JP2023059170A - fluorescence detector - Google Patents

fluorescence detector Download PDF

Info

Publication number
JP2023059170A
JP2023059170A JP2021169142A JP2021169142A JP2023059170A JP 2023059170 A JP2023059170 A JP 2023059170A JP 2021169142 A JP2021169142 A JP 2021169142A JP 2021169142 A JP2021169142 A JP 2021169142A JP 2023059170 A JP2023059170 A JP 2023059170A
Authority
JP
Japan
Prior art keywords
fluorescence
excitation light
fluorescence detector
exciting light
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021169142A
Other languages
Japanese (ja)
Inventor
雄大 青柳
Takehiro Aoyanagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2021169142A priority Critical patent/JP2023059170A/en
Publication of JP2023059170A publication Critical patent/JP2023059170A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a fluorescence detector capable of shortening a warm-up time and an automatic analyzing device with the fluorescence detector.SOLUTION: There is used a fluorescence detector that comprises exciting light irradiation means which irradiates a sample with exciting light and fluorescence detecting means which detects fluorescence emitted from the sample, wherein the exciting light irradiation means is controlled by a light source control part to be turned on and off, the fluorescence detecting means acquires respective detection signals of exciting light emission and exciting light extinction, and a signal processing part takes the difference between the exciting light emission and exciting light extinction as a fluorescence detection signal.SELECTED DRAWING: Figure 1

Description

本発明は、自動分析装置等に備える蛍光検出器に関する。 TECHNICAL FIELD The present invention relates to a fluorescence detector provided in an automatic analyzer or the like.

臨床検査装置は生化学的な反応を正確に測定するために、温調機能と蛍光検出器を備えるものがある。例えば、核酸増幅法(特許文献1)は、蛍光色素で装飾した核酸プローブを用いた試薬と検体とを特定温度で核酸増幅反応することにより、検体中に標識となる病原体があれば蛍光検出器でリアルタイムに病原体の核酸の増幅を測定することができる。 Some clinical examination apparatuses are equipped with a temperature control function and a fluorescence detector in order to accurately measure biochemical reactions. For example, in the nucleic acid amplification method (Patent Document 1), a reagent using a nucleic acid probe decorated with a fluorescent dye and a sample are subjected to a nucleic acid amplification reaction at a specific temperature. can measure nucleic acid amplification of pathogens in real time.

この場合において、試薬からの蛍光は微弱なため、蛍光検出器の受光回路は回路ゲインが大きく、熱による影響を受けやすい構成となる。この問題を解決するために、試料と共に蛍光検出器も温調することで熱の影響を受けにくくする技術が開示されている(特許文献2)。蛍光検出器は装置内部に配置されるので急な環境温度の変動には影響を受けにくくなるが、試薬と検出器の温調を行うことは、温調対象が大きくなるためウォームアップ時間(主電源投入から測定可能になるまでの時間)が短縮しにくく、さらに装置の大型化やコストアップにもつながるといった問題がある。 In this case, since the fluorescence from the reagent is weak, the light receiving circuit of the fluorescence detector has a large circuit gain and is easily affected by heat. In order to solve this problem, a technique has been disclosed in which the temperature of the fluorescence detector is adjusted together with the sample to make it less susceptible to heat (Patent Document 2). Since the fluorescence detector is located inside the device, it is less susceptible to sudden changes in environmental temperature. There is a problem that it is difficult to shorten the time from turning on the power until measurement is possible, and that it also leads to an increase in size and cost of the apparatus.

近年、臨床検査において簡易的かつ正確な測定のために、ポータブル型のPOCT(Point of Care Testing)検査装置が普及しつつある。ポータブルかつ簡易的な測定のために、装置はより一層の小型化が要求され、合わせて短いウォームアップ時間が求められており、検査に用いられる試薬は、より一層の低コスト化が求められている。 In recent years, portable POCT (Point of Care Testing) testing devices have become popular for simple and accurate measurements in clinical testing. For portable and simple measurement, the device is required to be smaller, and the warm-up time is also required to be shorter. there is

装置の小型化と試薬の低コスト化のため反応試薬の容量を低減すると、装置が検出できる蛍光はより微弱となり、蛍光検出器の熱による影響はより大きくなる。ユーザビリティ向上のため、検査に用いられる反応試薬とそれ以外の消耗品を一体としたオールインワンカートリッジとすると、オールインワンカートリッジ全体のサイズダウンのためより反応試薬の容量は低減されるので、蛍光検出器の熱による影響はさらに大きくなる。 If the volume of the reaction reagent is reduced in order to reduce the size of the device and the cost of the reagent, the fluorescence that can be detected by the device becomes weaker and the effect of heat on the fluorescence detector becomes greater. In order to improve usability, an all-in-one cartridge that integrates the reaction reagents used in the test with other consumables can be used. will have an even greater impact.

