JPH04125214A - Powder transport method - Google Patents

Powder transport method

Info

Publication number
JPH04125214A
JPH04125214A JP2242715A JP24271590A JPH04125214A JP H04125214 A JPH04125214 A JP H04125214A JP 2242715 A JP2242715 A JP 2242715A JP 24271590 A JP24271590 A JP 24271590A JP H04125214 A JPH04125214 A JP H04125214A
Authority
JP
Japan
Prior art keywords
powder
powder conveying
hollow pipe
vibration
traveling wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2242715A
Other languages
Japanese (ja)
Other versions
JP2829938B2 (en
Inventor
Yoshiro Tomikawa
義朗 富川
Takehiro Takano
高野 剛浩
Kenichiro Waki
健一郎 脇
Takashi Osawa
敬士 大沢
Hiroaki Tsuchiya
土屋 廣明
Nobuyuki Ito
展之 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2242715A priority Critical patent/JP2829938B2/en
Priority to US07/757,638 priority patent/US5270484A/en
Publication of JPH04125214A publication Critical patent/JPH04125214A/en
Priority to US08/122,287 priority patent/US5414497A/en
Application granted granted Critical
Publication of JP2829938B2 publication Critical patent/JP2829938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Dry Development In Electrophotography (AREA)
  • Jigging Conveyors (AREA)

Abstract

PURPOSE:To transport powder in a long distance with a small energy by generating a progressive wave by way of giving oscillation to a powder transport member in the radial direction and damping the progressive wave toward the end part. CONSTITUTION:A piezoelectric element 2 for generation of supersonic oscillation is provided on the end part of a hollow pipe 1 in the longitudinal direction, and an alternating voltage is applied from a power source 3 and oscillation is generated on an outer wall in the radial direction. Thereafter, a progressive wave is generated in the hollow pipe 1 in the longitudinal direction. The hollow pipe 1 is made of acrylic and has a comparatively large damping force, and therefore, the progressive wave is to be damped toward the other end part. Accordingly, a reflective wave is to be little on the end part and the progressive wave is not disturbed. Then, powder in the hollow pipe 1 is transported in the A direction which is the reversal direction of the direction of the progressive wave. Consequently, it is possible to transport powder with a small energy in a long distance, control the transport amount by way of changing an applied voltage and improve transport efficiency.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は粉体を搬送する方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for conveying powder.

[従来の技術] 従来、粉体を搬送する方法として最も一般的な技術はス
クリューを用いたものであり、あらゆる粉体搬送手段に
用いられている。これは例えばパイプ内の粉体をパイプ
内部に設けられたスクリューを回転することによって搬
送するものである。
[Prior Art] Conventionally, the most common technique for conveying powder is one using a screw, which is used in all types of powder conveying means. In this method, for example, powder inside a pipe is transported by rotating a screw provided inside the pipe.

[発明か解決しようとする課II] しかしなから、上記従来例はパイプ内のスクリューをモ
ータによって回転させなければならないため、消費電力
が大きくなり回転音も比較的大きくなるという問題点か
あった。
[Case II to be solved by the invention] However, in the conventional example described above, the screw in the pipe had to be rotated by a motor, which resulted in problems such as high power consumption and relatively loud rotation noise. .

構成もスクリューという比較的複雑な部材とモータか必
要となりスペース的にも犬きくなりコスト的にも高くな
ってしまう。
The configuration also requires a relatively complicated member called a screw and a motor, which takes up space and increases costs.

また、パイプ内壁とスクリューの隙間か大きいと搬送効
率か落ちてしまい、逆にスクリューとパイプ内壁との隙
間か小さいと搬送効率は上がるか、スクリューとパイプ
内壁との摩擦によってスクリューの回転トルクか大きく
なるという問題点も有していた。
Also, if the gap between the inner wall of the pipe and the screw is large, the conveyance efficiency will decrease, and conversely, if the gap between the screw and the inner wall of the pipe is small, the conveyance efficiency will increase, or the rotational torque of the screw will increase due to the friction between the screw and the inner wall of the pipe. It also had the problem of becoming.

