters and 10 vertical receivers, the transmitter transmits 520 nm smoke measurement light (visible light), and the receiver transmits the light transmitted from the transmitter through the exhaust of the moving vehicle, Verification of the smoke telemetry (Audit ) method,
상기 송신부 내에는 520nm의 광을 발생하는 광원; 및A light source generating light of 520 nm in the transmitter; and
상기 광원에서 나온 광을 상기 10개의 수직형 송신부로 광경로를 연결하기 위한 반사경; 및a reflector for connecting an optical path of the light emitted from the light source to the 10 vertical transmitters; and
상기 반사경의 후단에 측정홀과 검증에 사용하는 표준필터를 1개 이상 구비한 자동 검증 표준필터; 및 an automatic verification standard filter having at least one standard filter used for verification and a measurement hole at the rear end of the reflector; and
상기 자동 검증 표준필터를 통과한 빛을 상기 10개의 송신부에서 각각 광을 송신할 수 있도록 광을 배분하는 10개의 송신반사경을 구비하고,10 transmission reflectors for distributing light so that the light passing through the automatic verification standard filter can be transmitted from the 10 transmission units, respectively;
상기 송신반사경은 제어부의 제어신호에 의하여 반사와 투과를 제어할 수 있는 것을 특징으로 하는 매연 원격측정기의 검증방법을 제공한다.The transmission reflector provides a method for verifying a smoke telemetry device, characterized in that reflection and transmission can be controlled by a control signal from a control unit.
{매연농도(%) = {Soot concentration (%) =
[log((투과한광(It) - 백그라운드측정값(Ib))/입사한광(Io))]/(eL) ...(식1)[log((transmitted light (It) - background measurement value (Ib))/incident light (Io))]/(eL) ... (Equation 1)
투과도(T) = 투과한 광(It)/입사한광(Io)Transmittance (T) = transmitted light (It) / incident light (Io)
흡광도(A) = log(1/T) = log(It/Io) = eCLAbsorbance (A) = log(1/T) = log(It/Io) = eCL
백그라운드노이즈(N) = 백그라운드측정값(Ib); 송신부 광원을 끄고 측정대상이 없는 상태에서 측정한 수신부 센서 값Background noise (N) = background measurement value (Ib); Receiver sensor value measured with the transmitter light source turned off and no measurement target present
(흡광계수 e, 물질농도 C, 빛이 물질을 통과한 거리 L)(extinction coefficient e, material concentration C, distance L through light)
여기서, 흡광계수 e는 실험을 통하여 측정할 수 있는 값이고, 물질을 통과한 거리 L은 자동차의 배기관의 직경을 고려하여 100mm로 설정하여 사용함}Here, the extinction coefficient e is a value that can be measured through experiments, and the distance L passing through the material is set to 100 mm in consideration of the diameter of the exhaust pipe of the car}
또한, 상기 자동 검증 표준필터에는 검증필터을 위하여 표준필터가 사용되며, 표준필터는 20% 농도의 표준필터, 40% 농도의 표준필터, 60% 농도의 표준필터 중 어느 하나 이상의 표준 필터를 구비하여 20% 및/ 또는 40% 및/ 또는 60% 의 520nm의 광을 차단하는 필터를 구비하는 것을 특징으로 하는 매연 원격측정기의 검증방법을 제공한다.In addition, a standard filter is used for the verification filter in the automatic verification standard filter, and the standard filter includes at least one standard filter among a standard filter with a concentration of 20%, a standard filter with a concentration of 40%, and a standard filter with a concentration of 60%. Provided is a method for verifying a particulate matter telemetry device, characterized in that it includes a filter that cuts off % and/or 40% and/or 60% of 520 nm light.
또한, 상기 자동 검증 표준필터에는 주변환경에 의하여 측정되는 백그라운드 노이즈를 측정하기위하여 100% 광을 차단하는 광차단필터를 더 구비하는 것을 특징으로 하는 매연 원격측정기의 검증방법을 제공한다.In addition, the automatic verification standard filter provides a verification method of a smoke telemetry device characterized in that it further includes a light blocking filter that blocks 100% of light in order to measure background noise measured by the surrounding environment.
또한 상기 매연 원격측정장치를 이용하여 매연 원격측정장치를 검증하는 동안에 차량이 상기 송신부와 수신부 사이를 통과하는 경우 이를 감지하여 차량이 지나간 후 20초 이상의 시간동안 검증을 중단하는 것을 특징으로 하는 매연 원격측정기의 검증방법을 제공한다.In addition, while verifying the smoke telemetry device using the smoke telemetry device, when a vehicle passes between the transmission unit and the reception unit, it is detected and the verification is stopped for 20 seconds or more after the vehicle passes. Provides a verification method for measuring instruments.
또한, 상기 자동 검증 표준필터에는 초기위치를 확인할 수 있는 위치마커를 더 구비하여 측정홀의 위치를 정확하게 찾을 수 있도록 하는 것을 특징으로 하는 매연 원격측정기의 검증방법을 제공한다.In addition, the automatic verification standard filter is further provided with a position marker capable of confirming an initial position so that the position of the measurement hole can be accurately found.
또한, 상기 위치마커는 자석, 작은구멍, 색으로 표시할 수 있으며, 위치감지센서는 자석센서 또는 광센서인 것을 특징으로 하는 매연 원격측정기의 검증방법을 제공한다.In addition, the location marker can be indicated by a magnet, a small hole, or a color, and the location sensor is a magnetic sensor or an optical sensor.
또한, 상기 자동 검증 표준필터는 스텝모터, 서버모터 등을 이용하여 정확한 위치제어가 가능하게 구동되는 것을 특징으로 하는 매연 원격측정기의 검증방법을 제공한다.In addition, the automatic verification standard filter provides a verification method of a smoke telemetry device, characterized in that it is driven to enable accurate position control using a step motor, a server motor, and the like.
또 다른 실시예로는In another embodiment
10개의 수직형 송신부와 10개의 수직형 수신부를 구비하고, 상기 송신부에서는 520nm의 매연 측정용 광을 송신하고, 상기 수신부에서는 상기 송신부에서 송신된 광이 운행차량의 배기가스를 통과하며, 상기 배기가스에 포함된 매연의 양에 비례하여 흡수된 흡광을 측정하여, 상기 송신부에서 송신된 광량과의 비율을 하기의 식에 의하여 매연의 양을 측정하는 매연가스 원격측정장치의 검증방법에 있어서,It has 10 vertical transmitters and 10 vertical receivers, the transmitter transmits 520 nm smoke measurement light, and the receiver passes through the exhaust gas of the moving vehicle, and the receiver transmits the light transmitted from the transmitter. In the method for verifying a smoke gas telemetry device for measuring the amount of smoke absorbed in proportion to the amount of smoke included in, and measuring the ratio of the amount of light transmitted from the transmission unit to the amount of smoke by the following equation,
상기 송신부 내에는 520nm의 광을 발생하는 광원; 및A light source generating light of 520 nm in the transmitter; and
상기 광원에서 나온 광을 상기 10개의 수직형 송신부로 광경로를 연결하기 위한 반사경; 및 a reflector for connecting an optical path of the light emitted from the light source to the 10 vertical transmitters; and
상기 반사경의 후단에 측정홀과 광차단필터를 구비한 자동 검증 표준필터; 및 an automatic verification standard filter having a measuring hole and a light blocking filter at the rear end of the reflector; and
상기 자동 검증 표준필터을 통과한 빛을 상기 10개의 송신부에서 각각 광을 송신할 수 있도록 광을 배분하는 10개의 송신반사경을 구비하고,10 transmission reflectors for distributing light so that the light passing through the automatic verification standard filter can be transmitted from the 10 transmission units, respectively;
상기 송신반사경은 제어부의 제어신호에 의하여 반사와 투과를 제어하며,The transmission reflector controls reflection and transmission by a control signal from a controller,
상기 광차단필터를 이용하여 주변환경에 의하여 측정되는 백그라운드 노이즈를 측정하는 것을 특징으로 하는 매연 원격측정기의 검증방법을 제공한다.Provided is a method for verifying a smoke telemetry device characterized in that the background noise measured by the surrounding environment is measured using the light blocking filter.
{매연농도(%) = {Soot concentration (%) =
[log((투과한광(It) - 백그라운드측정값(Ib))/입사한광(Io))]/(eL) ...(식1)[log((transmitted light (It) - background measurement value (Ib))/incident light (Io))]/(eL) ... (Equation 1)
투과도(T) = 투과한 광(It)/입사한광(Io)Transmittance (T) = transmitted light (It) / incident light (Io)
흡광도(A) = log(1/T) = log(It/Io) = eCLAbsorbance (A) = log(1/T) = log(It/Io) = eCL
백그라운드노이즈(N) = 백그라운드측정값(Ib); 송신부 광원을 끄고 측정대상이 없는 상태에서 측정한 수신부 센서 값Background noise (N) = background measurement value (Ib); Receiver sensor value measured with the transmitter light source turned off and no measurement target present
(흡광계수 e, 물질농도 C, 빛이 물질을 통과한 거리 L)(extinction coefficient e, material concentration C, distance L through light)
여기서, 흡광계수 e는 실험을 통하여 측정할 수 있는 값이고, 물질을 통과한 거리 L은 자동차의 배기관의 직경을 고려하여 100mm로 설정하여 사용함}Here, the extinction coefficient e is a value that can be measured through experiments, and the distance L passing through the material is set to 100 mm in consideration of the diameter of the exhaust pipe of the car}
