JPH04124293A - Nickel-molybdenum alloy plating bath and plating method - Google Patents

Nickel-molybdenum alloy plating bath and plating method

Info

Publication number
JPH04124293A
JPH04124293A JP24314790A JP24314790A JPH04124293A JP H04124293 A JPH04124293 A JP H04124293A JP 24314790 A JP24314790 A JP 24314790A JP 24314790 A JP24314790 A JP 24314790A JP H04124293 A JPH04124293 A JP H04124293A
Authority
JP
Japan
Prior art keywords
amount
plating
nickel
bath
alloy plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24314790A
Other languages
Japanese (ja)
Other versions
JP2522101B2 (en
Inventor
Hourin En
袁 宝林
Masamichi Kowaka
小若 正倫
Katsusato Riyuu
劉 克里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uemera Kogyo Co Ltd
C Uyemura and Co Ltd
Original Assignee
Uemera Kogyo Co Ltd
C Uyemura and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uemera Kogyo Co Ltd, C Uyemura and Co Ltd filed Critical Uemera Kogyo Co Ltd
Priority to JP2243147A priority Critical patent/JP2522101B2/en
Publication of JPH04124293A publication Critical patent/JPH04124293A/en
Application granted granted Critical
Publication of JP2522101B2 publication Critical patent/JP2522101B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PURPOSE:To efficiently form an Ni-Mo alloy plating film having high corrosion resistance by increasing the amt. of ammonia added to a basic bath and specifying the compsn. and pH of the bath. CONSTITUTION:This Ni-Mo alloy plating bath contains a water-soluble Ni compd., a water-soluble Mo compd., citrate and an aq. ammonia soln. added by 0.4-1.5mol/l (expressed in terms of NH3) and has 1:1 to 4:1 molar ratio of Ni:Mo, 2:1 to 5:1 molar ratio of NH3:Ni and pH>=8. When electroplating is carried out with this plating bath at 0.1-20A/dm<2> cathode current density, an amorphous Ni-Mo alloy plating film contg. >=20%, especially >=30% Mo having superior corrosion resistance can be obtd. with high current efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、モリブデン量が20%(重量%、以下同じ)
以上のニッケル−モリブデン合金めっき皮膜を高い陰極
電流効率で得ることができ、実用性の高いめっき浴及び
めっき方法に関する。
[Detailed description of the invention] [Industrial application field] The present invention has a molybdenum content of 20% (weight%, the same hereinafter).
The present invention relates to a highly practical plating bath and plating method that can obtain the above nickel-molybdenum alloy plating film with high cathode current efficiency.

〔従来の技術及び発明が解決しようとする課題〕従来、
ニッケル−モリブデン(Ni−Mo)合金めっき皮膜を
形成するためのめっき浴として、硫酸ニッケル(NiS
O4・6H20)、モリブデン酸ナトリウム(Na2M
oO,・2H20)に錯化剤としてクエン酸塩や酒石酸
塩を加えた浴が知られている。これらの浴は酸性浴と塩
基性浴とに大別され、酸性浴はpH3〜5、塩基性浴は
通常pH10〜10.5であるが、酸性浴では陰極電流
効率が低く、良好なめっき皮膜が得難いという問題があ
る。一方、塩基性浴は上記pH10〜10.5に調整す
るため、アンモニア水(28%)を7〜17d/l(N
H3として0゜1〜0.25モル/l)添加するもので
あるが、従来のこの種の塩基性N i −M o合金め
っき浴も陰極電流効率が低く、20%以上のMo含有量
を有するN i −Mo合金めっき皮膜を効率よく得る
ことが困難で、実用性が乏しい。
[Problems to be solved by conventional techniques and inventions] Conventionally,
Nickel sulfate (NiS) is used as a plating bath to form a nickel-molybdenum (Ni-Mo) alloy plating film.
O4・6H20), sodium molybdate (Na2M
A bath containing citrate or tartrate as a complexing agent is known. These baths are roughly divided into acidic baths and basic baths, and acidic baths have a pH of 3 to 5, and basic baths usually have a pH of 10 to 10.5. However, acidic baths have low cathode current efficiency and are difficult to form a good plating film. The problem is that it is difficult to obtain. On the other hand, in order to adjust the pH of the basic bath to 10 to 10.5, aqueous ammonia (28%) was added at 7 to 17 d/l (N
However, conventional basic Ni-Mo alloy plating baths of this type also have low cathode current efficiency and require Mo content of 20% or more. It is difficult to efficiently obtain a Ni-Mo alloy plating film having the following properties, and its practicality is poor.