さらに、内壁とスクリューの摩擦等により粉体か劣化、
破壊、あるいは摩擦熱によって溶融し・てしまうことか
ある、また、一般に粉体は帯電しゃすいため、搬送中に
粉体か帯電し、スクリューに付着することか多く、ひど
い場合は搬送不良か発生するという問題点もあった。
Furthermore, the powder deteriorates due to friction between the inner wall and the screw, etc.
It may break or melt due to frictional heat.Also, since powders are generally not electrically charged, they often become electrically charged during transport and adhere to the screws, and in severe cases, a transport failure may occur. There was also the problem of doing so.

本発明は上記問題点を解決し、低消費電力、低騒音てあ
って搬送効率か良い粉体搬送装置を提供することを目的
としている。
It is an object of the present invention to solve the above-mentioned problems and provide a powder conveying device with low power consumption, low noise, and high conveying efficiency.

[課題を解決するための手段コ 本発明によれば、上記目的は、 粉体を長手方向へ搬送する粉体搬送部材の一端部に振動
発生手段によって半径方向への振動を与え、該振動によ
って長王、方向に進行波を発生させ、他端部に向けて該
進行波を減衰させることにより、上記粉体搬送部材内で
所定方向に粉体を搬送する、 ことにより達成される。
[Means for Solving the Problems] According to the present invention, the above object is to apply vibration in the radial direction by a vibration generating means to one end of a powder conveying member that conveys powder in the longitudinal direction, and to This is achieved by conveying the powder in a predetermined direction within the powder conveying member by generating a traveling wave in one direction and attenuating the traveling wave toward the other end.

[作用] 本発明によれば、振動発生手段によって、粉体搬送部材
の半径方向に振動を発生させ、進行波を発生させる。進
行波は、上記粉体搬送部材の端部へと進むか、この際、
進行波は徐々に減衰しているので、端部において、反射
波を発生させない。
[Operation] According to the present invention, the vibration generating means generates vibration in the radial direction of the powder conveying member to generate a traveling wave. The traveling wave advances to the end of the powder conveying member, or in this case,
Since the traveling wave is gradually attenuated, no reflected wave is generated at the end.

かくして、進行波は安定した状態となり、進行波の進行
方向と逆方向に粉体か搬送される。
In this way, the traveling wave becomes stable, and the powder is transported in a direction opposite to the traveling direction of the traveling wave.

[実施例コ 本発明の第一実施例ないし第三実施例を添付図面に基づ
いて説明する。
[Embodiments] First to third embodiments of the present invention will be described based on the accompanying drawings.

〈第一実施例〉 先ず、本発明の第一実施例2について第1図ないし第9
図を用いて説明する。
<First Embodiment> First, FIGS. 1 to 9 regarding the first embodiment 2 of the present invention.
This will be explained using figures.

第1図に本発明の第一の実施例を示す。この装置は本発
明を利用した粉体搬送装置である。
FIG. 1 shows a first embodiment of the present invention. This device is a powder conveying device that utilizes the present invention.

第1図中1は、粉体搬送部材たるアクリルの中空パイプ
である。内部には粉体く図示せず〕か充填しである。中
空パイプlの長手方向手前端部には振動発生手段たる超
音波振動発生用圧電素子2か設けてあり交流電源3によ
って交流電圧が印加されている。圧電素子2は第2図に
示すように中空パイプ1の断面外壁が二点鎖線のような
振動(r方向)を起こすような超音波振動を発生する。
Reference numeral 1 in FIG. 1 is an acrylic hollow pipe serving as a powder conveying member. The inside is filled with powder (not shown). An ultrasonic vibration generating piezoelectric element 2 serving as vibration generating means is provided at the front end of the hollow pipe 1 in the longitudinal direction, and an alternating current voltage is applied by an alternating current power source 3. As shown in FIG. 2, the piezoelectric element 2 generates ultrasonic vibrations that cause the cross-sectional outer wall of the hollow pipe 1 to vibrate as indicated by the two-dot chain line (in the r direction).

圧電素子2によって励振されて中空バイ−ブ1は第3図
のような進行波が発生する。中空バイブlはアクリル製
なのて比較的大きな減衰特性を示し、第3図のように進
行波は減衰していく。したがって、端部にて反射波かほ
とんどなく進行波か反射波によって乱されることかない
Excited by the piezoelectric element 2, the hollow vibe 1 generates a traveling wave as shown in FIG. Since the hollow vibrator l is made of acrylic, it exhibits a relatively large attenuation characteristic, and the traveling wave is attenuated as shown in FIG. Therefore, there is almost no reflected wave at the end, and it is not disturbed by traveling waves or reflected waves.