또한, 상기 자동 검증 표준필터에는 검증필터을 위하여 표준필터가 사용되며, 표준필터는 20% 농도의 표준필터, 40% 농도의 표준필터, 60% 농도의 표준필터 중 어느 하나 이상의 표준 필터를 구비하여 20% 및/ 또는 40% 및/ 또는 60% 의 520nm의 광을 차단하는 필터를 구비하는 것을 특징으로 하는 매연 원격측정기의 검증방법을 제공한다.In addition, a standard filter is used for the verification filter in the automatic verification standard filter, and the standard filter includes at least one standard filter among a standard filter with a concentration of 20%, a standard filter with a concentration of 40%, and a standard filter with a concentration of 60%. Provided is a method for verifying a particulate matter telemetry device, characterized in that it includes a filter that cuts off % and/or 40% and/or 60% of 520 nm light.
또한 상기 매연 원격측정장치를 이용하여 매연 원격측정장치를 검증하는 동안에 차량이 상기 송신부와 수신부 사이를 통과하는 경우 이를 감지하여 차량이 지나간 후 20초 이상의 시간동안 검증을 중단하는 것을 특징으로 하는 매연 원격측정기의 검증방법을 제공한다.In addition, while verifying the smoke telemetry device using the smoke telemetry device, when a vehicle passes between the transmission unit and the reception unit, it is detected and the verification is stopped for 20 seconds or more after the vehicle passes. Provides a verification method for measuring instruments.
또한, 상기 자동 검증 표준필터에는 초기위치를 확인할 수 있는 위치마커를 더 구비하여 측정홀의 위치를 정확하게 찾을 수 있도록 하는 것을 특징으로 하는 매연 원격측정기의 검증방법을 제공한다.In addition, the automatic verification standard filter is further provided with a position marker capable of confirming an initial position so that the position of the measurement hole can be accurately found.
또한, 상기 위치마커는 자석, 작은구멍, 색으로 표시할 수 있으며, 위치감지센서는 자석센서 또는 광센서인 것을 특징으로 하는 매연 원격측정기의 검증방법을 제공한다.In addition, the location marker can be indicated by a magnet, a small hole, or a color, and the location sensor is a magnetic sensor or an optical sensor.
또한, 상기 자동 검증 표준필터는 스텝모터, 서버모터 등을 이용하여 정확한 위치제어가 가능하게 구동되는 것을 특징으로 하는 매연 원격측정기의 검증방법을 제공한다.In addition, the automatic verification standard filter provides a verification method of a smoke telemetry device, characterized in that it is driven to enable accurate position control using a step motor, a server motor, and the like.
상기 백그라운드 노이즈 측정방법은 상기 송신부에서 나오는 광을 차단한 후 상기 수신부에 구비된 10개의 채널별로 측정되는 신호를 10개 내지 1000개 측정하여 이를 평균한 값을 백그라운드 노이즈로 설정하고, 상기 백그라운드 노이즈 값 이상의 신호인 경우에만 측정신호로 사용하는 것을 특징으로 하는 매연 원격측정기의 검증방법을 제공한다.The background noise measurement method measures 10 to 1000 signals measured for each of 10 channels provided in the receiver after blocking light from the transmitter, sets an average value as the background noise, and sets the background noise value as the background noise value. Provided is a verification method of a smoke telemetry device characterized in that only the above signal is used as a measurement signal.
상기 송신부의 하단 외부에 온도, 습도, 풍향 및 풍속, 미세먼지 센서를 더 구비하여 상기 온도, 습도, 풍속, 미세먼지 등의 측정값 중 어느 하나 이상이 설정치를 초과하는 경우 상기 백그라운드 노이즈 측정을 추가로 실시하는 것을 특징으로 하는 매연 원격측정기의 검증방법을 제공한다.A sensor for temperature, humidity, wind direction and speed, and fine dust is further provided outside the lower end of the transmission unit, and the background noise measurement is added when one or more of the measured values such as temperature, humidity, wind speed, and fine dust exceeds a set value. Provides a verification method of a smoke telemetry, characterized in that carried out by.
상기 백그라운드 노이즈 측정이 10분 이내에 3회 이상 실시되는 경우 매연가스의 원격측정을 중단하고, 이를 원격서버에 전송하는 것을 특징으로 하는 매연 원격측정기의 검증방법을 제공한다.When the background noise measurement is performed three or more times within 10 minutes, the exhaust gas telemetry is stopped and the exhaust gas telemetry is transmitted to a remote server.
또한, 상기 송신부의 상단에 강우센서(rain sensor)를 더 구비하여 상기 강우센서에서 비를 감지하는 경우 매연가스의 원격측정을 중단하고, 이를 원격서버에 전송하는 것을 특징으로 하는 매연 원격측정기의 검증방법을 제공한다.In addition, a rain sensor is further provided at the top of the transmission unit to stop the telemetry of the exhaust gas when rain is detected by the rain sensor, and to transmit it to the remote server. provides a way
상기와 같은 구성에 의하여 본 출원 발명은 원격에서 일정 시간간격으로 또는 환경에 따라 또는 필요한 경우에 매연 원격측정기를 검증할 수 있도록 함으로써 검증을 위하여 작업자가 방문할 필요가 없이 항상 검증된 장비로 매연을 측정할 수 있는 효과가 있다.According to the configuration as described above, the present invention enables the remote monitoring of the exhaust gas telemetry at regular time intervals or according to the environment or when necessary, so that the operator does not need to visit for verification, and always checks the exhaust with the verified equipment. It has a measurable effect.
도 1은 본 출원 발명의 매연 원격측정 흐름도1 is a flowchart of smoke telemetry according to the present application
도 2는 본 출원 발명의 매연 원격측정기 전체 구성도2 is an overall configuration diagram of the smoke telemetry device of the present application
도 3은 본 출원 발명의 매연 원격측정 사진3 is a picture of smoke telemetry of the present application invention
도 4는 본 출원 발명의 운행차 매연측정 모식도4 is a schematic diagram of exhaust gas measurement of a running vehicle according to the present invention
도 5는 본 출원 발명의 매연가스 측정시 수신부에서 측정되는 빔의 차량진입 전, 진입 중 및 진입 후의 상태와 매연측정 시점을 도시하고 있음5 shows the state before, during, and after entering the vehicle of the beam measured by the receiving unit when measuring the exhaust gas of the present application and the time point of the exhaust measurement
도 6은 본 출원 발명의 송신부 10개 중 일부 사진과 검증을 위한 검증필터를 적용한 사진6 is a photo of some of the 10 transmitting units of the present application and a photo of applying a verification filter for verification
도 7은 본 출원 발명의 자동 검증을 위한 자동 검증 표준필터을 광원과 송신부 사이에 설치한 사진7 is a photograph in which an automatic verification standard filter for automatic verification of the present application is installed between a light source and a transmitter
도 8은 본 출원 발명의 자동 검증 표준필터의 구성도8 is a configuration diagram of an automatic verification standard filter of the present application
도 9는 본 출원 발명의 자동 검증 표준필터을 설치한 후 자동으로 원격에서 매연 원격측정기를 검증하는 소프트웨어 화면9 is a software screen for automatically verifying a smoke telemetry remotely after installing the automatic verification standard filter of the present application invention
도 10은 본 출원 발명의 측정환경을 측정하기위한 기상측정센서의 설치도10 is an installation diagram of a meteorological measurement sensor for measuring the measurement environment of the present application
국내 대도시 대기오염의 특성을 살펴보면 오존(O3), 미세먼지(PM10) 및 이산화질소(NO2)의 오염도가 선진국의 대도시에 비하여 높은 수준이며 매년 증가하는 추세를 나타내고 있으며, 이는 전 세계 주요 도시의 특징이다.Looking at the characteristics of air pollution in large cities in Korea, the pollution levels of ozone (O3), fine dust (PM10), and nitrogen dioxide (NO2) are higher than those of large cities in developed countries and show an increasing trend every year, which is a characteristic of major cities around the world. .
인구가 증가하고 산업 및 국가경제가 발전하고 국민생활이 윤택해짐에 따라 보다 더 편리한 생활을 요구하게 되면서 대기오염물질의 주요 배출원인 자동차는 매년 증가하고 있다. 우리나라의 자동차 등록대수는 1970년대에는 13만대에 불과했으나, 1990년대 초반부터 자동차의 대중화가 시작되었고 이후 급속한 경제성장과 더불어 높은 증가율을 보여 2021년 4월 기준으로 등록대수가 2,400만대를 넘어섰다.As the population increases, industry and national economy develops, and people's lives become more convenient, automobiles, a major emission source of air pollutants, are increasing every year. The number of registered cars in Korea was only 130,000 in the 1970s, but the popularization of cars began in the early 1990s, and since then, the number of registered cars has exceeded 24 million as of April 2021 due to rapid economic growth and a high rate of increase.
이러한 자동차 보유대수의 증가는 배출가스에 의한 대기오염물질의 증가를 가져오고, 오존 및 미세먼지 등의 농도를 증가시켜 인체의 건강을 위협할 뿐만 아니라 온실가스인 이산화탄소를 다량 배출하여 지구온난화에도 지대한 영향을 미치고 있다. 운행차에 대한 배출가스 관리는 정기적으로 시행되고 있는 배출가스 종합검사 제도에 의해서 수행되고 있으나, 연속 운행되는 자동차 특성에 따른 배출가스 배출량을 정확하게 측정할 수 없다.The increase in the number of cars owned not only threatens human health by increasing the concentration of ozone and fine dust, but also contributes to global warming by emitting a large amount of carbon dioxide, a greenhouse gas. are influencing Emissions management for vehicles in operation is performed by the exhaust gas comprehensive inspection system that is regularly implemented, but it is not possible to accurately measure emissions according to the characteristics of continuously operated vehicles.
