JPH04123263U - Compound semiconductor single crystal manufacturing equipment - Google Patents

Compound semiconductor single crystal manufacturing equipment

Info

Publication number
JPH04123263U
JPH04123263U JP2892591U JP2892591U JPH04123263U JP H04123263 U JPH04123263 U JP H04123263U JP 2892591 U JP2892591 U JP 2892591U JP 2892591 U JP2892591 U JP 2892591U JP H04123263 U JPH04123263 U JP H04123263U
Authority
JP
Japan
Prior art keywords
single crystal
quartz boat
compound semiconductor
quartz
semiconductor single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2892591U
Other languages
Japanese (ja)
Inventor
秀夫 山田
昌治 中森
清治 水庭
Original Assignee
日立電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立電線株式会社 filed Critical 日立電線株式会社
Priority to JP2892591U priority Critical patent/JPH04123263U/en
Publication of JPH04123263U publication Critical patent/JPH04123263U/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

(57)【要約】 【目的】石英ボートの熱変形を防止して単結晶を安定に
成長させる化合物半導体単結晶製造装置を提供する。 【構成】原料融液の入った石英ボートを密閉された石英
アンプル内に配置し原料融液を徐々に固化させて単結晶
を育成する化合物半導体単結晶製造装置において、石英
ボートの外側に窒化物の膜をコーティングし、結晶成長
工程において石英ボートの熱変形を抑止させた。
(57) [Summary] [Objective] To provide a compound semiconductor single crystal production device that prevents thermal deformation of a quartz boat and stably grows a single crystal. [Structure] In a compound semiconductor single crystal manufacturing equipment in which a quartz boat containing a raw material melt is placed in a sealed quartz ampoule and the raw material melt is gradually solidified to grow a single crystal, a nitride is placed outside the quartz boat. coating to suppress thermal deformation of the quartz boat during the crystal growth process.

Description

【考案の詳細な説明】[Detailed explanation of the idea]

【0001】0001

【産業上の利用分野】[Industrial application field]

本考案は、化合物半導体単結晶製造装置、特に砒化ガリウム(GaAs)の単 結晶を製造するのに有利な、装置の改良に関するものである。 This invention is a compound semiconductor single crystal manufacturing device, especially gallium arsenide (GaAs) single crystal manufacturing equipment. The present invention relates to improvements in equipment that are advantageous for producing crystals.

【0002】0002

【従来の技術】[Conventional technology]

従来、GaAs等の化合物半導体の単結晶を製造する場合は、密閉した石英ア ンプルを用い、その中に、原料融液と種結晶の入った石英ボート、並びに揮発性 元素を夫々別々に配置して、定められた温度制御を行いながら、固液界面を移動 させて単結晶を成長させる、いわゆる水平ブリッジマン(HB方式)等が用いら れていた。 Conventionally, when producing single crystals of compound semiconductors such as GaAs, sealed quartz apertures were used. A quartz boat containing the raw material melt and seed crystals, as well as a volatile Each element is placed separately and moved across the solid-liquid interface while controlling the specified temperature. The so-called horizontal Bridgman (HB method), which grows single crystals by It was

【0003】 このように化合物半導体の製造時には、石英ガラスを使用する製造技術が多い が、これは石英ガラスの純度が高く、又、耐熱性及び強度に優れている点による ものである。0003 In this way, many manufacturing technologies use quartz glass when manufacturing compound semiconductors. However, this is due to the high purity of quartz glass, as well as its excellent heat resistance and strength. It is something.

【0004】 しかしながら、GaAs単結晶を製造する場合のように、石英ガラスの徐冷点 1180℃に対して、GaAsの融点が1238℃と高温となる場合は、石英ガ ラスに膨張又は収縮等の熱変形が生ずる欠点があった。0004 However, as in the case of producing GaAs single crystals, the annealing point of quartz glass When the melting point of GaAs is as high as 1238°C compared to 1180°C, quartz glass is used. There was a drawback that thermal deformation such as expansion or contraction occurred in the lath.

【0005】 特に、GaAs融液の入った石英ボートは、GaAsの重量もあり大きな熱変 形が生ずる。熱変形が著しい場合は、このGaAs融液が石英ボートから落下す ることもある。[0005] In particular, quartz boats containing GaAs melt have large thermal fluctuations due to the weight of GaAs. A form arises. If the thermal deformation is significant, this GaAs melt may fall from the quartz boat. Sometimes.