Mo含有量が20%以上であるハステロイNi−Mo合
金は非酸化性酸溶液中において優れた耐食性を示すこと
が知られており、このためかかるMo含有量が20%以
上のN i −M o合金をめっき法によって効率良く
得る方法が望まれている。
It is known that Hastelloy Ni-Mo alloys with a Mo content of 20% or more exhibit excellent corrosion resistance in non-oxidizing acid solutions. A method for efficiently obtaining alloys by plating is desired.

また特に、耐食性の点からはMo含有量が27%以上、
とりわけ30%以上の非晶質Ni−Mo合金めっき皮膜
が望まれるが、従来法ではかかる非晶質Ni−Mo合金
を効率よくしかも確実に得ることが困難である。
In particular, from the viewpoint of corrosion resistance, the Mo content is 27% or more,
In particular, an amorphous Ni-Mo alloy plating film of 30% or more is desired, but it is difficult to efficiently and reliably obtain such an amorphous Ni-Mo alloy using conventional methods.

〔課題を解決するための手段及び作用〕本発明者らは上
記要望に応えるため鋭意検討を進めた結果、水溶性ニッ
ケル化合物、水溶性モリブデン化合物に錯化剤としてク
エン酸を添加した浴に対し、アンモニア水を更に多量に
添加することにより、Mo含有量が20%以上のN i
 −M 。
[Means and effects for solving the problem] In order to meet the above-mentioned needs, the present inventors conducted intensive studies and found that a bath containing a water-soluble nickel compound, a water-soluble molybdenum compound, and citric acid as a complexing agent was developed. , by adding a larger amount of aqueous ammonia, Ni with a Mo content of 20% or more can be produced.
-M.

合金めっき皮膜を効率よく確実に形成し得、Mo含有量
が27%以上、とりわけ30%以上の非晶質Ni−Mo
合金めっき皮膜をも容易に得ることを知見した。
Amorphous Ni-Mo that can efficiently and reliably form an alloy plating film and has a Mo content of 27% or more, especially 30% or more
It was discovered that alloy plating films can also be easily obtained.

即ち、上述したように、NiSO4・6H20゜Na2
MoO,・2H20,Na、C,H20,・2H20を
含有するめっき浴にアンモニア水を添加することは知ら
れているが、アンモニア水の添加はめつき浴のpHを調
整するためのもので、その添加量は28%アンモニア水
として7〜17d/l(NH3として0.1〜0.25
モル/l)程度であり、NH,/Niモル比は0.9〜
1.4程度で、かかる添加量では陰極電流効率で20%
以下と非常に低く、工業的な実用性が劣る。
That is, as mentioned above, NiSO4.6H20°Na2
It is known that ammonia water is added to a plating bath containing MoO, .2H20, Na, C, H20, .2H20, but the purpose of adding ammonia water is to adjust the pH of the plating bath. The amount added is 7 to 17 d/l as 28% ammonia water (0.1 to 0.25 d/l as NH3).
mol/l), and the NH,/Ni molar ratio is from 0.9 to
1.4, and with this amount of addition, the cathode current efficiency is 20%.
It is very low and has poor industrial practicality.

ところが、アンモニア水を上記添加量を越えてより多く
、具体的には28%アンモニア水を30〜100dzl
  (NH,として0.4〜1.5−1:/L//12
)添加すること、しかもこの場合N i / M oモ
ル比を1〜4とし、N H3/ N 1モル比を2〜5
とすることにより、Mo含有量が20%以上のNi−M
o合金めっき皮膜が陰極電流効率50%以上で確実に得
られることを見い出したものである。
However, if the amount of ammonia water added exceeds the above amount, specifically, 30 to 100 dzl of 28% ammonia water.
(NH, 0.4~1.5-1:/L//12
), and in this case, the N i /Mo molar ratio is 1 to 4 and the N H3 / N 1 molar ratio is 2 to 5.
By doing so, Ni-M with a Mo content of 20% or more
It has been discovered that an o alloy plating film can be reliably obtained with a cathode current efficiency of 50% or more.