원격측정기는 실시간으로 자동차배출가스를 측정함으로써 운행 상태의 자동차의 과다 배출 여부를 검사할 수 있는 효과적인 장비이다. 운행자동차의 배출가스 관리를 위해 우리나라는 정기검사와 수시점검 및 종합검사를 통하여 관리하고 있다. 운행차의 배출가스 종합검사는 자동차를 차대동력계 위에서 일정한 주행모드(test cycle)로 운행하면서 이때 배출되는 배기가스를 검사하는 부하 검사 방법(ASM2525)으로 2002년 대기오염이 심각한 대도시를 중심으로 시작하여 현재는 서울을 포함한 수도권과 광역시, 대기관리권역 등에서 시행하고 있음. 이러한 부하검사방법에 의한 운행차의 배출가스 검사는 미국과 캐나다 등 선진국에서는 이미 오래전부터 자동차의 실제 주행상태를 효과적으로 반영한 부하검사 방법(IM240)을 채택하여 검사를 시행해 오고 있다.The remote monitoring device is an effective device that can check whether the vehicle is in a state of excessive emission by measuring vehicle exhaust gas in real time. In order to manage the exhaust gas of vehicles in operation, Korea manages it through regular inspections, occasional inspections, and comprehensive inspections. Comprehensive exhaust gas inspection of a vehicle in operation is a load test method (ASM2525) that inspects the exhaust gas emitted while the vehicle is operated in a certain driving mode (test cycle) on the chassis dynamometer. Currently, it is implemented in the metropolitan area including Seoul, metropolitan cities, and air quality management areas. In advanced countries such as the United States and Canada, the load test method (IM240), which effectively reflects the actual driving condition of the vehicle, has been adopted for a long time in the emission test of vehicles in operation by this load test method.
반면, 정기검사와 수시점검은 무부하 검사방법이 사용되나, 자동차가 주행하는 상태에서 측정하는 것이 아니기 때문에 주행상태의 배출가스를 반영하는 정도가 매우 미흡하고, 검사의 신뢰성도 떨어지는 실정이다. 특히, 현행 운행차 수시점검은 검사를 위해 투입되는 인력과 시간대비 측정수량이 매우 적을 뿐만 아니라 불시 검문식 강제정차 검사에 의한 민원발생, 장시간 도로상에서 수행하는 작업으로 인한 수시점검 담당 공무원 등 점검자의 건강 및 안전사고 노출 등의 많은 위험요소가 상존하고 있다.On the other hand, regular inspections and occasional inspections use no-load inspection methods, but since they are not measured while the vehicle is running, the degree of reflection of the exhaust gas in the driving state is very insufficient, and the reliability of the inspection is also low. In particular, not only is the amount of manpower and amount measured against the amount of time required for occasional inspection of currently operating cars very small, but also civil complaints due to forced stop inspections of random inspections and inspections by public officials in charge of occasional inspections due to long-term work performed on the road There are many risk factors such as health and safety accident exposure.
따라서 실제 도로상에서 운행하고 있는 자동차의 흐름을 방해하지 않으면서 주행 중인 자동차의 배출가스를 주행상태를 효율적으로 반영하여 검사함으로써 측정결과의 신뢰성을 향상하면서 점검자와 수검자 모두 만족할 수 있는 Open-path 타입의 새로운 검사장비의 개발이 필요하다.Therefore, it is an open-path type that can satisfy both the inspector and the inspector while improving the reliability of the measurement result by inspecting the exhaust gas of the running car by efficiently reflecting the driving condition without disturbing the flow of the car running on the actual road. It is necessary to develop new inspection equipment.
원격측정기는 광학계를 비롯한 통합 시스템 일체가 개발되어야 하며, 개발 항목 전체는 아래와 같다. For telemetry, the entire integrated system including the optical system must be developed, and the entire development items are as follows.
1. 측정방식 : 광학방식을 이용한 open path type 배출가스 측정 (Green Laser 이용)1. Measurement method: Open path type exhaust gas measurement using optical method (using Green Laser)
2. 차량 번호 인식 : CCD 카메라 및 알고리즘을 이용한 차량번호 인식기 개발2. Vehicle Number Recognition: Development of Vehicle Number Recognizer using CCD camera and algorithm
3. 차속 측정 : 레이저 방식 또는 광학을 이용한 차량속도 및 가속도 측정기 개발3. Vehicle speed measurement: Development of vehicle speed and acceleration measuring device using laser method or optical
4. 검증용 표준필터 또는 자동검증 표준필터 : 원격측정기 정도확인을 위한 표준 필터4. Standard filter for verification or automatic verification standard filter: standard filter for checking accuracy of telemetry
5. 매연측정로직 : 차량통과확인 및 측정시점 산출, 매연측정값 변환 프로그램 개발5. Smoke measurement logic: check vehicle passing and calculate measurement time, develop smoke measurement value conversion program
6. 통합 프로그램 개발 : 전체 통합 소프트웨어 개발6. Integrated Program Development: Overall integrated software development
7. 고정식 무인 운용 함체 개발 : 자동 무인 운용을 위한 센서, 기구물 등의 구성 개발 및 자동무인운용 프로그램 개발7. Development of fixed unmanned operation hull: Development of components such as sensors and instruments for automatic unmanned operation and development of automatic unmanned operation program
상기와 같은 구성에 의하여 운행차량 배출오염물질 원격 측정시스템이 개발되었다.According to the configuration described above, a remote monitoring system for pollutants emitted from a vehicle was developed.
이중 본 출원 발명에서는 Green Laser를 적용한 open-path 방식의 매연 측정 장치를 제공하고자 한다.Among them, the present invention intends to provide an open-path method smoke measurement device to which Green Laser is applied.
이는 운행하는 차량에서 배출되는 매연을 측정하기 위하여 도로상에서 측정 대상 가스의 샘플을 흡입하지 않고, 운행차에서 대기로 방출되는 매연을 직접 측정하는 open-path 방식을 사용하여 매연을 측정한다.In order to measure the soot emitted from the vehicle in motion, it measures the soot by using an open-path method that directly measures the soot emitted from the vehicle into the atmosphere without inhaling a sample of the target gas to be measured on the road.
상기 Open path 측정방법은 측정 대상 물질이 외부로 확산됨에 따라 그 농도가 낮아지고 외부의 영향을 받으므로 측정 정밀도는 측정 Sample cell을 이용하는 close-path 방식보다는 정밀도에서는 떨어지지만, 도로상에서 효과적으로 차량에서 과다 배출되는 매연을 측정할 수 있는 방식이다.In the open path measurement method, the concentration of the substance to be measured decreases as it diffuses to the outside and is affected by the outside, so the measurement accuracy is lower than that of the close-path method using a measurement sample cell, but it is effectively excessive in vehicles on the road. It is a method that can measure the exhausted soot.
도 1은 본 출원 발명의 매연 원격측정기의 동작 순서도이다.1 is an operation flowchart of a smoke telemetry device according to the present application.
1. 차량통과 완료 여부 확인로직 적용, 매연 측정로직 적용을 통한 매연 측정1. Smoke measurement through application of vehicle passage check logic and exhaust gas measurement logic
2. 번호판 촬영카메라는 측정차량의 번호판을 촬영 하고 해당 이미지를 저장2. The license plate shooting camera photographs the license plate of the vehicle to be measured and saves the image
3. 촬영된 번호판 사진을 통하여 차량번호를 인식할 수 있는 알고리즘 적용3. Application of an algorithm that can recognize vehicle numbers through photographed license plate photos
4. 측정된 매연값산출, 측정 차량의 속도 및 가속도 통한 비출력(VSP) 산출 로직적용, 차량번호 데이터의 머지 및 DB 저장 로직개발 적용, 측정차량 사진에는 매연, VSP등의 데이터 워터마킹 처리4. Calculation of the measured exhaust gas value, application of specific output (VSP) calculation logic through speed and acceleration of the measured vehicle, application of merge of vehicle number data and development of DB storage logic, processing of data watermarking such as smoke and VSP in the photo of the vehicle to be measured
5. 측정된 모든 데이터는 통합제어 PC에 저장되며, 운영 인원 등이 모니터링 할 수 있도록 데이터 및 사진 표시 5. All measured data is stored in the integrated control PC, and data and photos are displayed so that operating personnel can monitor
도 2는 본 출원 발명의 매연 원격측정기 전체 구성도를 도시하고 있다. 본 출원 발명의 매연 원격측정기는 송신부와 수신부; 및 운행차의 차량 정보를 획득하기위하여 차량의 번호를 인식하는 차량인식 카메라, 상기 송신부, 수신부, 카메라 및 속도 센서 등의 센싱 값을 읽고 제어하는 통합제어 PC로 구성된다. Figure 2 shows the overall configuration of the smoke telemetry device of the present application. The smoke telemetry device of the present application includes a transmitter and a receiver; and a vehicle recognition camera that recognizes the number of a vehicle in order to obtain vehicle information of a running vehicle, and an integrated control PC that reads and controls sensing values of the transmitter, receiver, camera, and speed sensor.
도 3은 본 출원 발명의 매연 원격측정 사진을 도시하고 있다. 매연의 측정은 차량이 통과한 직후 측정하고 있다.3 shows a picture of smoke telemetry of the present application. Smoke is measured immediately after the vehicle passes through.
도 4는 본 출원 발명의 운행차 매연측정 모식도로 물질의 농도를 측정하는 방법을 설명하고 있다. 본 출원 발명의 매연 원격측정기는 상기 송신부에서 방출된 광원이 운행차량의 후방으로 분사된 배기가스를 통과한 후 상기 수신부에 수신될 때 상기 배기가스에 흡수되고 남은 투과한 빛의 양을 측정한다.4 illustrates a method of measuring the concentration of a substance in a schematic diagram of exhaust gas measurement in a running vehicle according to the present application. The soot telemetry device of the present application measures the amount of light emitted from the transmission unit passing through the exhaust gas sprayed to the rear of the vehicle and then being absorbed by the exhaust gas and remaining transmitted when the light source is received by the receiver unit.