このような構成によって中空パイプ内の粉体は進行波の
方向とは逆方向(第1図中A)に搬送されることになる
With this configuration, the powder inside the hollow pipe is transported in the direction opposite to the direction of the traveling wave (A in FIG. 1).

また、振動モードは第2図のモートに限られることなく
例えば第4図の(A)あるいは(B)の中空パイプ断面
図(外壁のみ図示)の二点鎖線のごとく励振させてもよ
い。
Further, the vibration mode is not limited to the moat shown in FIG. 2, and may be excited as shown by the chain double-dashed line in the cross-sectional view of the hollow pipe (only the outer wall is shown) in FIG. 4 (A) or (B), for example.

以上のような本実施例装置に基づいて以下のような実験
を行なった。中空アクリルパイプには外径15mm、内
径10mmのものを用い、圧電素子を取り付けた側の逆
端部に粉体供給用ホッパーを接続した。また、粉体とし
て一成分磁性トナー平均粒径12壓層を用いた。実験の
結果、この粉体の搬送力は5011g/sinであった
The following experiments were conducted based on the apparatus of this embodiment as described above. A hollow acrylic pipe with an outer diameter of 15 mm and an inner diameter of 10 mm was used, and a powder supply hopper was connected to the opposite end of the pipe to which the piezoelectric element was attached. Further, a single-component magnetic toner having an average particle size of 12 layers was used as the powder. As a result of the experiment, the conveying force of this powder was 5011 g/sin.

さらに粉体をガラスピーズ平均粒径601L■及びフェ
ライトキャリア平均粒径60ル■及び非磁性トナー平均
粒径81L園の粉体及びこれらの混合体を用いても磁性
トナーと同様の搬送力を得ることか判った。
Furthermore, the same conveying force as that of magnetic toner can be obtained by using powders of glass beads with an average particle size of 601 L, ferrite carrier with an average particle size of 60 L, non-magnetic toner with an average particle size of 81 L, and a mixture thereof. I realized that.

このとき粉体搬送量は圧電素子に印加する電圧に比例し
て変化し、粉体搬送量の制御か可能となった。
At this time, the amount of powder conveyed changes in proportion to the voltage applied to the piezoelectric element, making it possible to control the amount of powder conveyed.

また、電圧の印加時間をパルス的に変化させてもよい。Further, the voltage application time may be changed in a pulse manner.

上記圧電素子2は第5図に示すごとく厚み211−のセ
ラミックPZTを両面から電極て挟み込むタイプである
The piezoelectric element 2 is of a type in which ceramic PZT having a thickness of 211 mm is sandwiched between electrodes from both sides, as shown in FIG.

電極間に電圧を印加することてセラミックの伸縮力によ
り内径及び外径方向つまりr方向に伸ひ縮み振動か励起
され、その振動か中空パイプ1に進行波として伝達され
る。また、ピーク対ピーク電圧100v、周波数50K
Hzの交流電圧を印加していか、これは圧電素子の形状
による共振モートから算出された値であり、圧電素子の
厚み及び形状を変えることで共振周波数は変化させうる
。また、本実施例では圧電素子は一層のみであるか第6
図に示すように多数個サンドイッチタイプ(多積層型)
にすれば寄らに励起振動量は大きくてき、中空バイブに
伝わる進行波も大きくなるため粉体搬送力も増加する。
By applying a voltage between the electrodes, expansion and contraction vibrations are excited in the inner and outer diameter directions, that is, in the r direction, due to the expansion and contraction force of the ceramic, and the vibrations are transmitted to the hollow pipe 1 as traveling waves. Also, peak-to-peak voltage 100V, frequency 50K
When an AC voltage of Hz is applied, this value is calculated from the resonance moat depending on the shape of the piezoelectric element, and the resonance frequency can be changed by changing the thickness and shape of the piezoelectric element. In addition, in this embodiment, the piezoelectric element is only in one layer or in the sixth layer.
Multiple sandwich type (multi-layered type) as shown in the figure
As the amount of excitation vibration becomes larger, the traveling wave transmitted to the hollow vibrator also becomes larger, and the powder conveying force also increases.

また、第7図のように圧電素子の円周部に電極を設けて
も良い。さらに、圧電素子の電極を細分化し、印加電圧
の極性を変えることて種々の振動モートを得るごとか”
T’f?どなる。
Further, as shown in FIG. 7, electrodes may be provided around the circumference of the piezoelectric element. Furthermore, by subdividing the electrodes of the piezoelectric element and changing the polarity of the applied voltage, various modes of vibration can be obtained.
T'f? bawl.