ここで、本発明において、アンモニア水を上記のように
多量に添加するのはNi2“、Mob4”のクエン酸−
アンミン混合錯体を得ようとするもので、従来のめっき
浴におけるアンモニア水添加量ではかかるN i ”、
 M o O,”−のクエン酸−アンミン混合錯体を形
成するには不十分であったものであるが、十分量のアン
モニア水を添加し、該錯体を形成した場合、高陰極電流
効率が達成される上、Mo含有量が20%以上、とりわ
け27〜35%にも達する電着が可能になることを知見
したものである。なお、このようにNi”、Mob42
−のクエン酸−アンミン混合錯体を形成することにより
、上記のような効果を発揮する理由は、アンモニア水の
一部により、ニッケルクエン酸錯体に配位されている水
分子がアンミン基に置換されている放電反応性の高いニ
ッケルクエン酸アンミン混合錯体になり、残りのアンモ
ニア水がMob、2−のクエン酸アンミン混合錯体にな
り、MOの誘起共析に有利となるためと推測される。こ
のことは。
Here, in the present invention, the reason why a large amount of ammonia water is added as described above is due to the citric acid-
This is intended to obtain an ammine mixed complex, and the amount of ammonia water added in a conventional plating bath is such that the amount of N i '',
Although it was insufficient to form a citric acid-ammine mixed complex of M o O,''-, high cathode current efficiency was achieved when a sufficient amount of ammonia water was added and the complex was formed. In addition, it was discovered that electrodeposition with a Mo content of 20% or more, especially 27 to 35%, is possible.
The reason why the above effects are achieved by forming the citric acid-ammine mixed complex of - is that the water molecules coordinated to the nickel citric acid complex are replaced with ammine groups by a portion of the ammonia water. This is presumed to be because the remaining aqueous ammonia becomes a nickel ammine citrate mixed complex with high discharge reactivity, and the remaining ammonia water becomes a Mob, 2-ammine citrate mixed complex, which is advantageous for the induced eutectoid of MO. About this.

浴のカソード分極曲線からも説明することができる。即
ち、0.13モル/ Q N x S O4・6H20
+0.03モル/ Q N a3C,H,O,・2 H
20浴の電析電位は一700mV (pH9,30℃、
以下同じ)、0.13モル/lNa、、Mob4’ 2
H20+0.13モル/nNa、CGHs○7・2H2
0浴の電析電位は一1000mV、0.13モル/lN
iSo4’ 6H20+0.13モル/ D Na 2
 M o O42H,O+0.26モル/lNa、C,
H,07・2H20浴のNi−Mo共析電位は一810
mVであるが、これに更に0.54モル/lのアンモニ
ア水を添加するとNi−Mo共析電位は責になり、−7
80mVとなってカソード分極も小さくなり、従ってア
ンモニア水の添加によってNi−Mo合金の電析が容易
になることからも認めらる。
This can also be explained from the cathode polarization curve of the bath. That is, 0.13 mol/Q N x SO4・6H20
+0.03 mol/Q N a3C,H,O,・2H
The electrodeposition potential of bath 20 was -700 mV (pH 9, 30°C,
Same below), 0.13 mol/lNa, , Mob4' 2
H20+0.13 mol/nNa, CGHs○7・2H2
The electrodeposition potential of bath 0 is -1000 mV, 0.13 mol/lN
iSo4' 6H20+0.13 mol/D Na2
M o O42H, O + 0.26 mol/l Na, C,
The Ni-Mo eutectoid potential of H,07・2H20 bath is -810
mV, but when 0.54 mol/l of aqueous ammonia is further added to this, the Ni-Mo eutectoid potential becomes negative, and -7
This can be seen from the fact that the cathode polarization becomes 80 mV and the cathode polarization becomes small, so that the addition of aqueous ammonia facilitates the electrodeposition of the Ni-Mo alloy.

以下、本発明につき更に詳述する。The present invention will be explained in more detail below.

本発明に係るN i −M o合金めっき浴は、水溶性
ニッケル化合物と、水溶性モリブデン化合物と、クエン
酸塩と、アンモニア水とを含有し、28%アンモニア水
の添加量が30〜100mQ/l(NH,として0.4
〜1.5モル#) であると共に、ニッケルとモリブデ
ンとのモル比が1=1〜4:1、アンモニアとニッケル
とのモル比が2:1〜5:1であり、pHが8以上のも
のである。
The Ni-Mo alloy plating bath according to the present invention contains a water-soluble nickel compound, a water-soluble molybdenum compound, a citrate, and ammonia water, and the amount of 28% ammonia water added is 30 to 100 mQ/ l(NH, as 0.4
~1.5 mol #), the molar ratio of nickel and molybdenum is 1 = 1 to 4:1, the molar ratio of ammonia to nickel is 2:1 to 5:1, and the pH is 8 or more. It is something.

ここで、水溶性ニッケル化合物としては、NiSO4・
6H2oやNiCf12・6H20等が挙げられ、水溶
性モリブデン化合物としてはNa2Mob42H20や
(NH4)2MoO4・2H20などのモリブデン酸塩
等が挙げられる。また、クエン酸塩としては、クエン酸
ナトリウム、クエン酸2アンモニウム、クエン酸アンモ
ニウム等が使用される。
Here, the water-soluble nickel compound is NiSO4.
Examples of the water-soluble molybdenum compounds include molybdates such as Na2Mob42H20 and (NH4)2MoO4.2H20. Further, as the citrate, sodium citrate, diammonium citrate, ammonium citrate, etc. are used.