이 값을 비어람버트법칙에 의하여 계산한 것이 흡광도이고 이를 이용하여 매연의 농도를 측정한다.This value is the absorbance calculated by Beer-Lambert's law, and the concentration of soot is measured using this value.
매연농도(%) = Soot concentration (%) =
[log((투과한광(It) - 백그라운드측정값(Ib))/입사한광(Io))]/(eL) ...(식1)[log((transmitted light (It) - background measurement value (Ib))/incident light (Io))]/(eL) ... (Equation 1)
투과도(T) = 투과한 광(It)/입사한광(Io)Transmittance (T) = transmitted light (It) / incident light (Io)
흡광도(A) = log(1/T) = log(It/Io) = eCLAbsorbance (A) = log(1/T) = log(It/Io) = eCL
백그라운드노이즈(N) = 백그라운드측정값(Ib); 송신부 광원을 끄고 측정대상이 없는 상태에서 측정한 수신부 센서 값Background noise (N) = background measurement value (Ib); Receiver sensor value measured with the transmitter light source turned off and no measurement target present
(흡광계수 e, 물질농도 C, 빛이 물질을 통과한 거리 L)(extinction coefficient e, material concentration C, distance L through light)
여기서, 흡광계수 e는 실험을 통하여 측정할 수 있는 값이고, 물질을 통과한 거리 L은 자동차의 배기관의 직경을 고려하여 100mm로 설정하여 사용함.Here, the extinction coefficient e is a value that can be measured through experiments, and the distance L passing through the material is set to 100mm in consideration of the diameter of the exhaust pipe of the car.
도 5는 본 출원 발명의 매연 측정시 수신부에서 측정되는 빔의 차량진입 전, 진입 중 및 진입 후의 상태와 매연측정 시점을 도시하고 있다. 차량의 진입전에는 아무런 측정이 일어나지 않는 것이 정상이다. 상기 송신부에서 광을 송신하고 속도측정기를 통하여 차량의 진입을 감지한다. 차량의 진입에 따라 상기 수신부에서는 여러신호가 측정된다. 차량의 형상에 따라 10개의 수직으로 구비된 센서에서 상기 송신부의 신호가 창을 통하여 또는 방사되어 측정이 되기도 하고, 외부광이 차량의 차체에 반사되어 신호가 측정되기도 한다. 수신부는 밴드패스 필터에서 송신부에서 송신한 520nm 파장의 광만을 통과시켜 광 강도를 측정한다. 차량이 상기 송신부와 수신부를 통과하면 그 순간부터 상기 차량의 후방으로 방출되는 매연의 신호를 측정하게된다. 이를 상기 a, b, c 구간으로 나누어 설명하고 있다.FIG. 5 illustrates states before, during, and after entering a vehicle of a beam measured by a receiving unit when measuring smoke according to an exemplary embodiment of the present application, and a time point of smoke measurement. It is normal that no measurement takes place before the vehicle enters. The transmitting unit transmits light and senses the entry of the vehicle through the speed measuring device. As the vehicle enters, the receiver measures several signals. Depending on the shape of the vehicle, signals from the transmission unit may be measured through windows or radiated from 10 vertically arranged sensors, or signals may be measured when external light is reflected on the body of the vehicle. The receiving unit measures the light intensity by passing only the 520 nm wavelength light transmitted by the transmitting unit through the band pass filter. When the vehicle passes through the transmission unit and the reception unit, the signal of the exhaust emitted to the rear of the vehicle is measured from that moment. This is explained by dividing it into the sections a, b, and c.
도 6은 본 출원 발명의 송신부 10개 중 일부 사진과 검증을 위한 검증필터를 적용한 사진이다. 본 출원 발명의 필요성을 설명하고 있는 부분으로 운행차의 매연을 측정하는 장치에 있어서, 측정의 정확도는 매우 중요하다. 잘못 측정하는 경우 매연을 많이 방출하는 차량이 도로를 다니며 많은 매연을 분출하여 문제가 되고, 잘못 측정하여 매연이 없는 차량을 매연이 많은 차량으로 측정한다면 운전자와 차주에게 불편이 발생할 수 있기 때문이다. 이러한 문제를 이연에 방지하게 위하여 주기별로 센서의 감도를 측정하여 정확한 측정이 되고 있는지 검증하고 있다. 이를 위하여 도 6에 도시된 바와 같은 표준측정 필터를 구비하고 이를 10개의 채널 각각에 끼워 주기적으로 모두 검증하여야 한다. 상기 검증을 위하여서는 3 종류를 필터를 사용한다. 측정감도가 광강도별로 차이가 있을 수 있기때문이며 이를 위하여 20%, 40% ,60% 광차단이 가능한 필터를 구비하여 검증한다. 현재는 10채널의 측정을 검증하기 위해서 30 회의 필터 교체작업이 필요하다. 본 출원 발명은 이러한 문제를 해결하고자 하는 것이다.6 is a photo of some of the 10 transmitters of the present application and a photo to which a verification filter for verification is applied. As part of explaining the necessity of the invention of the present application, accuracy of measurement is very important in the device for measuring the soot of a moving vehicle. In the case of incorrect measurement, a vehicle emitting a lot of soot travels on the road and emits a lot of soot, causing a problem. In order to prevent such a problem with delay, the sensitivity of the sensor is measured on a periodic basis to verify whether or not the measurement is accurate. To this end, a standard measurement filter as shown in FIG. 6 should be provided and periodically verified by inserting it into each of the 10 channels. For the verification, three types of filters are used. This is because the measurement sensitivity may differ depending on the light intensity, and for this purpose, a filter capable of blocking 20%, 40%, or 60% light is provided and verified. Currently, 30 filter replacements are required to verify the measurement of 10 channels. The invention of this application seeks to solve this problem.
도 7은 본 출원 발명의 자동 검증을 위한 자동 검증 표준필터(필터링크)을 광원과 송신부 사이에 설치한 사진이다. 광원에서 나온 광은 반사부를 거쳐 10 채널의 송신부에 광이 전달되는데, 이사이에 자동검증표준필터(필터링크)를 구비하여 이를 제어함으로써 외부에 필터를 끼워 검증하는 방법을 개선하였다. 즉, 20%, 40%, 60% 및 100% 광 차단되는 회전 필터를 구비하고, 필요에 따라 상기 자동검증표준필터(필터링크)를 회전시킴으로써 매연 원격측정기를 검증할 수 있도록 구성하였다. 상기 자동 검증 표준필터에는 상기 자동 검증 표준필터의 회전위치를 제어하며 회전시킬수 있는 스텝모터 또는 엔코더가 구비된 서보모터가 결합될 수 있으며, 상기 자동 검증 표준필터의 위치를 감지하기위한 마커를 자석, 구멍 또는 색으로 표시할 수 있고, 이를 감지하는 수단으로 홀센서(자기센서), 광센서 등이 사용될 수 있다.7 is a photograph in which the automatic verification standard filter (filter link) for automatic verification of the present application is installed between a light source and a transmitter. The light from the light source passes through the reflector and is transmitted to the 10-channel transmitter. By providing an automatic verification standard filter (Filter Link) to control it, the verification method by inserting an external filter was improved. That is, a rotation filter that blocks 20%, 40%, 60%, and 100% light is provided, and the automatic verification standard filter (filter link) is rotated as necessary to verify the smoke telemetry. The automatic verification standard filter may be coupled with a step motor capable of controlling and rotating the rotational position of the automatic verification standard filter or a servo motor equipped with an encoder, and a marker for detecting the position of the automatic verification standard filter is a magnet, It can be displayed as a hole or color, and a hall sensor (magnetic sensor), an optical sensor, or the like can be used as a means for detecting it.
상기 필터링크(자동 검증 표준필터))를 이용한 검증방법은 다음과 같다. 광원의 강도 Io를 측정하고, 상기 20% 표준필터인 표준필터20을 적용한 후 수광부에서 광강도를 측정한다. 20% 표준필터를 사용한 경우에는 상기 광원의 강도 Io의 80%가 측정되어야 한다. 그러나, 수분, 미세먼지 등 여러 가지 환경적인 영향으로 20% 광이 감소되어야 하는 경우에도 20% 이상의 광이 감소되어 측정될 수 있다. 이러한 경우 상기 해당 채널에 20% 교정 값에 상기 수광부에서 측정된 값을 저장한다. 동일한 방법으로 40% 및 60% 감소 표준필터를 적용하여 측정된 측정 값을 해당 채널의 교정값으로 각각 등록한다. 이렇게 하면, 3지점에서의 교정값이 생성되고, 이 교정 값들에 가장 가까운 1차 검교정선을 만들어 수광부에서 측정된 측정값을 상기 검교정선에 대입하여 흡광도를 계산하고 이를 상기 식(1)에 대입하여 매연의 농도를 측정한다.The verification method using the filtering filter (automatic verification standard filter) is as follows. The intensity Io of the light source is measured, and after applying the standard filter 20, which is the 20% standard filter, the light intensity is measured in the light receiver. In the case of using a 20% standard filter, 80% of the intensity Io of the light source should be measured. However, even when 20% light needs to be reduced due to various environmental influences such as moisture and fine dust, it can be measured by reducing light by 20% or more. In this case, the value measured by the light receiver is stored in the 20% calibration value of the corresponding channel. In the same way, the measurement values measured by applying the 40% and 60% reduction standard filters are registered as the calibration values of the corresponding channels, respectively. In this way, calibration values at 3 points are generated, a first calibration line closest to these calibration values is created, and the measured value measured at the light receiver is substituted into the calibration line to calculate absorbance, which is then substituted into Equation (1). to measure the concentration of soot.