【0006】 また、熱変形が発生した石英ボートから得られた単結晶インゴットは高さが低 くなるため、規定寸法のウェーハが得られない。[0006] In addition, single crystal ingots obtained from thermally deformed quartz boats have a low height. As a result, wafers with specified dimensions cannot be obtained.

【0007】[0007]

【考案の効果】 即ち図3に示すように、石英ボート2の熱変形が発生すると、ボート幅W1 が 広がりW2 となるとともに融液3の高さH1 は、H2 と低くなる。[Effect of the invention] That is, as shown in FIG. 3, when thermal deformation of the quartz boat 2 occurs, the boat width W 1 widens to become W 2 and the height H 1 of the melt 3 becomes as low as H 2 .

【0008】 図4に示すように、得られたGaAs単結晶を、斜めに切断して直径50mmの円 形ウェハを取得しようとしても、切断する角度は結晶面方位から一定のため高さ が低くなったぶん切断したウェーハの長さも小さくなり(l2 <l1 )、l2 は 50mm以下となってしまうものである。As shown in FIG. 4, even if an attempt is made to cut the obtained GaAs single crystal diagonally to obtain a circular wafer with a diameter of 50 mm, the cutting angle is constant from the crystal plane orientation, so the height will be low. Presumably, the length of the cut wafer will also be small (l 2 <l 1 ), and l 2 will be less than 50 mm.

【0009】[0009]

【考案の目的】[Purpose of invention]

本考案の目的は、前記した従来技術の欠点を解消し、石英ボートの熱変形を防 止して単結晶を安定に成長させることのできる化合物半導体単結晶製造装置を提 供することにある。 The purpose of the present invention is to eliminate the drawbacks of the prior art described above and prevent thermal deformation of quartz boats. We propose a compound semiconductor single crystal production device that can stably grow single crystals without stopping the process. It is about providing.

【0010】0010

【考案の要点】[Key points of the idea]

即ち本考案は、原料融液の入った石英ボートを、密閉された石英アンプル内に 配置し、原料融液を徐々に固化させて単結晶を育成する、化合物半導体単結晶製 造装置において、石英ボートの外側に窒化物の膜をコーティングし、結晶成長工 程において石英ボートの熱変形を抑止させたものである。 That is, the present invention places a quartz boat containing raw material melt in a sealed quartz ampoule. Made of compound semiconductor single crystal, the raw material melt is gradually solidified to grow a single crystal. In the crystal growth equipment, a nitride film is coated on the outside of the quartz boat to perform the crystal growth process. In this process, thermal deformation of the quartz boat was suppressed.

【0011】 本考案に於て用いられる窒化物の種類としては、窒化硼素(以下BNと言う) 、窒化アルミニウム(AlN)、窒化ケイ素(Si3 4 )等が好ましい。Preferred types of nitride used in the present invention include boron nitride (hereinafter referred to as BN), aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), and the like.

【0012】 即ち、窒化物は高温に耐える素材として半導体用材料にも利用されているのも ので、中でも窒化硼素(Boror Nitride )は耐熱性が約3000℃と極めて高く電気 絶縁性、化学安定性にも優れ、無毒である事から応用範囲が広い。0012 In other words, nitrides are also used in semiconductor materials as materials that can withstand high temperatures. Among them, boron nitride has an extremely high heat resistance of approximately 3000°C and is used for electrical purposes. It has excellent insulation properties and chemical stability, and is non-toxic, so it has a wide range of applications.

【0013】 また、石英ガラスが軟化し始める徐冷点1180℃付近においても強度が強く変形 することはないためである。[0013] In addition, it remains strong and deforms even near the annealing point of 1180℃, where quartz glass begins to soften. This is because there is nothing to do.

【0014】 石英ボートにBNをコーティングするためには、常圧で1000℃以下のCVD反 応で生成できるアモルファスBN(以下αBNと言う)が適している。[0014] To coat a quartz boat with BN, CVD reaction at normal pressure and temperatures below 1000°C is required. Amorphous BN (hereinafter referred to as αBN), which can be produced by reaction, is suitable.

【0015】 原料ガスはB2 6 とNH3 を用い、次の反応条件で生成する。The raw material gas is produced using B 2 H 6 and NH 3 under the following reaction conditions.

【0016】[0016]

【数1】 [Math 1]

【0017】 熱変形を抑止するためのBN膜の厚さは、石英ボートの肉厚にも依存するが1 mm〜4mmの範囲が経済性から考えて適当である。[0017] The thickness of the BN film to suppress thermal deformation depends on the wall thickness of the quartz boat. A range of mm to 4 mm is appropriate from an economic point of view.