この場合、水溶性ニッケル化合物の使用量は0.1〜0
.3モル/l、特に0.13〜0.2モル/lとするこ
とが好ましく、水溶性モリブデン化合物の使用量は0.
02〜0.15モル/l、特に0.06〜0.13モル
/lとすることが好ましいが、N i / M oモル
比は上述したように1〜4、特に1.5〜2.3である
。Mo量が少なすぎるとめっき皮膜中のMo量が少なく
なり、本発明の目的が達成し得ない。一方、Mo量が多
すぎると、陰極電流効率が低下し、めっき皮膜が剥離し
易く、微小クラックが生じやすくなる。また、クエン酸
塩の使用量は0.2〜0.4モル/l、特に0.26〜
o、32モル/lとすることが好ましいが、この場合、
クエン酸塩/(Ni+Mo)モル比がo、77〜1.5
4、特に1〜1.2であることが望ましい。
In this case, the amount of water-soluble nickel compound used is 0.1 to 0.
.. It is preferably 3 mol/l, particularly 0.13 to 0.2 mol/l, and the amount of water-soluble molybdenum compound used is 0.1 mol/l.
02 to 0.15 mol/l, especially 0.06 to 0.13 mol/l, and the N i /Mo molar ratio is 1 to 4, especially 1.5 to 2. It is 3. If the amount of Mo is too small, the amount of Mo in the plating film will be too small, making it impossible to achieve the object of the present invention. On the other hand, if the amount of Mo is too large, the cathode current efficiency decreases, the plating film is likely to peel off, and microcracks are likely to occur. In addition, the amount of citrate used is 0.2 to 0.4 mol/l, especially 0.26 to 0.4 mol/l.
o, 32 mol/l, but in this case,
Citrate/(Ni+Mo) molar ratio is o, 77-1.5
4, particularly preferably 1 to 1.2.

本発明のめっき浴は、上記成分に加えて28%アンモニ
ア水を30〜100d#l (アンモニアとして0.4
〜1.5モル/l)添加する。この場合、その添加量は
NH3/Niモル比が2〜5、特に2.5〜4となるよ
うに選定するもので、アンモニア量が少なすぎると陰極
電流効率が低く、またMo含有量が20%以上のN i
 −M o合金めっき皮膜を得難くなる。一方、アンモ
ニア水が多すぎても陰極電流効率が低下するという不利
が生じる。
In addition to the above components, the plating bath of the present invention contains 30 to 100 d#l of 28% ammonia water (0.4 d#l as ammonia).
~1.5 mol/l) is added. In this case, the amount added is selected so that the NH3/Ni molar ratio is 2 to 5, especially 2.5 to 4. If the amount of ammonia is too small, the cathode current efficiency will be low; Ni of % or more
-Mo It becomes difficult to obtain an alloy plating film. On the other hand, if there is too much ammonia water, there is a disadvantage that the cathode current efficiency decreases.

本発明のめっき浴のpHは8以上であり、好ましくは8
〜10.5.特に9〜9.5である。この場合、pH調
整には硫酸等の酸や水酸化ナトリウム等のアルカリを使
用する。
The pH of the plating bath of the present invention is 8 or more, preferably 8
~10.5. In particular, it is 9 to 9.5. In this case, an acid such as sulfuric acid or an alkali such as sodium hydroxide is used for pH adjustment.

なお、本発明のめっき浴には、必要に応じ炭酸ナトリウ
ム、ホウ酸、ホウ酸アンモニウム、炭酸アンモニウム、
その他の炭酸塩やホウ酸塩等の添加剤を添加しても差支
えない。
In addition, the plating bath of the present invention may contain sodium carbonate, boric acid, ammonium borate, ammonium carbonate,
Other additives such as carbonates and borates may also be added.

本発明においては、上記めっき浴を用いて被めっき物に
めっきを施し、Mo含有量が20%以上のNi−Mo合
金めっき皮膜を得るものであるが、めっき条件としては
、陰極電流密度0.1〜2゜A/dボ、特に2〜18A
/dボ、めっき温度10〜70℃、特に20〜40℃の
条件を採用することができる。また撹拌はエアー、カソ
ードロッカー、プロペラ等を用いて行なうことができる
が、無撹拌で実施することもできる。陽極としては、ニ
ッケル等の可溶性陽極、カーボン、白金。
In the present invention, the object to be plated is plated using the above plating bath to obtain a Ni-Mo alloy plating film with a Mo content of 20% or more, and the plating conditions include a cathode current density of 0. 1~2°A/dbo, especially 2~18A
/dbo, plating temperature of 10 to 70°C, particularly 20 to 40°C can be adopted. Further, stirring can be performed using air, a cathode rocker, a propeller, etc., but it can also be performed without stirring. As an anode, a soluble anode such as nickel, carbon, or platinum can be used.