具体的には第8図の電極配列により第4図(A)に示す
((1,1))そ−トと呼ばれるl軸対称型の振動を励
振することかてきる。
Specifically, by using the electrode arrangement shown in FIG. 8, it is possible to excite l-axis symmetrical vibration called ((1,1)) soto shown in FIG. 4(A).

またさらに第9図に示すように電極分割を細分化すると
第41A([3)のように((2,1))干−トと呼ば
れる中心軸の平行振動を励起てきる。さらにこれらの電
極に印加する交流電圧の位相を90°ずらすことて振動
の回転モートも可能となる。
Furthermore, if the electrode division is further subdivided as shown in FIG. 9, parallel vibrations of the central axis called ((2,1)) vibrations, as shown in No. 41A ([3)], are excited. Furthermore, by shifting the phase of the alternating current voltage applied to these electrodes by 90 degrees, a rotating mode of vibration is also possible.

このように電極分割の細分化及びそれぞれの電極への印
加電圧の位相をずらすことて多くの振動モートを励起て
きる。これらの種々のモートを活用することて、さまさ
まな粉体の特性に合せた最適な励起モードを選択し、そ
れぞれの粉体に合せて十分な搬送力を得ることができる
In this way, by subdividing the electrodes and shifting the phase of the voltage applied to each electrode, many vibration motes can be excited. By utilizing these various motes, it is possible to select the optimal excitation mode that matches the characteristics of various powders and obtain sufficient conveying force for each powder.

粉体の質量、比重、すべり性、粘着性、帯電性はさまさ
まてあり、中空バイブか同一でも、粉体の搬送性はその
粉体自身の特性に強く依存するためである。
This is because the mass, specific gravity, slipperiness, adhesion, and chargeability of powder vary, and even if the hollow vibrator is the same, the transportability of powder strongly depends on the characteristics of the powder itself.

本実施例はアクリル中空パイプを用いているが、この構
成は粉体搬送部材であるアクリル中空パイプの一部に与
えられた振動の振幅がその部材、つまりアクリル中空パ
イプ自身の振動の吸収により減衰されている。本発明は
励振された粉体搬送部材の振幅が、進行波方向端部にお
いて減衰しているよう構成し、進行波を発生させ、粉体
を搬送させるものであるか、本実施例のごとき構成にて
も効果かありかつ簡易、安価にて実現できる。
This example uses an acrylic hollow pipe, and in this configuration, the amplitude of vibrations applied to a part of the acrylic hollow pipe, which is a powder conveying member, is attenuated by absorption of the vibration of that member, that is, the acrylic hollow pipe itself. has been done. The present invention is configured such that the amplitude of the excited powder conveying member is attenuated at the end in the direction of the traveling wave, and a traveling wave is generated to convey the powder. It is effective and can be realized easily and inexpensively.

構成は減衰の大きな材質を用いる他にも減衰の小さい材
質、たとえば金属パイプの一部に減衰の大きな材質をは
りつける、あるいは金属パイプ自身の形状を溝をつける
等はどこして減衰を大きくすることか挙げられる。
In addition to using materials with high attenuation, the structure can also be made using materials with low attenuation, such as attaching a material with high attenuation to a part of the metal pipe, or adding grooves to the shape of the metal pipe itself to increase the attenuation. There are several examples.

前記したように、本発明の特徴は入射した波の端部にお
ける反射波か進行波と重なり粉体の搬送を妨げることを
抑えたものであるか、第1表に示すごとく、様々な形状
の搬送部材、■はアクリル製中空パイプ直径20++n
、■はアクリル製中空パイプ直径ioam、(φはアル
ミニウム製中空パイプ直径18mmに[1のアクリルを
かぶせて直径20mmにしだものである。使用したパイ
プの長さはl0cmがら1mまて変えて実験を行なった
As mentioned above, the feature of the present invention is that it suppresses the reflected wave at the end of the incident wave or the overlapping of the traveling wave and hinders the conveyance of the powder. Conveyance member, ■ is acrylic hollow pipe diameter 20++n
, ■ is the diameter of the hollow acrylic pipe ioam, (φ is the hollow aluminum pipe with a diameter of 18 mm and covered with acrylic from [1) to make the diameter 20 mm.The length of the pipe used was changed from 10 cm to 1 m in the experiment. I did it.