【0018】[0018]

【実施例】【Example】

図1は、化合物半導体単結晶製造装置の一実施例を示す要部断面図である。図 において、1は石英アンプルであり、内部には、一方に石英ボート2が配置され 、他方にはAs5が置かれている。石英ボート2にはGaAs融液3が充填され 、先端に種結晶4が配置されている。石英ボート2とAs5の間は拡散障壁6で 仕切られている。 FIG. 1 is a cross-sectional view of essential parts showing an embodiment of a compound semiconductor single crystal manufacturing apparatus. figure , 1 is a quartz ampoule, and a quartz boat 2 is arranged on one side inside. , As5 is placed on the other side. The quartz boat 2 is filled with GaAs melt 3. , a seed crystal 4 is placed at the tip. There is a diffusion barrier 6 between the quartz boat 2 and As5. It's partitioned off.

【0019】 本考案は、図1のA−A´線断面である図2に示すように、石英ボート2の外 面に、窒化硼素7をコーティグしたことを特徴とするものである。[0019] As shown in FIG. 2, which is a cross section taken along line A-A′ in FIG. It is characterized by having its surface coated with boron nitride 7.

【0020】 この状態で石英アンプル1内の圧力を5×10-6Torr以下に真空排気して封じ 切りこれを高低二連式の電気炉にセットして石英ボート2の部分を1200℃以 上、As側を610℃として石英ボート2の長さ方向に1℃/cmの温度傾斜を与 えながら、種結晶4近辺の温度を1238℃に調整し、種結晶4を若干溶解させ た後、1℃/時の速度で降温してGaAs単結晶を成長させた。ついで全体を固 化させ、更に100℃/時の速度で室温まで冷却してGaAs単結晶の製造を完 了した。In this state, the pressure inside the quartz ampoule 1 is evacuated to 5×10 −6 Torr or less, sealed, and then set in a high-low double electric furnace to heat the quartz boat 2 to a temperature of 1200° C. or higher. While setting the As side to 610°C and giving a temperature gradient of 1°C/cm in the length direction of the quartz boat 2, the temperature near the seed crystal 4 was adjusted to 1238°C, and after slightly dissolving the seed crystal 4, the temperature was increased to 1°C. A GaAs single crystal was grown by lowering the temperature at a rate of /hour. The whole was then solidified and further cooled to room temperature at a rate of 100° C./hour to complete the production of a GaAs single crystal.

【0021】 このようにしてGaAs単結晶の製造を行ったが製造時における、石英ボート 2の熱変形は極めて僅少で、窒化硼素コーティングによる効果を確認することが できた。[0021] The GaAs single crystal was produced in this way, but the quartz boat during production The thermal deformation of No. 2 was extremely small, and the effect of the boron nitride coating could be confirmed. did it.

【0022】[0022]

【考案の効果】[Effect of the idea]

以上説明したように本考案は次の効果を有するものであり、その実用価値は大 なるものである。 As explained above, this invention has the following effects, and its practical value is great. It is what it is.

【0023】 (1) 石英ボートの熱変形を防止することができるので結晶成長を安定化させ、 品質の向上を図ることができる。[0023] (1) It can prevent thermal deformation of the quartz boat, thereby stabilizing crystal growth. Quality can be improved.

【0024】 (2) 変形防止により石英ボートの再利用が可能となり経済的に有利となる。[0024] (2) By preventing deformation, the quartz boat can be reused, which is economically advantageous.

【0025】 (3) 原料融液の落下が防止され、無駄作業を排除することができる。[0025] (3) Falling of the raw material melt is prevented and wasteful work can be eliminated.

【0026】 (4) 石英ボートの熱変形防止により、所定のウェーハ形状を確保することがで きるため量産化が可能となる。[0026] (4) By preventing thermal deformation of the quartz boat, a predetermined wafer shape can be maintained. This makes mass production possible.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】化合物半導体単結晶製造装置の一実施例を示す
要部断面図。
FIG. 1 is a sectional view of essential parts showing an embodiment of a compound semiconductor single crystal manufacturing apparatus.

【図2】本考案の特徴である石英ボートに窒化硼素コー
ティングを施した一実施例を示す横断面図(図1のA−
A´線断面)。
[Fig. 2] A cross-sectional view showing an embodiment of a quartz boat coated with boron nitride, which is a feature of the present invention (A--A in Fig. 1).
A' line cross section).

【図3】石英ボートの熱変形例を示す説明図。FIG. 3 is an explanatory diagram showing an example of thermal deformation of a quartz boat.

【図4】結晶成長後に得られた単結晶からウェーハを切
断する実施例(a)、(b)及び切断して得られたウエ
ーハ(c)、(d)を示す。
FIG. 4 shows examples (a) and (b) in which wafers are cut from a single crystal obtained after crystal growth, and wafers (c) and (d) obtained by cutting.

【符号の説明】[Explanation of symbols]

1 石英アンプル 2 石英ボート 3 GaAs融液 4 GaAs種結晶 5 As(硼素) 6 拡散障壁 7 窒化硼素コーティング 8 GaAs単結晶インゴット 9 切断したGaAsウェハ 1 Quartz ampoule 2 Quartz boat 3 GaAs melt 4 GaAs seed crystal 5 As (boron) 6 Diffusion barrier 7 Boron nitride coating 8 GaAs single crystal ingot 9 Cut GaAs wafer

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】原料融液の入った石英ボートを、密閉され
た石英アンプル内に配置し、該原料融液をその一端側か
ら徐々に固化させて、半導体単結晶を育成する、化合物
半導体単結晶製造装置において、前記石英ボートの外面
に、窒化物の膜をコーティングして構成されたことを特
徴とする、化合物半導体単結晶製造装置。
Claim 1: A compound semiconductor single crystal boat in which a quartz boat containing a raw material melt is placed in a sealed quartz ampoule, and the raw material melt is gradually solidified from one end to grow a semiconductor single crystal. A compound semiconductor single crystal manufacturing apparatus, characterized in that the crystal manufacturing apparatus is constructed by coating the outer surface of the quartz boat with a nitride film.
JP2892591U 1991-04-24 1991-04-24 Compound semiconductor single crystal manufacturing equipment Pending JPH04123263U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2892591U JPH04123263U (en) 1991-04-24 1991-04-24 Compound semiconductor single crystal manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2892591U JPH04123263U (en) 1991-04-24 1991-04-24 Compound semiconductor single crystal manufacturing equipment

Publications (1)

Publication Number Publication Date
JPH04123263U true JPH04123263U (en) 1992-11-06

Family

ID=31912922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2892591U Pending JPH04123263U (en) 1991-04-24 1991-04-24 Compound semiconductor single crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH04123263U (en)

Similar Documents

Publication Publication Date Title
WO2007094155A1 (en) PROCESS FOR PRODUCING SiC SINGLE CRYSTAL
JP2004002173A (en) Silicon carbide single crystal and its manufacturing method
WO2004106597A1 (en) Indium phosphide substrate, indium phosphide single crystal and process for producing them
US20050223971A1 (en) Furnace for growing compound semiconductor single crystal and method of growing the same by using the furnace
US20060048701A1 (en) Method of growing group III nitride crystals
WO1996015297A1 (en) Process for bulk crystal growth
Bockowski Growth and doping of GaN and AlN single crystals under high nitrogen pressure
JP2003286024A (en) Unidirectional solidified silicon ingot and manufacturing method thereof, silicon plate, substrate for solar cell and target base material for sputtering
JPH04123263U (en) Compound semiconductor single crystal manufacturing equipment
Parker Improvements in the crystalline quality of Pb x Sn 1− x Te crystals grown by vapor transport in a closed system
US11946155B2 (en) Single-crystal growing crucible, single-crystal production method and single crystal
JPH1087392A (en) Production of compound semiconductor single crystal
JPS5891095A (en) Production of single crystal of compound semiconductor
JP3937700B2 (en) Method for producing GaAs semiconductor single crystal doped with conductive impurities
JP2002274995A (en) Method of manufacturing silicon carbide single crystal ingot
JP2781856B2 (en) Method for manufacturing compound semiconductor single crystal
JP2922038B2 (en) Method for manufacturing compound semiconductor single crystal
JPH0784357B2 (en) Boron nitride coated crucible
JPH069024Y2 (en) Compound semiconductor single crystal manufacturing equipment
JP2855408B2 (en) Single crystal growth equipment
JP2766897B2 (en) Single crystal growth equipment
JPH11199362A (en) Production of compound semiconductor single crystal
JP3042168B2 (en) Single crystal manufacturing equipment
JPS60122791A (en) Pulling up method of crystal under liquid sealing
JP2005132717A (en) Compound semiconductor single crystal and its manufacturing method