白金めっきチタン等の不溶性陽極を使用することができ
る。
Insoluble anodes such as platinized titanium can be used.

ここで、上記めっき浴を用いて電気めっきを行なう場合
、調製直後のめっき浴は陰極電流効率も低く、めっき皮
膜中のMo量も低い上、めっき皮膜の剥離が生じること
もあるので、めっき浴を調製した後に電解熟成してから
めっきすることが推奨される。この電解熟成としては、
2A−hr/U以上、好ましくは3・”20A−hr/
l程度電解することによりめっき浴を熟成する方法が好
ましく。
Here, when performing electroplating using the above plating bath, the plating bath immediately after preparation has a low cathode current efficiency, a low amount of Mo in the plating film, and peeling of the plating film may occur. It is recommended that after preparation, electrolytic ripening is performed before plating. This electrolytic ripening is
2A-hr/U or more, preferably 3.”20A-hr/U
A preferred method is to age the plating bath by electrolyzing the plating bath.

これによって陰極電流効率を向上させ、まためっき皮膜
中のMo含有量の増加を計ることができる。
Thereby, it is possible to improve the cathode current efficiency and increase the Mo content in the plating film.

更に、めっき皮膜の剥離の問題も解消される。Furthermore, the problem of peeling of the plating film is also solved.

以上のようにして得られたNi−Mo合金めっき皮膜は
、Mo量が20%以上で、硫酸や塩酸等の非酸化性酸に
対する耐食性が高いものであるが、これらの酸に対する
耐食性をより高いものにするために、Ni−Moめっき
皮膜中のMo量を27%以上、とりわけ30%以上の非
晶質とすることが好ましい。
The Ni-Mo alloy plating film obtained as described above has a Mo content of 20% or more and has high corrosion resistance to non-oxidizing acids such as sulfuric acid and hydrochloric acid. In order to achieve this, it is preferable that the amount of Mo in the Ni-Mo plating film be 27% or more, particularly 30% or more, and be amorphous.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、Mo含有量が20%以上の高耐食性の
Ni−Mo合金めっき皮膜を効率よく容易にかつ確実に
形成することができる。
According to the present invention, a highly corrosion-resistant Ni-Mo alloy plating film having an Mo content of 20% or more can be formed efficiently, easily, and reliably.

以下、実施例により本発明を具体的に説明するが、本発
明は下記の実施例に制限されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to the following Examples.

〔実施例1〕 ムユ皇蚕 NiSO4・6H200,182モル/lNa2Mo0
,12H200,078uNa、C6H5O,・2H2
0o、32   n28%アンモニア水   0.54 pH(硫酸で調整)9.O 査ユi条作 陰 極(被めっき物)   銅 板 陽 極         白金めっきチタン陰極電流密
度      8A/dボ めっき温度       30℃ 上記めっき浴を用い、上記めっき条件で所定通電量電解
した後の陰極電流効率及びNi−Mo合金めっき皮膜中
のMo量の結果を第1図に示す。
[Example 1] Muyu imperial silkworm NiSO4.6H200,182 mol/lNa2Mo0
, 12H200,078uNa, C6H5O, 2H2
0o, 32n28% ammonia water 0.54 pH (adjusted with sulfuric acid)9. Cathode current density: 8 A/d Plating temperature: 30°C Cathode current after electrolysis using the above plating bath at a predetermined amount of current under the above plating conditions The results of the efficiency and the amount of Mo in the Ni-Mo alloy plating film are shown in FIG.

第1図の結果より、調製直後のめっき浴は陰極電流効率
が17%と低く、まためっき皮膜中のMo量も12%と
低いものであったが、約3A−hr/lの通電で陰極電
流効率は60%を越え、めっき皮膜中のMo量も20%
を越えて、約12A−hr/lの通電では30%になる
ことが認められた。更に、めっき皮膜も、調#!直後の
浴では剥離が生じたが、2.4A−hr/l通電後は半
光沢の外観で密着性もよく、従って以上のことから電解
熟成の効果が認められた。
From the results shown in Figure 1, the cathode current efficiency of the plating bath immediately after preparation was as low as 17%, and the amount of Mo in the plating film was also as low as 12%. The current efficiency is over 60%, and the amount of Mo in the plating film is 20%.
It was found that when the current flow exceeds 12 A-hr/l, the result is 30%. Furthermore, the plating film is also excellent! Peeling occurred in the bath immediately after, but after 2.4 A-hr/l current was applied, it had a semi-glossy appearance and good adhesion, and from the above, the effect of electrolytic ripening was recognized.