実験の結果、込射振輻に対する端部振幅の割合をパラメ
ータとすれば長さによらず同し結果となることか判か)
だ。
As a result of the experiment, if the ratio of the end amplitude to the incident radiation is used as a parameter, the results will be the same regardless of the length.)
is.

また、これらの結果より振動発生手段により励振された
粉体搬送部材の振幅かその端部において局以下になるこ
とか望ましいことか判かる。
Furthermore, from these results, it can be seen whether it is desirable for the amplitude of the powder conveying member excited by the vibration generating means to be less than the amplitude at the end thereof.

材質としてはアクリル、ナイロン、POM、 ABS、
ポリフロピレン、ポリスチロール等か適している。
Materials include acrylic, nylon, POM, ABS,
Polypropylene, polystyrene, etc. are suitable.

(以下余白) 第 表 く第二実施例〉 次に本発明の第二実施例を第10図及び第11図に基づ
いて説明する。なお、第一実施例との共通箇所には同一
符号を付して説明を省略する。
(The following is a blank space) Second Embodiment> Next, a second embodiment of the present invention will be described based on FIGS. 10 and 11. Note that the same reference numerals are given to the same parts as in the first embodiment, and the explanation thereof will be omitted.

本実施例は第111図に示すように中空バーイブ2の代
わりに溝状の搬送部材lを用いたところか第一実施例と
異なる。本実施例においても搬送部材にはアクリルを適
用している。
This embodiment differs from the first embodiment in that a groove-shaped conveying member 1 is used instead of the hollow barb 2, as shown in FIG. 111. In this embodiment as well, acrylic is used for the conveying member.

搬送原理は第一実施例と同様で交流電源3から圧電素子
2に電圧を印加しそれぞれの圧電素子の進行波を減衰さ
せて長い溝内の粉体を搬送するものである。
The principle of conveyance is the same as in the first embodiment, in which a voltage is applied from the AC power source 3 to the piezoelectric elements 2 to attenuate the traveling waves of each piezoelectric element to convey the powder in the long groove.

これは中空パイプてはなく上部が開放されているためこ
の溝開口部より粉体の補給等が簡単に行なえる利点をも
つ。
This has the advantage that powder can be easily replenished through the groove opening because the upper part is open instead of a hollow pipe.

また、第11図に示すように粉体搬送部材lを樋状にし
ても同様の効果を奏することかできる。
Furthermore, as shown in FIG. 11, the same effect can be obtained even if the powder conveying member l is shaped like a gutter.

〈第三実施例〉 次に、本発明の第三実施例を第12図及び第13図(A
)、(B)を用いて説明する。なお、第一実施例との共
通箇所には同一符号を付して説明を省略する。
<Third Embodiment> Next, a third embodiment of the present invention is shown in FIGS. 12 and 13 (A
) and (B). Note that the same reference numerals are given to the same parts as in the first embodiment, and the explanation thereof will be omitted.

本実施例は第12図に示すように圧電素子2を中空パイ
プlの下部に固定したところか第一実施例と異なる。こ
れは積層圧電素子等の板状の圧電素子を第13図(A)
、(B)に示すように振動させ中空パイプの一部を圧電
素子により叩くことで進行波を一部から発生させ粉体の
搬送を行なう方法であり他の実施例と同様に十分な搬送
部が発生する。
This embodiment differs from the first embodiment in that the piezoelectric element 2 is fixed to the lower part of the hollow pipe 1, as shown in FIG. This is a plate-shaped piezoelectric element such as a laminated piezoelectric element as shown in Figure 13 (A).
, as shown in (B), a part of the hollow pipe is vibrated and struck by a piezoelectric element to generate a traveling wave from a part to transport the powder. As in the other embodiments, there is a sufficient transport part. occurs.

このような構成にすれば簡易コンパクトに粉体搬送が実
現できパイプの交換、コスト等に有利である。
With such a configuration, powder transportation can be realized in a simple and compact manner, which is advantageous in terms of pipe replacement, cost, etc.