装置を小型化することにより、蛍光検出器に温調機能を備えない場合においても、試薬の温調機能は蛍光検出器とより近くに配置されることとなる。この試薬の温調機能の熱が蛍光検出器に伝わるため、検出器周囲の温度が平衡に達するまでの間、蛍光検出器の出力が長時間ドリフトすることにより、ウォームアップ時間が短時間化できないという問題が依然として残っていた。 By downsizing the device, even if the fluorescence detector does not have a temperature control function, the temperature control function of the reagent is arranged closer to the fluorescence detector. Since the heat from the temperature control function of this reagent is transmitted to the fluorescence detector, the output of the fluorescence detector drifts for a long time until the temperature around the detector reaches equilibrium, making it impossible to shorten the warm-up time. The problem still remained.

特開2015-031682号公報JP 2015-031682 A 特開2008-256530号公報JP 2008-256530 A

本発明の目的は、前述課題を解決するためになされたものであり、ウォームアップ時間を短時間化できる蛍光検出器、該蛍光検出器を備えた自動分析装置を提供するものである。 SUMMARY OF THE INVENTION An object of the present invention is to solve the aforementioned problems, and to provide a fluorescence detector capable of shortening the warm-up time and an automatic analyzer equipped with the fluorescence detector.

上記課題を解決するために、本発明者らは鋭意検討を重ねた結果、本発明に到達した。
すなわち本発明は、
試料に励起光を照射する励起光照射手段と、当該試料から発する蛍光を検出する蛍光検出手段とを備えた蛍光検出器であって、
励起光照射手段は、点灯と消灯を光源制御部で制御され、
蛍光検出手段は、励起光点灯と励起光消灯の各検出信号を取得し、
信号処理部は、励起光点灯と励起光消灯の差分を蛍光検出信号とする蛍光検出器である。
In order to solve the above problems, the present inventors have reached the present invention as a result of extensive studies.
That is, the present invention
A fluorescence detector comprising excitation light irradiation means for irradiating a sample with excitation light and fluorescence detection means for detecting fluorescence emitted from the sample,
The excitation light irradiation means is controlled by the light source control unit to turn on and off,
The fluorescence detection means acquires each detection signal of excitation light ON and excitation light OFF,
The signal processing unit is a fluorescence detector that uses the difference between excitation light on and excitation light off as a fluorescence detection signal.

励起光が点灯時の検出器信号は、試薬の蛍光と検出器回路の熱ドリフトの両方を含み、励起光が消灯時の検出器信号は、回路の熱ドリフトのみとなる。励起光を点滅し、点灯時と消灯時の検出器信号を取得し、点灯時と消灯時の検出器信号の差分をとることにより、検出器回路の熱ドリフトを除去することが可能となる。これにより、蛍光検出器の信号は短時間で平衡に達することができ、ウォームアップ時間を短時間化することができる。 The detector signal when the excitation light is on contains both the fluorescence of the reagent and the thermal drift of the detector circuit, and the detector signal when the excitation light is off is only the thermal drift of the circuit. By blinking the excitation light, obtaining the detector signal when the light is on and when it is off, and taking the difference between the detector signals when the light is on and when the light is off, it is possible to remove the thermal drift of the detector circuit. As a result, the signal of the fluorescence detector can reach equilibrium in a short time, and the warm-up time can be shortened.

複数の励起・蛍光、例えば3励起3蛍光の場合は、3種類の励起光を順次点灯(例えば450nm→500nm→590nmの順)し、その後に全て消灯する時間を設けることで点灯時と消灯時の検出器信号を取得し、その差分をとることができる。 In the case of multiple excitations/fluorescence, for example, 3 excitations and 3 fluorescences, the 3 types of excitation light are turned on sequentially (for example, in the order of 450 nm → 500 nm → 590 nm), and then all lights are turned off. , and the difference can be taken.

本発明により、蛍光検出器を備えた自動分析装置において、ウォームアップ時間を短時間化することが可能となる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to shorten the warm-up time in an automatic analyzer equipped with a fluorescence detector.