〔実施例2〕 めっき浴 Na5CGH,O,・2H200,32n28%アンモ
ニア水    0,54npH(硫酸で調整)9.0 NiSO4・6H,○とN a 、 M o○、・2H
,0との総量を0.26モル/lとし、Na2Mob。
[Example 2] Plating bath Na5CGH,O,・2H200,32n28% ammonia water 0.54npH (adjusted with sulfuric acid) 9.0 NiSO4・6H,○ and Na, Mo○,・2H
, 0 and the total amount of Na2Mob is 0.26 mol/l.

2H,Oの量を種々変化させた(0.02G。The amounts of 2H and O were varied (0.02G.

0.052,0.078,0.13モル/l)。0.052, 0.078, 0.13 mol/l).

上記組成のめっき浴を用い、下記条件でめっきを行ない
、陰極電流効率と得られたN i −M o合金めっき
皮膜中のMo量を測定した。その結果を第2図に示す。
Plating was carried out under the following conditions using a plating bath having the above composition, and the cathode current efficiency and the amount of Mo in the obtained Ni-Mo alloy plating film were measured. The results are shown in FIG.

めっき条件 陰 極(被めっき物)   銅 板 陽 極         白金めっきチタン陰極電流密
度      8A/di めっき温度       30℃ 第2図の結果より、浴中のモリブデン量を増加するにつ
れて皮膜中のモリブデン量が増加することが認められた
Plating conditions Cathode (object to be plated) Copper plate anode Platinum plated titanium cathode Current density 8A/di Plating temperature 30℃ From the results shown in Figure 2, as the amount of molybdenum in the bath increases, the amount of molybdenum in the film increases. This was recognized.

〔実施例3〕 めっき浴 NiSO4・6H200,182モル/lN a t 
M o O4・2 Hv、 OO−072〃Na5C,
H,O,・2H200,32lI28%アンモニア水 
  第3図に示す量上記めっき浴を使用し、実施例1と
同様にして電気めっきを行なった。陰極電流効率と得ら
れためっき皮膜中のモリブデン量の結果を第3図に示す
[Example 3] Plating bath NiSO4.6H200, 182 mol/lN at
M o O4・2 Hv, OO-072〃Na5C,
H,O,・2H200,32lI28% ammonia water
Electroplating was carried out in the same manner as in Example 1 using the above plating bath in the amount shown in FIG. Figure 3 shows the results of the cathode current efficiency and the amount of molybdenum in the resulting plating film.

第3図の結果より、アンモニア添加量が少ないと、Mo
量が20%を越えるNi−Mo合金めっき皮膜を形成し
得る場合もあるが、陰極電流効率が非常に低いものであ
る。これに対し、アンモニア量が0.4モル/2以上に
なると電流効率も5゜%以上となり、Mo量も20%以
上になることが認められる。
From the results shown in Figure 3, when the amount of ammonia added is small, Mo
Although it is possible to form a Ni-Mo alloy plating film with an amount exceeding 20% in some cases, the cathode current efficiency is very low. On the other hand, it is recognized that when the amount of ammonia is 0.4 mol/2 or more, the current efficiency becomes 5% or more, and the amount of Mo also becomes 20% or more.

〔実施例4〕 佐ユ棗庵 N15O+・6H20 6H20Na2・2H20 Na3C,H,07・2H20 28%アンモニア水 pH(硫酸で調整) 支ユi条丘 陰極 陽極 陰極電流密度 めっき温度 55 g / Q 13  〃 94  〃 36mQ/12 9.0 銅板 白金めっきチタン 4A/dボ 30”C 上記めっき浴を用いて上記めっき条件で100分間電解
し、めっき浴を熟成した後、めっきを行なった。
[Example 4] Sayu Natsumean N15O+・6H20 6H20Na2・2H20 Na3C,H,07・2H20 28% ammonia water pH (adjusted with sulfuric acid) Support i ray cathode anode cathode current density plating temperature 55 g / Q 13 94 〃 36mQ/12 9.0 Copper plate platinum plated titanium 4A/dbo 30''C Using the above plating bath, electrolysis was carried out under the above plating conditions for 100 minutes, and after the plating bath was aged, plating was performed.

その結果、銀灰色のNi−Mo合金めっき皮膜を得た。As a result, a silver-gray Ni-Mo alloy plating film was obtained.