[発明の効果] 以上説明したように、本発明によれば、粉体搬送部材に
、振動発生手段によって半径方向への振動を与えて進行
波を発生させ、該進行波を端部に向けて減衰させるのて
、少ないエネルギーで効率良く粉体を長距離搬送するこ
とかできる。
[Effects of the Invention] As explained above, according to the present invention, the vibration generating means applies vibration to the powder conveying member in the radial direction to generate a traveling wave, and directs the traveling wave toward the end. By attenuating it, powder can be efficiently transported over long distances with less energy.

また、粉体か劣化、破壊、溶融することがなく、かつ、
円滑に搬送することかできる。
In addition, the powder does not deteriorate, break, or melt, and
It can be transported smoothly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第一実施例装置の概略構成を示す斜視
図、第211!!Jは第1同装置における粉体搬送部材
の外壁の振動を説明する図、第3図は第1図装置に発生
する進行波を示す図、第4図(A)は第1図装置におけ
る粉体搬送部材のl軸対称型の振動を示す図、第4図(
6)は第1図装置における粉体搬送部材の非軸対称型の
振動を示す図、第5図は第1図装置の振動発生手段の概
略構成を示す図、第6図は第5図手段を積層した場合の
概略構成を示す図、第7図は第5図手段の円周部に電極
を設けた場合の概略構成を示す図、第8図は第5図手段
の((1,1))モードの電極配列を示す図、第9図は
第5図手段の((2,1))モードの電極配列を示す図
、第10図は本発明の第二実施例装置の概略構成を示す
斜視図、第11図は第1O図装置の粉体搬送部材を樋状
にした場合の概略構成を示す斜視図、第12図は本発明
の第三実施例装置の概略構成を示す斜視図、第13図(
A)は第12図装置の振動発生手段の振動形態を示す図
、第13図(B)は第12図装置の振動発生手段の他の
振動形態を示す図である。
FIG. 1 is a perspective view showing a schematic configuration of a device according to a first embodiment of the present invention, and FIG. 211! ! J is a diagram illustrating the vibration of the outer wall of the powder conveying member in the first device, FIG. 3 is a diagram showing traveling waves generated in the device shown in FIG. 1, and FIG. Figure 4 shows the l-axis symmetrical vibration of the body conveying member (
6) is a diagram showing the non-axisymmetric vibration of the powder conveying member in the device shown in FIG. 1, FIG. 5 is a diagram showing a schematic configuration of the vibration generating means of the device shown in FIG. 1, and FIG. 7 is a diagram showing a schematic configuration when electrodes are provided on the circumferential part of the means shown in FIG. 5, and FIG. )) mode, FIG. 9 is a diagram showing the electrode arrangement in the ((2,1)) mode of the means shown in FIG. FIG. 11 is a perspective view showing a schematic configuration when the powder conveying member of the device shown in FIG. , Figure 13 (
A) is a diagram showing a vibration form of the vibration generating means of the apparatus shown in FIG. 12, and FIG. 13(B) is a diagram showing another vibration form of the vibration generating means of the apparatus shown in FIG.

Claims (6)

【特許請求の範囲】[Claims] (1)粉体を長手方向へ搬送する粉体搬送部材の一端部
に振動発生手段によって半径方向への振動を与え、該振
動によって長手方向に進行波を発生させ、他端部に向け
て該進行波を減衰させることにより、上記粉体搬送部材
内で所定方向に粉体を搬送する粉体搬送方法。
(1) Vibration is applied in the radial direction by a vibration generating means to one end of the powder conveying member that conveys the powder in the longitudinal direction, and the vibration generates a traveling wave in the longitudinal direction. A powder conveying method that conveys powder in a predetermined direction within the powder conveying member by attenuating a traveling wave.
(2)進行波の減衰は、粉体搬送部材自身の振動の吸収
により行なわれることとする請求項(1)に記載の粉体
搬送方法。
(2) The powder conveying method according to claim 1, wherein the traveling wave is attenuated by absorbing vibrations of the powder conveying member itself.
(3)粉体搬送部材の進行波方向端部における進行波の
振幅は振動発生手段取付け位置の半分になるように設定
することとする請求項(1)に記載の粉体搬送方法。
(3) The powder conveying method according to claim (1), wherein the amplitude of the traveling wave at the end of the powder conveying member in the traveling wave direction is set to be half of the vibration generating means attachment position.
(4)振動発生手段には圧電素子を用いることとする請
求項(1)ないし請求項(3)に記載の粉体搬送方法。
(4) The powder conveying method according to any one of claims (1) to (3), wherein a piezoelectric element is used as the vibration generating means.
(5)粉体搬送部材は中空パイプであることとする請求
項(1)ないし請求項(4)に記載の粉体搬送方法。
(5) The powder conveying method according to any one of claims (1) to (4), wherein the powder conveying member is a hollow pipe.
(6)振動発生手段は、超音波振動することとする請求
項(1)ないし請求項(5)に記載の粉体搬送方法。
(6) The powder conveying method according to any one of claims (1) to (5), wherein the vibration generating means generates ultrasonic vibration.
JP2242715A 1990-09-14 1990-09-14 Powder transfer method Expired - Fee Related JP2829938B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2242715A JP2829938B2 (en) 1990-09-14 1990-09-14 Powder transfer method
US07/757,638 US5270484A (en) 1990-09-14 1991-09-11 Powder conveying device
US08/122,287 US5414497A (en) 1990-09-14 1993-10-21 Powder conveying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2242715A JP2829938B2 (en) 1990-09-14 1990-09-14 Powder transfer method