本発明の蛍光検出器の構成図である。1 is a configuration diagram of a fluorescence detector of the present invention; FIG. 実施例1および比較例1における450nm励起495nm蛍光の蛍光検出器信号とインキュベーター温度の時間変化を示した図である。FIG. 2 is a graph showing temporal changes in fluorescence detector signal of 450 nm excitation 495 nm fluorescence and incubator temperature in Example 1 and Comparative Example 1. FIG. 実施例1および比較例1における500nm励起545nm蛍光の蛍光検出器信号とインキュベーター温度の時間変化を示した図である。FIG. 2 is a graph showing temporal changes in fluorescence detector signal of 500 nm excitation 545 nm fluorescence and incubator temperature in Example 1 and Comparative Example 1. FIG. 実施例1および比較例1における590nm励起645nm蛍光)の蛍光検出器信号とインキュベーター温度の時間変化を示した図である。FIG. 2 is a diagram showing temporal changes in the fluorescence detector signal (excitation at 590 nm and fluorescence at 645 nm) and incubator temperature in Example 1 and Comparative Example 1; 3励起3蛍光の蛍光検出器を備えた測定ユニットの外観図である。FIG. 4 is an external view of a measurement unit provided with fluorescence detectors for 3 excitations and 3 fluorescences.

以下、実施例により本発明を詳しく説明するが、本発明は本実施例により限定されるものではない。 EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.

本実施例では、図1に示す本発明の蛍光検出器を用いて、電源投入直後の蛍光検出器のドリフトが低減できるか検証した。試料容器10として無色透明のポリプロピレン製容器を用いた。反応試薬12には蛍光色素で修飾された拡散プローブと検体が混合した溶媒が用いられるが反応と共に蛍光強度が変化するので、反応前の蛍光相当の溶媒とした。励起光照射部14と蛍光検出部15は、励起光450nm蛍光495nm、励起光500nm蛍光545nm、励起光590nm蛍光645nmの3組を用いた(図5参照)。温調ブロック16の制御温度は46℃とした。 In this example, using the fluorescence detector of the present invention shown in FIG. 1, it was verified whether the drift of the fluorescence detector immediately after power-on could be reduced. A transparent and colorless polypropylene container was used as the sample container 10 . As the reaction reagent 12, a solvent in which a diffusion probe modified with a fluorescent dye and a specimen are mixed is used, but since the fluorescence intensity changes with the reaction, the solvent was selected to correspond to the fluorescence before the reaction. As the excitation light irradiation unit 14 and the fluorescence detection unit 15, three sets of excitation light of 450 nm and fluorescence of 495 nm, excitation light of 500 nm and fluorescence of 545 nm, and excitation light of 590 nm and fluorescence of 645 nm were used (see FIG. 5). The control temperature of the temperature control block 16 was set at 46°C.

(比較例1)
電源投入後、温調ブロック16は、加熱開始から約1分後に制御温度の46℃に到達した。蛍光検出部15は、温調ブロック16が制御温度に到達してもその後30分ほど励起光の検出信号が変動し続けた。結果を図2、図3、図4に示す。電源投入から測定開始となるまでのウォームアップ時間は30分以上かかる結果となった。
(Comparative example 1)
After the power was turned on, the temperature control block 16 reached the control temperature of 46° C. about 1 minute after the start of heating. In the fluorescence detection unit 15, the excitation light detection signal continued to fluctuate for about 30 minutes after the temperature control block 16 reached the control temperature. The results are shown in FIGS. 2, 3 and 4. FIG. As a result, the warm-up time from turning on the power to starting the measurement took more than 30 minutes.

(実施例1)
電源投入後、温調ブロック16は、加熱開始から約1分後に制御温度の46℃に到達した。3つの励起光照射部14を順番に点灯し(2.5sec×3、2.5sec消灯)、それに対応する蛍光検出部15の蛍光強度を測定した。蛍光検出部15にて取得した検出信号の変動は、励起光点灯と励起光消灯の検出信号を減算することにより、温調ブロック16が制御温度に到達後、約3分で一定となった。結果を図2、図3、図4に示す。電源投入から測定開始となるまで約5分と、POCT検査装置に求められる、ウォームアップ時間の短時間化を達成することができた。
(Example 1)
After the power was turned on, the temperature control block 16 reached the control temperature of 46° C. about 1 minute after the start of heating. The three excitation light irradiation units 14 were turned on in order (2.5 sec×3, turned off for 2.5 sec), and the corresponding fluorescence intensity of the fluorescence detection unit 15 was measured. Fluctuations in the detection signal obtained by the fluorescence detection unit 15 became constant in about 3 minutes after the temperature control block 16 reached the control temperature by subtracting the excitation light ON and excitation light OFF detection signals. The results are shown in FIGS. 2, 3 and 4. FIG. It takes about 5 minutes from turning on the power to starting measurement, which is a short warm-up time required for a POCT inspection device.