ICPによる定量分析を行った結果はMo量は20%で
あった。また、この皮膜をINH2304,INHCQ
溶液に30℃で浸漬した場合の腐食速度はそれぞれQ、
15g/m・hr。
As a result of quantitative analysis by ICP, the amount of Mo was 20%. In addition, this film can be used as INH2304, INHCQ.
The corrosion rate when immersed in a solution at 30°C is Q, respectively.
15g/m・hr.

0、475 g/rd ・hrであった。It was 0.475 g/rd・hr.

〔実施例5〕 ムユl権 NiSO4・6H2048g / Q Na2MoO,・2H2019n Na5CsHs○、・2H20941128%アンモニ
ア水    36d/lpH(硫酸で調整)9.0 ムユ棗条芥 陰極     銅板 陽 極         白金めつきチタン陰極電流密
度       5A/dボめっき温度       
 30℃ 上記めっき浴を用い、上記めっき条件で100分間電解
を行なってめっき浴を熟成した後、めっきを行なってM
o量が30%の銀灰色のNlMo非晶質合金めっき皮膜
を得た。また、この皮膜を実施例4と同様にINH2S
o、、INHCQ溶液に30℃で浸漬した時の腐食速度
はそれぞれ0.037g/rrLhr、o、1.69g
/rrr・hrであった。
[Example 5] Muyu l right NiSO4・6H2048g/Q Na2MoO,・2H2019n Na5CsHs○,・2H20941128% ammonia water 36d/lpH (adjusted with sulfuric acid) 9.0 Muyu jujube strip cathode Copper plate anode Platinized titanium cathode current Density 5A/d plating temperature
30°C Using the above plating bath, perform electrolysis for 100 minutes under the above plating conditions to age the plating bath, and then perform plating to obtain M
A silver-gray NlMo amorphous alloy plating film with an o content of 30% was obtained. In addition, this film was coated with INH2S in the same manner as in Example 4.
o,,corrosion rate when immersed in INHCQ solution at 30℃ is 0.037g/rrLhr, o, 1.69g, respectively.
/rrr・hr.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電解熟成の通電量と陰極電流効率及びめっき皮
膜中のMo量との関係を示すグラフ、第2図はめっき浴
中のMo量と陰極電流密度及びめっき皮膜中のMo量と
の関係を示すグラフ、第3図はめっき浴へのアンモニア
添加量と陰極電流効率及びめっき皮膜中のMo量との関
係を示すグラフである。 出願人  上 村 工 業 株式会社 代理人  弁理士 小 島 隆 同 第1図 11鮎鰺屹・11 (Aし/l ) 第2図 ]O 7゜ ハ。bかXf9M。/田十80 (す4−’lン
Figure 1 is a graph showing the relationship between the amount of electricity applied during electrolytic ripening, cathode current efficiency, and the amount of Mo in the plating film, and Figure 2 is a graph showing the relationship between the amount of Mo in the plating bath, the cathode current density, and the amount of Mo in the plating film. FIG. 3 is a graph showing the relationship between the amount of ammonia added to the plating bath, the cathode current efficiency, and the amount of Mo in the plating film. Applicant Uemura Kogyo Co., Ltd. Agent Patent Attorney Takashi Kojima Figure 1 11 (Ashi/l) Figure 2] O 7゜ha. b or Xf9M. / 田JU80 (Su4-'ln

Claims (1)

【特許請求の範囲】 1、水溶性ニッケル化合物と、水溶性モリブデン化合物
と、クエン酸塩と、アンモニア水とを含有し、アンモニ
ア水の添加量がアンモニアとして0.4〜1.5モル/
lであると共に、ニッケルとモリブデンとのモル比が1
:1〜4:1、アンモニアとニッケルとのモル比が2:
1〜5:1であり、pHが8以上であることを特徴とす
るニッケル−モリブデン合金めっき浴。 2、被めっき物に請求項1に記載のめっき浴を用いて陰
極電流密度0.1〜20A/dm^2において電気めっ
きを施して、モリブデン量が20重量%以上のニッケル
−モリブデン合金めっき皮膜を析出させることを特徴と
するニッケル−モリブデン合金めっき方法。
[Claims] 1. Contains a water-soluble nickel compound, a water-soluble molybdenum compound, a citrate, and ammonia water, and the amount of ammonia water added is 0.4 to 1.5 mol/ammonia.
l, and the molar ratio of nickel and molybdenum is 1.
:1 to 4:1, molar ratio of ammonia and nickel is 2:
A nickel-molybdenum alloy plating bath characterized by having a ratio of 1 to 5:1 and a pH of 8 or more. 2. Electroplating the object to be plated using the plating bath according to claim 1 at a cathode current density of 0.1 to 20 A/dm^2 to produce a nickel-molybdenum alloy plating film having a molybdenum content of 20% by weight or more. A nickel-molybdenum alloy plating method characterized by depositing.
JP2243147A 1990-09-13 1990-09-13 Nickel-molybdenum alloy plating bath and plating method Expired - Lifetime JP2522101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2243147A JP2522101B2 (en) 1990-09-13 1990-09-13 Nickel-molybdenum alloy plating bath and plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2243147A JP2522101B2 (en) 1990-09-13 1990-09-13 Nickel-molybdenum alloy plating bath and plating method