도 8은 본 출원 발명의 자동 검증 표준필터(필터링크)의 구성도이다. 상기한 바와 같이 자동 검증 표준필터에 20%, 40%, 60% 및 100% 광 차단되는 필터를 구비하고 있다. 상기 광손실 없이 광을 투과하기 위해서는 상기 자동 검증 표준필터에 구멍을 뚫어 사용할 수 있다.8 is a configuration diagram of an automatic verification standard filter (filter link) of the present application. As described above, 20%, 40%, 60% and 100% light blocking filters are provided in the automatic verification standard filter. In order to transmit light without the light loss, a hole may be drilled in the automatic verification standard filter.
도 9는 본 출원 발명의 자동 검증 표준필터(필터링크)를 설치한 후 자동으로 원격에서 매연 원격측정기를 검증하는 소프트웨어 화면을 도시하고 있다. 검증에 사용하는 필터의 광 차단을 선택하고 각 채널별로 수신되는 광 강도를 측정하고 있다.FIG. 9 shows a software screen for automatically verifying a particulate matter telemeter remotely after installing the automatic verification standard filter (Filter Link) of the present application. The light blocking of the filter used for verification is selected, and the light intensity received for each channel is measured.
해외 사례에서 매연 원격측정기의 측정 정밀도 검증을 위하여 표준필터를 사용하고 있으나, 그 방법으로는 매연 원격측정기를 설치한 후 설치 현장에서 운영요원이 각 광로별로 각각 농도의 표준필터를 삽입하고 매연 원격측정기가 그 측정값을 허용 오차 이내로 판독하는지를 확인하는 방법을 사용한다. 또한 일반적인 자동차 검사소에서 사용하는 프로브에 의한 샘플채취에 의한 광투과식 매연측정기의 경우에도 측정 정밀도 검증을 위하여 표준필터를 사용하고 있다. 그러나 이러한 광투과식 매연측정기의 경우에도 검사원이 광원과 디텍터 사이에 표준필터를 손으로 삽입하여 광투과식 매연기가 그 측정값을 허용 오차 이내로 판독하는지를 확인하는 검증 방법을 사용하기에 작업시간이 증가되고 검사효율이 낮아는 현실이다. 이러한 광투과식 매연측정기에 대한 매연표준필터에 의한 검증은 국내 법 운행차 배출가스 검사 시행요령 등에 관한 규정(환경부 고시 제 2019-255호)에 의하여 최소한 1일 1회 이상 실시하도록 법제화 하고 있다.In overseas cases, a standard filter is used to verify the measurement accuracy of the smoke telemetry device, but as a method, after installing the smoke telemetry device, an operator at the installation site inserts a standard filter of each concentration for each optical path, It uses a method to verify that the reading of the measured value is within the tolerance. In addition, a standard filter is used to verify the measurement accuracy in the case of an optical transmission type smoke meter by sampling by a probe used in a general automobile inspection station. However, even in the case of such a light-transmitting smoke detector, the work time is increased because the inspector manually inserts a standard filter between the light source and the detector to check whether the light-transmitting smoke smoke meter reads the measured value within the tolerance. The reality is that the inspection efficiency is low. Verification by the standard soot filter for such a light-transmitting soot meter is legalized to be carried out at least once a day in accordance with the domestic law, the regulation on the implementation guidelines for vehicle emission inspection, etc. (Ministry of Environment Notice No. 2019-255).
도 10은 본 출원 발명의 측정환경을 측정하기위한 기상측정센서의 설치도이다. 본 출원 발명은 상기 광이 100% 차단되는 필터를 사용하여 백그라운드 노이즈를 측정하는 수단을 함께 제공하고 있다. 백그라운드 노이즈는 측정신호가 없음에도 불구하고 발생하는 측정부에서 측정되는 신호이다. 광수신부의 경우 온도에 매우 민감하며, 도로에서 측정하는 경우 도로에서 반사된 반사광 또는 공기 중의 미세먼지 등에 의하여 반사되는 신호등이 상시 광수신부에서 측정될 수 있으며, 이들이 모두 측정 노이즈가 될 수 있다. 한편, 공기 중의 미세먼지 역시 매연 측정에 방해가 될 수 있으며, 습도의 경우 많은 광의 산란 및 광 흡수가 발생할 수 있어 습도의 영향도 제거하는 것이 필요하다. 따라서 측정기 주변의 환경을 측정하여 측정오차를 줄이고자 하였다. 이를 위하여 온도, 습도, 미세먼지 및 풍속을 측정하는 센서를 상기 송신부의 외측면에 더 구비할 수 있다. 또한, 본 출원 발명의 매연 원격측정기의 설치 장소에는 강우센서(rain sensor)를 더 구비하여 비가오는 경우 측정을 중단하도록 할 수 있다.10 is an installation diagram of a meteorological measurement sensor for measuring the measurement environment of the present application. The present invention provides a means for measuring background noise using a filter that blocks 100% of the light. Background noise is a signal measured in a measurement unit that is generated despite the absence of a measurement signal. The light receiver is very sensitive to temperature, and when measured on a road, reflected light from the road or traffic lights reflected by fine dust in the air can be measured by the light receiver at all times, and all of these can be measurement noise. On the other hand, fine dust in the air may also interfere with smoke measurement, and in the case of humidity, a lot of light scattering and light absorption may occur, so it is necessary to remove the effect of humidity. Therefore, the measurement error was reduced by measuring the environment around the measuring instrument. To this end, a sensor for measuring temperature, humidity, fine dust, and wind speed may be further provided on the outer surface of the transmitter. In addition, a rain sensor may be further provided at the installation location of the smoke telemetry device according to the present application to stop measurement when it rains.
본 출원 발명은 오픈-패스방식으로 매연을 측정하는 장치로 상기 송신부와 수신부 사이의 광경로 환경이 측정에 매우 중요하다. 깨끗하면 깨끗할수록 좋지만, 항상 깨끗할 수만은 없다. 따라서, 주기적인 장치의 검증과 더불어, 주기적으로 백그라운드 노이즈와 미세먼지와 습도의 영향에 의한 광강도의 변화를 상기 기상측정센서로 측정하여 오차를 줄이는 기술이 필요하고, 본 출원 발명에서 이를 적용하고 있다.The invention of the present application is a device for measuring soot in an open-pass method, and the optical path environment between the transmitter and the receiver is very important for measurement. The cleaner the better, but it can't always be clean. Therefore, in addition to periodic verification of the device, a technique for reducing errors by periodically measuring the change in light intensity due to the influence of background noise, fine dust and humidity with the meteorological sensor is required, and this application is applied in the present invention. there is.
또한, 상기 검증이 진행되는 동안 상기 10개의 채널별로 측정된 측정값에 편차가 매연농도 절대값으로 10% 이상인 채널의 경우, 상기 채널의 정상동작을 확인하고, 필요한 경우 수리할 수 있도록 통합제어 프로그램에서 운용요원에게 ALARM을 표시하고 있으며, 채널별 측정결과에 문제가 있는 경우 해당 채널은 매연측정에 사용하지 않도록 한다. 이렇게 특정 채널을 측정할 수 없는 경우 해당 채널에 인접한 채널의 측정 값을 차량의 종류에 따른 기존의 측정 데이터 결과로 부터 예측하여 측정된 차량이 매연배출 허용치를 초과하였는지 예측할 수 있다.In addition, in the case of a channel in which the deviation of the measured values measured for each of the 10 channels is 10% or more in terms of absolute smoke concentration while the verification is in progress, the normal operation of the channel is confirmed and, if necessary, the integrated control program can be repaired. ALARM is displayed to the operating personnel, and if there is a problem with the measurement result for each channel, the corresponding channel is not used for smoke measurement. In this way, when a specific channel cannot be measured, it is possible to predict whether the measured vehicle exceeds the permissible amount of smoke emission by predicting the measurement value of a channel adjacent to the corresponding channel from the existing measurement data result according to the vehicle type.
또한, 상기 송신부 표면의 오염을 확인하기 위하여 상기 송신부의 상단에 상기 송신부 10채널의 표면을 모두 확인할 수 있는 카메라를 추가로 설치할 수 있다.In addition, in order to check the contamination on the surface of the transmitter, a camera capable of checking all the surfaces of the 10 channels of the transmitter may be additionally installed at the top of the transmitter.
수신부 표면의 오염을 확인하기 위하여 상기 수신부의 상단에 상기 수신부 10채널의 표면을 모두 확인할 수 있는 카메라를 추가로 설치할 수 있음은 물론이다.Of course, a camera capable of checking all surfaces of the 10 channels of the receiver can be additionally installed on top of the receiver in order to check the contamination on the surface of the receiver.
또한, 매연원격측정기와 함께 설치된 기상측정기의 상기 풍속계의 풍속이 운용요원이 설정한 설정값 이상인 경우 매연 원격측정기의 측정을 중단하고, 이를 서버를 통하여 원격에 알릴 수 있음은 물론이다.In addition, when the wind speed of the anemometer of the meteorological measuring device installed together with the smoke telemetry device is higher than the set value set by the operator, the measurement of the smoke telemetry device may be stopped and the information may be notified remotely through the server.
또한, 충격센서를 송신부 및/ 또는 수신부에 더 구비하여 행인 또는 차량 등에 의한 매연 원격측정기의 충돌 또는 훼손을 원격에서 감지할 수 있다.In addition, an impact sensor may be further provided in the transmission unit and/or the reception unit to detect collision or damage to the smoke telemetry device by a pedestrian or a vehicle remotely.

Claims (17)

10개의 수직형 송신부와 10개의 수직형 수신부를 구비하고, 상기 송신부에서는 520nm의 매연 측정용 광(가시광선)을 송신하고, 상기 수신부에서는 상기 송신부에서 송신된 광이 운행차량의 매연을 통과하며, 차량에서 배출된 매연의 양에 비례하여 흡수된 흡광을 측정하여, 상기 송신부에서 송신된 광량과의 비율을 하기의 식에 의하여 매연의 양을 측정하는 매연 원격측정기를 이용한 매연 원격측정기의 검증(Audit)방법에 있어서,10 vertical transmitters and 10 vertical receivers, the transmitter transmits 520 nm smoke measurement light (visible light), and the receiver transmits the light transmitted from the transmitter through the exhaust of the moving vehicle, Verification of the smoke telemetry (Audit ) method,
상기 송신부 내에는 520nm의 광을 발생하는 광원; 및A light source generating light of 520 nm in the transmitter; and
상기 광원에서 나온 광을 상기 10개의 수직형 송신부로 광경로를 연결하기 위한 반사경; 및 a reflector for connecting an optical path of the light emitted from the light source to the 10 vertical transmitters; and
상기 반사경의 후단에 측정홀과 검증에 사용하는 표준필터를 1개 이상 구비한 자동 검증 표준필터; 및 an automatic verification standard filter having at least one standard filter used for verification and a measurement hole at the rear end of the reflector; and
상기 자동 검증 표준필터를 통과한 빛을 상기 10개의 송신부에서 각각 광을 송신할 수 있도록 광을 배분하는 10개의 송신반사경을 구비하고,10 transmission reflectors for distributing light so that the light passing through the automatic verification standard filter can be transmitted from the 10 transmission units, respectively;
상기 송신반사경은 제어부의 제어신호에 의하여 반사와 투과를 제어할 수 있는 것을 특징으로 하는 매연 원격측정기의 검증방법.The method for verifying a smoke telemetry device, characterized in that the transmission reflector can control reflection and transmission by a control signal from a control unit.
{매연농도(%) = {Soot concentration (%) =
[log((투과한광(It) - 백그라운드측정값(Ib))/입사한광(Io))]/(eL) ...(식1)[log((transmitted light (It) - background measurement value (Ib))/incident light (Io))]/(eL) ... (Equation 1)
투과도(T) = 투과한 광(It)/입사한광(Io)Transmittance (T) = transmitted light (It) / incident light (Io)
흡광도(A) = log(1/T) = log(It/Io) = eCLAbsorbance (A) = log(1/T) = log(It/Io) = eCL
백그라운드노이즈(N) = 백그라운드측정값(Ib); 송신부 광원을 끄고 측정대상이 없는 상태에서 측정한 수신부 센서 값Background noise (N) = background measurement value (Ib); Receiver sensor value measured with the transmitter light source turned off and no measurement target present
(흡광계수 e, 물질농도 C, 빛이 물질을 통과한 거리 L)(extinction coefficient e, material concentration C, distance L through light)
여기서, 흡광계수 e는 실험을 통하여 측정할 수 있는 값이고, 물질을 통과한 거리 L은 자동차의 배기관의 직경을 고려하여 100mm로 설정하여 사용함}Here, the extinction coefficient e is a value that can be measured through experiments, and the distance L passing through the material is set to 100 mm in consideration of the diameter of the exhaust pipe of the car}
제1항에 있어서,According to claim 1,
상기 자동 검증 표준필터에는 검증필터을 위하여 표준필터가 사용되며, 표준필터는 20% 농도의 표준필터, 40% 농도의 표준필터, 60% 농도의 표준필터 중 어느 하나 이상의 표준 필터를 구비하여 20% 및/ 또는 40% 및/ 또는 60% 의 520nm의 광을 차단하는 필터를 구비하는 것을 특징으로 하는 매연 원격측정기의 검증방법.In the automatic verification standard filter, a standard filter is used for the verification filter, and the standard filter is provided with one or more standard filters of a 20% concentration standard filter, a 40% concentration standard filter, and a 60% concentration standard filter. / or 40% and / or 60% of the 520nm light blocking filter characterized in that the verification method of the smoke telemetry device.
제2항에 있어서,According to claim 2,
상기 자동 검증 표준필터에는 주변환경에 의하여 측정되는 백그라운드 노이즈를 측정하기위하여 100% 광을 차단하는 광차단필터를 더 구비하는 것을 특징으로 하는 매연 원격측정기의 검증방법.The automatic verification standard filter further comprises a light blocking filter that blocks 100% of light in order to measure background noise measured by the surrounding environment.
제3항에 있어서,According to claim 3,
상기 매연 원격측정기를 이용하여 매연 원격측정기를 검증하는 동안에 차량이 상기 송신부와 수신부 사이를 통과하는 경우 이를 감지하여 차량이 지나간 후 20초 이상의 시간동안 검증을 중단하는 것을 특징으로 하는 매연 원격측정기의 검증방법.Verification of the smoke telemetry characterized in that, while verifying the smoke telemetry using the smoke telemetry, when a vehicle passes between the transmitter and the receiver, it is detected and the verification is stopped for more than 20 seconds after the vehicle passes method.
제4항에 있어서,According to claim 4,
상기 자동 검증 표준필터에는 초기위치를 확인할 수 있는 위치마커를 더 구비하여 측정홀의 위치를 정확하게 찾을 수 있도록 하는 것을 특징으로 하는 매연 원격측정기의 검증방법.The automatic verification standard filter is further provided with a position marker capable of confirming an initial position so that the position of the measurement hole can be accurately found.
제5항에 있어서,According to claim 5,
상기 위치마커는 자석, 작은구멍, 색으로 표시할 수 있으며, 위치감지센서는 자석센서 또는 광센서인 것을 특징으로 하는 매연 원격측정기의 검증방법.The position marker can be indicated by a magnet, a small hole, or a color, and the position sensor is a magnet sensor or an optical sensor.
제6항에 있어서,According to claim 6,
상기 자동 검증 표준필터는 스텝모터, 서버모터 등을 이용하여 정확한 위치제어가 가능하게 구동되는 것을 특징으로 하는 매연 원격측정기의 검증방법.The automatic verification standard filter is a verification method of a smoke telemetry device, characterized in that driven to enable accurate position control using a step motor, a server motor, etc.
10개의 수직형 송신부와 10개의 수직형 수신부를 구비하고, 상기 송신부에서는 520nm의 매연 측정용 광을 송신하고, 상기 수신부에서는 상기 송신부에서 송신된 광이 운행차량의 배기가스를 통과하며, 상기 배기가스에 포함된 매연의 양에 비례하여 흡수된 흡광을 측정하여, 상기 송신부에서 송신된 광량과의 비율을 하기의 식에 의하여 매연의 양을 측정하는 매연 원격측정기의 검증방법에 있어서,10 vertical transmitters and 10 vertical receivers, the transmitter transmits 520 nm smoke measurement light, the receiver transmits the light transmitted from the transmitter through the exhaust gas of the moving vehicle, and the exhaust gas In the verification method of a smoke telemetry device for measuring the amount of smoke absorbed in proportion to the amount of smoke included in the smoke and measuring the ratio of the amount of light transmitted from the transmission unit to the amount of smoke by the following equation,
상기 송신부 내에는 520nm의 광을 발생하는 광원; 및A light source generating light of 520 nm in the transmitter; and
상기 광원에서 나온 광을 상기 10개의 수직형 송신부로 광경로를 연결하기 위한 반사경; 및 a reflector for connecting an optical path of the light emitted from the light source to the 10 vertical transmitters; and
상기 반사경의 후단에 측정홀과 광차단필터를 구비한 자동 검증 표준필터; 및 an automatic verification standard filter having a measuring hole and a light blocking filter at the rear end of the reflector; and
상기 자동 검증 표준필터을 통과한 빛을 상기 10개의 송신부에서 각각 광을 송신할 수 있도록 광을 배분하는 10개의 송신반사경을 구비하고,10 transmission reflectors for distributing light so that the light passing through the automatic verification standard filter can be transmitted from the 10 transmission units, respectively;
상기 송신반사경은 제어부의 제어신호에 의하여 반사와 투과를 제어하며,The transmission reflector controls reflection and transmission by a control signal from a controller,
상기 광차단필터를 이용하여 주변환경에 의하여 측정되는 백그라운드 노이즈를 측정하는 것을 특징으로 하는 매연 원격측정기의 검증방법.A method for verifying a smoke telemetry device, characterized in that for measuring the background noise measured by the surrounding environment using the light blocking filter.
{매연농도(%) = {Soot concentration (%) =
[log((투과한광(It) - 백그라운드측정값(Ib))/입사한광(Io))]/(eL) ...(식1)[log((transmitted light (It) - background measurement value (Ib))/incident light (Io))]/(eL) ... (Equation 1)
투과도(T) = 투과한 광(It)/입사한광(Io)Transmittance (T) = transmitted light (It) / incident light (Io)
흡광도(A) = log(1/T) = log(It/Io) = eCLAbsorbance (A) = log(1/T) = log(It/Io) = eCL
백그라운드노이즈(N) = 백그라운드측정값(Ib); 송신부 광원을 끄고 측정대상이 없는 상태에서 측정한 수신부 센서 값Background noise (N) = background measurement value (Ib); Receiver sensor value measured with the transmitter light source turned off and no measurement target present
(흡광계수 e, 물질농도 C, 빛이 물질을 통과한 거리 L)(extinction coefficient e, material concentration C, distance L through light)
여기서, 흡광계수 e는 실험을 통하여 측정할 수 있는 값이고, 물질을 통과한 거리 L은 자동차의 배기관의 직경을 고려하여 100mm로 설정하여 사용함}Here, the extinction coefficient e is a value that can be measured through experiments, and the distance L passing through the material is set to 100 mm in consideration of the diameter of the exhaust pipe of the car}
제8항에 있어서,According to claim 8,
상기 자동 검증 표준필터에는 검증필터을 위하여 표준필터가 사용되며, 표준필터는 20% 농도의 표준필터, 40% 농도의 표준필터, 60% 농도의 표준필터 중 어느 하나 이상의 표준 필터를 구비하여 20% 및/ 또는 40% 및/ 또는 60% 의 520nm의 광을 차단하는 필터를 구비하는 것을 특징으로 하는 매연 원격측정기의 검증방법.A standard filter is used for the verification filter in the automatic verification standard filter, and the standard filter is equipped with one or more standard filters of a 20% concentration standard filter, a 40% concentration standard filter, and a 60% concentration standard filter, so that the 20% and / or 40% and / or 60% of the 520 nm light blocking filter characterized in that the verification method of the smoke telemetry device.
제9항에 있어서,According to claim 9,
상기 매연 원격측정기를 이용하여 매연 원격측정기를 검증하는 동안에 차량이 상기 송신부와 수신부 사이를 통과하는 경우 이를 감지하여 차량이 지나간 후 20초 이상의 시간동안 검증을 중단하는 것을 특징으로 하는 매연 원격측정기의 검증방법.Verification of the smoke telemetry characterized in that, while verifying the smoke telemetry using the smoke telemetry, when a vehicle passes between the transmitter and the receiver, it is detected and the verification is stopped for more than 20 seconds after the vehicle passes method.
제10항에 있어서,According to claim 10,
상기 자동 검증 표준필터에는 초기위치를 확인할 수 있는 위치마커를 더 구비하여 측정홀의 위치를 정확하게 찾을 수 있도록 하는 것을 특징으로 하는 매연 원격측정기의 검증방법.The automatic verification standard filter is further provided with a position marker capable of confirming an initial position so that the position of the measurement hole can be accurately found.
제11항에 있어서,According to claim 11,
상기 위치마커는 자석, 작은구멍, 색으로 표시할 수 있으며, 위치감지센서는 자석센서 또는 광센서인 것을 특징으로 하는 매연 원격측정기의 검증방법.The position marker can be indicated by a magnet, a small hole, or a color, and the position sensor is a magnet sensor or an optical sensor.
제12항에 있어서,According to claim 12,
상기 자동 검증 표준필터은 스텝모터, 서버모터 등을 이용하여 정확한 위치제어가 가능하게 구동되는 것을 특징으로 하는 매연 원격측정기의 검증방법.The automatic verification standard filter is a verification method of a smoke telemetry device, characterized in that driven to enable accurate position control using a step motor, a server motor, etc.
제1항 또는 제8항에 있어서,According to claim 1 or 8,
상기 백그라운드 노이즈 측정방법은 상기 송신부에서 나오는 광을 차단한 후 상기 수신부에 구비된 10개의 채널별로 측정되는 신호를 10개 내지 1000개 측정하여 이를 평균한 값을 백그라운드 노이즈로 설정하고, 상기 백그라운드 노이즈 값 이상의 신호인 경우에만 측정신호로 사용하는 것을 특징으로 하는 매연 원격측정기의 검증방법.The background noise measurement method measures 10 to 1000 signals measured for each of 10 channels provided in the receiver after blocking light from the transmitter, sets an average value as the background noise, and sets the background noise value as the background noise value. Verification method of a smoke telemetry device characterized in that only the above signal is used as a measurement signal.
제14항에 있어서,According to claim 14,
상기 송신부의 하단 외부에 온도, 습도, 풍향 및 풍속, 미세먼지 센서를 더 구비하여 상기 온도, 습도, 풍속, 미세먼지 등의 측정값 중 어느 하나 이상이 설정치를 초과하는 경우 상기 백그라운드 노이즈 측정을 추가로 실시하는 것을 특징으로 하는 매연 원격측정기의 검증방법.A sensor for temperature, humidity, wind direction and speed, and fine dust is further provided outside the lower end of the transmission unit, and the background noise measurement is added when one or more of the measured values such as temperature, humidity, wind speed, and fine dust exceeds a set value. Verification method of the smoke telemetry, characterized in that carried out by.
제14항에 있어서,According to claim 14,
상기 백그라운드 노이즈 측정이 10분 이내에 3회 이상 실시되는 경우 매연의 원격측정을 중단하고, 이를 원격서버에 전송하는 것을 특징으로 하는 매연 원격측정기의 검증방법.When the background noise measurement is performed three or more times within 10 minutes, the smoke telemetry is stopped and the smoke telemetry is transmitted to a remote server.
제14항에 있어서,According to claim 14,
상기 송신부의 상단에 강우센서를 더 구비하여 상기 강우센서에서 비를 감지하는 경우 매연의 원격측정을 중단하고, 이를 원격서버에 전송하는 것을 특징으로 하는 매연 원격측정기의 검증방법.A method for verifying a smoke telemetry device, characterized in that a rain sensor is further provided at the top of the transmission unit, and when rain is detected by the rain sensor, the telemetry of the smoke is stopped and the result is transmitted to a remote server.
PCT/KR2022/004927 2021-09-17 2022-04-06 Automatic verification standard filter for multi-lane soot remote measurement device WO2023042985A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0124481 2021-09-17
KR1020210124481A KR102389031B1 (en) 2021-09-17 2021-09-17 Automatic verification standard filter for multi-lane soot telemetry

Publications (1)

Publication Number Publication Date
WO2023042985A1 true WO2023042985A1 (en) 2023-03-23

Family

ID=81452260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004927 WO2023042985A1 (en) 2021-09-17 2022-04-06 Automatic verification standard filter for multi-lane soot remote measurement device

Country Status (2)

Country Link
KR (1) KR102389031B1 (en)
WO (1) WO2023042985A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142148A (en) * 1996-11-08 1998-05-29 Mitsubishi Heavy Ind Ltd Concentration measuring device
JP2006266868A (en) * 2005-03-24 2006-10-05 Toshiba Corp Absorption analyzer and absorption analysis method
KR20090070899A (en) * 2007-12-27 2009-07-01 (주)다산알앤디 Apparatus for measuring gas and visibility range in tunnel
KR20110112036A (en) * 2010-04-06 2011-10-12 동우옵트론 주식회사 In-situ stack gas analyzer having the auto correction equipment
KR102176295B1 (en) * 2019-10-24 2020-11-09 주식회사 자스텍 A telemetry device equipped with speed-sensitive smoke remote measurement data communication processing technology

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090122168A (en) * 2009-10-29 2009-11-26 안순현 Perceive system of harmful-gas emitting vehicles and method thereby

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142148A (en) * 1996-11-08 1998-05-29 Mitsubishi Heavy Ind Ltd Concentration measuring device
JP2006266868A (en) * 2005-03-24 2006-10-05 Toshiba Corp Absorption analyzer and absorption analysis method
KR20090070899A (en) * 2007-12-27 2009-07-01 (주)다산알앤디 Apparatus for measuring gas and visibility range in tunnel
KR20110112036A (en) * 2010-04-06 2011-10-12 동우옵트론 주식회사 In-situ stack gas analyzer having the auto correction equipment
KR102176295B1 (en) * 2019-10-24 2020-11-09 주식회사 자스텍 A telemetry device equipped with speed-sensitive smoke remote measurement data communication processing technology

Also Published As

Publication number Publication date
KR102389031B1 (en) 2022-04-22
KR102389031B9 (en) 2024-03-13

Similar Documents

Publication Publication Date Title
CN207396336U (en) Light path detects motor vehicle tail gas unit
JP3347725B2 (en) Vehicle emission remote analyzer
US5719396A (en) Systems and methods for determining compliance of moving vehicles with emission-concentration standards
CN101726466B (en) Multilane motor vehicle exhaust remote measuring device
USRE44976E1 (en) Speed and acceleration monitoring device using visible laser beams
US7544943B2 (en) Method and system for remote exhaust emission measurement
CN203365310U (en) Motor vehicle tail gas remote measuring system
CN110243762A (en) Telemetering motor vehicle tail and supervisory systems and self study high emitter decision algorithm
WO1990005901A1 (en) Remote gas analyzer for motor vehicle exhaust emissions surveillance
CN106840260B (en) On-line monitoring system for pollution source of motor vehicle
US6307201B1 (en) Method and apparatus for selecting a filter for a remote sensing device
CN210221806U (en) Pollution determination calibration vehicle and vehicle-mounted tail gas detection equipment thereof
CN107356564A (en) A kind of remote vehicle emissions measurement system and its detection method
CN109238987B (en) Multispectral automobile exhaust monitoring devices
US20170131202A1 (en) System and method to detect vehicle emissions noncompliance
CN108760665A (en) A kind of rectilinear motor-vehicle tail-gas remote sensing detection system
CN107036984A (en) A kind of automotive emission telemetry system
CN102721648B (en) Vehicle-mounted mobile device for detecting visibility of foggy weather and detecting method thereof
WO2023042985A1 (en) Automatic verification standard filter for multi-lane soot remote measurement device
CN209148039U (en) A kind of motor vehicle remote sense monitoring system
CN109211795B (en) Vertical multi-lane motor vehicle tail gas remote sensing detection method and system
KR102176295B1 (en) A telemetry device equipped with speed-sensitive smoke remote measurement data communication processing technology
CN211122510U (en) Standard gas generating device for pollution determination calibration vehicle and pollution determination calibration vehicle
CN106248543A (en) A kind of dust sensor performance parameter detection method
CN106841112A (en) Telemetering motor vehicle tail equipment based on NDIR and diffusing reflection technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22870075

Country of ref document: EP

Kind code of ref document: A1