10:試料容器
12:反応試薬
14:励起光照射部
14a:励起光源
14b:光学フィルタ(励起光側)
14c:励起光有効径
15:蛍光検出部
15a:受光素子
15b:光学フィルタ(蛍光側)
15c:蛍光有効径
16:温調ブロック
10: sample container 12: reaction reagent 14: excitation light irradiation unit 14a: excitation light source 14b: optical filter (excitation light side)
14c: Effective diameter of excitation light 15: Fluorescence detector 15a: Light receiving element 15b: Optical filter (fluorescence side)
15c: fluorescent effective diameter 16: temperature control block

Claims (4)

試料に励起光を照射する励起光照射手段と、当該試料から発する蛍光を検出する蛍光検出手段とを備えた蛍光検出器であって、
励起光照射手段は、点灯と消灯を光源制御部で制御され、
蛍光検出手段は、励起光点灯と励起光消灯の各検出信号を取得し、
信号処理部は、励起光点灯と励起光消灯の差分を蛍光検出信号とする
蛍光検出器。
A fluorescence detector comprising excitation light irradiation means for irradiating a sample with excitation light and fluorescence detection means for detecting fluorescence emitted from the sample,
The excitation light irradiation means is controlled by the light source control unit to turn on and off,
The fluorescence detection means acquires each detection signal of excitation light ON and excitation light OFF,
The signal processor is a fluorescence detector that uses the difference between excitation light on and excitation light off as a fluorescence detection signal.
励起光照射手段と蛍光検出手段を複数備えたことを特徴とする請求項1に記載の蛍光検出器。 2. A fluorescence detector according to claim 1, comprising a plurality of excitation light irradiation means and fluorescence detection means. 励起光照射手段と蛍光検出手段をそれぞれ3つ備えたことを特徴とする、請求項1または2に記載の蛍光検出器。 3. The fluorescence detector according to claim 1, comprising three excitation light irradiation means and three fluorescence detection means. 請求項1~3のいずれか1項に記載の蛍光検出器を備えた、自動分析装置。 An automatic analyzer comprising the fluorescence detector according to any one of claims 1 to 3.
JP2021169142A 2021-10-14 2021-10-14 fluorescence detector Pending JP2023059170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021169142A JP2023059170A (en) 2021-10-14 2021-10-14 fluorescence detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021169142A JP2023059170A (en) 2021-10-14 2021-10-14 fluorescence detector

Publications (1)

Publication Number Publication Date
JP2023059170A true JP2023059170A (en) 2023-04-26

Family

ID=86095466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021169142A Pending JP2023059170A (en) 2021-10-14 2021-10-14 fluorescence detector

Country Status (1)

Country Link
JP (1) JP2023059170A (en)

Similar Documents

Publication Publication Date Title
WO2015029595A1 (en) Nucleic acid analysis device and device diagnosis method
US9829430B2 (en) Spectrophotometer
US20140349298A1 (en) Portable, low power instrument for the optoelectronic detection of pathogens using isothermal nucleic acid amplification protocols
US20090032743A1 (en) Laboratory apparatus for simultaneously carrying out reactions in a plurality of samples
US10856391B2 (en) Method to correct signal light intensities measured by a detector of a detection unit in a laboratory instrument
JP5249777B2 (en) Method and apparatus for measuring fluorescence of a sample and use thereof
JP5946776B2 (en) Automatic analyzer
JP2017123813A (en) Testing apparatus
JP5057377B2 (en) Method and apparatus for measuring biological components or their functions
JP2023059170A (en) fluorescence detector
US20200225158A1 (en) Analyzer
JP2012515909A (en) Sample optical measuring apparatus and optical measuring method
JP2011232205A (en) Light analyzer
KR20190136650A (en) Fluorescence optical appratus and system for biosensor
JP6476275B2 (en) Analysis apparatus and analysis method thereof
KR20110040851A (en) Apparatus for measurement of silicon concentration
JP4145892B2 (en) Thermal lens spectroscopic analysis system and thermal lens signal correction method
JP2018011544A (en) Microorganism detection method and microorganism detection apparatus
CN218382403U (en) PCR optical detection assembly
JP2006098228A (en) Spectrophotometer, biochemical analyzer and measuring method
JP5737743B2 (en) Method for evaluating changes in samples containing biologically derived molecules and other water-containing organic polymers, and microwave cavity resonator used in this method
WO2023037097A1 (en) Method and apparatus for determining optically-manifest change in temperature controlled process
JP2007057317A (en) Automatic analyzer
WO2017110557A1 (en) Inspection device
RU2188403C1 (en) Minireflectometer-colorimeter for analysis of liquid and gaseous media by reagent indicator paper tests