Publications (2)

Publication Number Publication Date
JPH04124293A true JPH04124293A (en) 1992-04-24
JP2522101B2 JP2522101B2 (en) 1996-08-07

Family

ID=17099491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2243147A Expired - Lifetime JP2522101B2 (en) 1990-09-13 1990-09-13 Nickel-molybdenum alloy plating bath and plating method

Country Status (1)

Country Link
JP (1) JP2522101B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005082856A (en) * 2003-09-08 2005-03-31 Osaka Prefecture Nickel-molybdenum alloy plating liquid, plating film thereof, and plated article
US7696428B2 (en) 2007-05-28 2010-04-13 Kabushiki Kaisha Kawai Gakki Seisakusho Electronic keyboard musical instrument
DE102013110263A1 (en) * 2013-09-18 2015-03-19 Harting Kgaa Galvanic bath
CN110331423A (en) * 2019-07-12 2019-10-15 中国原子能科学研究院 A kind of electric depositing solution formula preparing foam nickel-molybdenum alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711397A (en) * 1980-06-24 1982-01-21 Nippon Musical Instruments Mfg Electronic musical instrument

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711397A (en) * 1980-06-24 1982-01-21 Nippon Musical Instruments Mfg Electronic musical instrument

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005082856A (en) * 2003-09-08 2005-03-31 Osaka Prefecture Nickel-molybdenum alloy plating liquid, plating film thereof, and plated article
US7696428B2 (en) 2007-05-28 2010-04-13 Kabushiki Kaisha Kawai Gakki Seisakusho Electronic keyboard musical instrument
DE102013110263A1 (en) * 2013-09-18 2015-03-19 Harting Kgaa Galvanic bath
WO2015039647A1 (en) 2013-09-18 2015-03-26 Harting Kgaa Galvanic bath
CN105579620A (en) * 2013-09-18 2016-05-11 哈廷股份两合公司 Galvanic bath
JP2016532004A (en) * 2013-09-18 2016-10-13 ハルティング アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフトHARTING AG&Co.KG Electroplating bath
CN110331423A (en) * 2019-07-12 2019-10-15 中国原子能科学研究院 A kind of electric depositing solution formula preparing foam nickel-molybdenum alloy
CN110331423B (en) * 2019-07-12 2023-08-18 中国原子能科学研究院 Formula of electrodeposition solution for preparing foam nickel-molybdenum alloy

Also Published As

Publication number Publication date
JP2522101B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
US4877496A (en) Zinc-nickel alloy plating solution
CN101665951B (en) Process of preparing Ni-W-Fe-La nanocrystalline hydrogen evolution electrode material through pulse electrodeposition
CA1103197A (en) Electroplating gold-cobalt alloys
US4162204A (en) Plated metallic cathode
JP4790191B2 (en) Electrolytic bath for electrochemical deposition of palladium or its alloys
JP3985904B2 (en) Nickel-tungsten alloy plating solution and method for forming nickel-tungsten alloy plating film
US2027358A (en) Electrodeposition of metals of the platinum group
US4115211A (en) Process for metal plating on aluminum and aluminum alloys
US2750333A (en) Electrodeposition of antimony and antimony alloys
JPH04124293A (en) Nickel-molybdenum alloy plating bath and plating method
Netherton et al. Electrodeposition of rhenium‐nickel alloys
US3093556A (en) Electro-depositing stainless steel coatings on metal surfaces
GB752901A (en) Method of producing an electroplate of nickel on magnesium and the magnesium-base alloys
US4375392A (en) Bath and process for the electrodeposition of ruthenium
US2814590A (en) Electrodeposition of copper
JPS62287092A (en) Zinc-nickel alloy plating bath
JPH07310196A (en) Nickel-tungsten alloy plating solution and plating method
JPS63114997A (en) Electroplating method
US4177129A (en) Plated metallic cathode
JP4740528B2 (en) Nickel-molybdenum alloy plating solution, plating film and plated article
JPS6017096A (en) Production of electrode
JPH0260759B2 (en)
JPS6045710B2 (en) electrolytic cell
JPH10212592A (en) Platinum alloy plating bath
JPS616291A (en) Plating method of nickel-tungsten alloy