Publications (2)

Publication Number Publication Date
JPH04125214A true JPH04125214A (en) 1992-04-24
JP2829938B2 JP2829938B2 (en) 1998-12-02

Family

ID=17093164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2242715A Expired - Fee Related JP2829938B2 (en) 1990-09-14 1990-09-14 Powder transfer method

Country Status (1)

Country Link
JP (1) JP2829938B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0639717A1 (en) * 1993-07-23 1995-02-22 Holzapfel, Martin Pyroelectrical container
EP2857906A1 (en) * 2013-10-01 2015-04-08 Canon Kabushiki Kaisha Powder feeding mechanism, powder feeding method, developer accommodating container, cartridge and image forming apparatus
JP2016071299A (en) * 2014-10-02 2016-05-09 キヤノン株式会社 Developer container, cartridge, and image forming apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0639717A1 (en) * 1993-07-23 1995-02-22 Holzapfel, Martin Pyroelectrical container
EP2857906A1 (en) * 2013-10-01 2015-04-08 Canon Kabushiki Kaisha Powder feeding mechanism, powder feeding method, developer accommodating container, cartridge and image forming apparatus
CN104516246A (en) * 2013-10-01 2015-04-15 佳能株式会社 Powder feeding mechanism, powder feeding method, developer accommodating container, cartridge and image forming apparatus
US9715191B2 (en) 2013-10-01 2017-07-25 Canon Kabushiki Kaisha Powder feeding mechanism, powder feeding method, developer accommodating container, cartridge and image forming apparatus
JP2016071299A (en) * 2014-10-02 2016-05-09 キヤノン株式会社 Developer container, cartridge, and image forming apparatus

Also Published As

Publication number Publication date
JP2829938B2 (en) 1998-12-02

Similar Documents

Publication Publication Date Title
US5270484A (en) Powder conveying device
JP3852949B2 (en) Ultrasonic transducer
JPH07152264A (en) Vibration system of electrophotographic device
JPH04125214A (en) Powder transport method
Saito et al. Resonant mode design for noncontact ultrasonic motor with levitated rotor
JPH06511131A (en) Sonic or ultrasonic transducer
JP2722407B2 (en) Powder transfer method
JP3539187B2 (en) Power generation equipment and electronic equipment
US7457199B2 (en) Shear mode folded shell projector
JP2002080001A (en) Powder supplying device and powder filling device
JP2994673B2 (en) Method for transporting granular objects and developing method using the same
JPH04189215A (en) Powder material carrying device
EP0039986A1 (en) An acoustic transducer system
JPH10327590A (en) Surface acoustic wave actuator
JPH04322271A (en) Powder carrying device
JP2012191429A (en) Aerial ultrasonic sensor
JPH04365070A (en) Powder conveyor
JP2513241B2 (en) Ultrasonic motor
SU845129A1 (en) Acoustic transducer
JPH07194154A (en) Ultrasonic motor and torsional oscillation generating device
WO2021187243A1 (en) Ultrasonic transducer, ultrasonic sensor, object detection device, object detection method, and object detection program
JPH07157043A (en) Powder carrier devicer
JPS59204479A (en) Surface wave motor utilizing supersonic wave vibration
JPH03273873A (en) Actuator by rayleigh mode surface acoustic wave
JP3575569B2 (en) Rotor floating ultrasonic motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070925

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080925

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090925

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees