JPH0412266A - Method for non-destructive inspection of heating tube - Google Patents

Method for non-destructive inspection of heating tube

Info

Publication number
JPH0412266A
JPH0412266A JP2114387A JP11438790A JPH0412266A JP H0412266 A JPH0412266 A JP H0412266A JP 2114387 A JP2114387 A JP 2114387A JP 11438790 A JP11438790 A JP 11438790A JP H0412266 A JPH0412266 A JP H0412266A
Authority
JP
Japan
Prior art keywords
heating tube
probe
coils
heating
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2114387A
Other languages
Japanese (ja)
Other versions
JP2743109B2 (en
Inventor
Ichiro Tomomatsu
友松 一郎
Naofumi Haneda
直文 羽田
Yoshiyuki Uemura
植村 佳之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANKIYUU KK
Sankyu Inc
Shin Nippon Nondestructive Inspection Co Ltd
Original Assignee
SANKIYUU KK
Sankyu Inc
Shin Nippon Nondestructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANKIYUU KK, Sankyu Inc, Shin Nippon Nondestructive Inspection Co Ltd filed Critical SANKIYUU KK
Priority to JP2114387A priority Critical patent/JP2743109B2/en
Publication of JPH0412266A publication Critical patent/JPH0412266A/en
Application granted granted Critical
Publication of JP2743109B2 publication Critical patent/JP2743109B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To execute flaw detection with high accuracy without disassembling a heating tube by forming a winding shape of a probe coil to a closed shape having a linear part, and allowing the linear part to abut on the outside of the heating tube or to approach it. CONSTITUTION:A probe 10 is constituted by winding a pair of probe coils 12, 13 to a core 11 of bakelite whose cross section is semicircular, and forming its winding shape to a closed shape having a linear part. In such a state, the linear parts of the coils 12, 13 are allowed to abut on the outside of a heating tube 21 being a measuring object or to approach it, and by moving them gradually in the lengthwise direction, a flaw detection is executed. In this case, a magnetic flux generated from the coils 12, 13 passes more through the inside of the heating tube 21 centering around linear parts 22, 23, respectively, and the heating tube 21 is allowed to generate an eddy current being orthogonal to the magnetic flux. If there is a flaw on the heating tube 21, a pair of coils 12 13 are not balanced well, therefore, with respect to a flaw such as a crack, etc., generated from the inside thereby, a vortex flaw detection can be executed efficiently from the outside of the heating tube 21.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、渦電流を利用して加熱管(加熱用輻射管及び
熱交換機用管をいう)の非破壊検査を行う方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of non-destructively testing heating tubes (referred to as heating radiation tubes and heat exchanger tubes) using eddy currents.

[従来の技術〕 製鉄所の焼鈍工程に使用される加熱用輻射管(ラジアン
トチューブともいう)は、内部に高温ガスが流れるので
内面から割れが発生し、その検査は、現在は外側から目
視検査によって行うのみであった。
[Conventional technology] Heating radiant tubes (also called radiant tubes) used in the annealing process at steel mills tend to crack from the inside because high-temperature gas flows inside them, and inspection for these cracks is currently done by visual inspection from the outside. It was only done by.

一方、熱交換機等においては、以前から渦流探傷方法が
行われており、該方法について概略説明すると、検出対
象の金属管内にプローブコイルを挿入し、このコイルに
交番磁場を発生させて管に渦電流を誘起させるが、管内
に減肉、割れ等の欠陥があると、渦電流に乱れが生じ、
これによってプローブコイルのインピーダンスが変化す
るので、該インピーダンス変化を探傷信号として解析す
ることによって管の探傷を行っている。
On the other hand, the eddy current flaw detection method has been used for heat exchangers and the like for some time. To give an overview of this method, a probe coil is inserted into the metal tube to be detected, and an alternating magnetic field is generated in this coil to cause eddy current to flow through the tube. A current is induced, but if there are defects such as thinning or cracks in the pipe, the eddy current will be disturbed.
This changes the impedance of the probe coil, and the tube is tested for flaws by analyzing this change in impedance as a flaw detection signal.

この場合、上記プローブコイルの中に管を入れて管の探
傷を行うことも行われている。
In this case, flaw detection of the tube is also carried out by inserting the tube into the probe coil.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記の如く加熱用輻射管の目視検査は内面からの割れが
外側に露出した貫通欠陥しか発見できないので、該加熱
用輻射管の交換は上記貫通欠陥がある管と、大きく変形
した管とのみについて行われ、従って、欠陥の見落とし
や取り替える必要のない管を取り替えていた。
As mentioned above, visual inspection of heating radiant tubes can only detect through-hole defects where cracks from the inner surface are exposed to the outside, so replacement of heating radiant tubes is limited to tubes with the above-mentioned through-hole defects and tubes that have been significantly deformed. was done, and therefore the defects were overlooked and the tubes that did not need to be replaced were replaced.

そこで、内部に発生する傷等を外部から非破壊的に検査
するのが最も好ましく、この方法として本発明者は前記
した如く、渦流探傷方法を用いて行うことが適当と考え
、鋭意研究した。
Therefore, it is most preferable to non-destructively inspect internally generated flaws from the outside, and the inventors of the present invention have thought that it would be appropriate to use the eddy current flaw detection method as described above, and have conducted extensive research on this method.

しかしながら、前記の如く加熱用輻射管の内部にプロー
ブコイルを入れて検査を行うことは、加熱用輻射管が蛇
行しているので、加熱用輻射管を部分的に分解する必要
があり、実施上手間がかかるという問題点がある。
However, since the heating radiant tube is meandering, it is necessary to partially disassemble the heating radiant tube to perform the inspection by inserting the probe coil inside the heating radiant tube as described above, which is difficult to implement. The problem is that it is time consuming.

そこで、プローブコイルの内部に加熱用輻射管が位置す
るようにプローブコイルを形成して探傷を行うことも理
論上可能であるが、加熱用輻射管は熱による変形が多分
にあり、円滑に円形のプローブコイルを周囲に当接させ
ることができないという問題点があった。
Therefore, it is theoretically possible to perform flaw detection by forming the probe coil so that the heating radiant tube is located inside the probe coil, but the heating radiant tube is subject to considerable deformation due to heat and cannot be smoothly circular. There was a problem in that the probe coil could not be brought into contact with the surrounding area.

また、磁気コアを使用するプローブコイルを用いて加熱
用輻射管の表面から検査を行う方法もあるが、磁気コア
を使用するとペンシル型プローブとなり、点に近い部分
の探傷を行うことになるので、比較的径の大きい加熱用
輻射管を検査する場合には、極めて能率が悪いという問
題点があった更には、断面円形のプローブコイルを使用
し、加熱用輻射管の軸と平行に沿わせながら、加熱用輻
射管の探傷を行う方法も可能であるが、コイルによって
発生ずる磁場が有効に加熱用輻射管を貫通しないので、
測定精度が悪いという問題点があった。
There is also a method of inspecting the surface of the heating radiant tube using a probe coil that uses a magnetic core, but if you use a magnetic core, it becomes a pencil-type probe, and you will be able to detect flaws near the point. When inspecting a heating radiant tube with a relatively large diameter, there was the problem of extremely low efficiency.Furthermore, a probe coil with a circular cross section was used, and the probe coil was placed parallel to the axis of the heating radiant tube. Although it is possible to perform flaw detection on the heating radiant tube, the magnetic field generated by the coil does not effectively penetrate the heating radiant tube.
There was a problem with poor measurement accuracy.

本発明はこのような事情に鑑みなされたもので、比較的
測定精度が良く、しかも加熱管を分解する等の手間を要
せずして行なえる加熱管の非破壊検査方法を提供するこ
とを目的とする。
The present invention was made in view of the above circumstances, and it is an object of the present invention to provide a non-destructive testing method for heating tubes that has relatively good measurement accuracy and can be carried out without requiring the trouble of disassembling the heating tube. purpose.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的に沿う請求項第1項記載の加熱管の非破壊検査
方法は、加熱管の外部にプローブコイルを配置し、該加
熱管の発生ずる割れを探傷する島流探傷方法において、
上記プローブコイルを対となるコイルによって形成する
と共に、該コイルの巻形状を直線部を有する閉形状とし
、該対となるコイルの直線部を上記加熱管に外側から当
接あるいは近接させて探傷を行うようにして構成されて
いる。
A method for non-destructive testing of a heating tube according to claim 1, which meets the above object, is an island flow flaw detection method in which a probe coil is placed outside the heating tube to detect shear cracks that occur in the heating tube.
The probe coil is formed by a pair of coils, and the winding shape of the coil is a closed shape with a straight part, and the straight part of the pair of coils is brought into contact with or close to the heating tube from the outside to perform flaw detection. It is configured to do this.

ここで、直線部を有する閉形状とは円、楕円、多角形あ
るいは卵形等の閉形状を直線で分割した形状をいう。
Here, the closed shape having a straight line portion refers to a shape obtained by dividing a closed shape such as a circle, an ellipse, a polygon, or an egg shape by straight lines.

そして、請求項第2項記載の加熱管の非破壊検査方法は
、請求項第1項記載の方法において、プローブコイルに
流す交流は異なる2つの周波数の交流をミックスした2
重周波数交流から構成されている。
The method for non-destructive testing of heating tubes according to claim 2 is characterized in that in the method according to claim 1, the alternating current flowing through the probe coil is a mixture of alternating currents of two different frequencies.
It consists of multiple frequency alternating current.

〔作用〕[Effect]

請求項第1項記載の加熱管の非破壊検査方法は、プロー
ブコイルを対となるコイルによって構成し、該コイルの
巻形状を直線部を有する閉形状によって構成しているの
で、該直線部を加熱管に当接あるいは近接させた場合、
プローブコイルから発生する磁束がより多く加熱管の内
部を通ることができ、これによって磁束と直交して発生
する渦電流を発生させ、該渦電流と交わる亀裂等が存在
する場合、対となるコイルのバランスが崩れ、これによ
って亀裂等を検出することができる。
In the method for non-destructive testing of a heating tube according to claim 1, the probe coil is constituted by a pair of coils, and the winding shape of the coil is constituted by a closed shape having a straight part. If it touches or comes close to a heating tube,
More magnetic flux generated from the probe coil can pass through the inside of the heating tube, thereby generating an eddy current that is perpendicular to the magnetic flux, and if there is a crack etc. that intersects with the eddy current, the paired coil The balance is disrupted, and cracks, etc. can be detected by this.

請求項第2項記載の加熱管の非破壊検査方法においては
、周波数の異なる交流をミックスしてプローブコイルに
かけているので、周波数の高い交流によって発生する磁
束は加熱管の表面近傍を流れ、周波数の低い方の交流は
加熱管の表面から中層部まで流れるので、これによって
探傷深さを広げると共に、検出するそれぞれの信号値を
演算することによってノイズ分を除去し、信号分のみを
出力することがヤきる。
In the method for non-destructive testing of heating tubes according to claim 2, since alternating currents of different frequencies are mixed and applied to the probe coil, the magnetic flux generated by the high-frequency alternating currents flows near the surface of the heating tube, and Since the lower alternating current flows from the surface of the heating tube to the middle layer, this allows the detection depth to be expanded, and by calculating each detected signal value, noise can be removed and only the signal can be output. I can do it.

〔実施例] 続いて、添付した同面を参照しつつ、本発明を具体化し
た実施例につき説明し、本発明の理解に供する。
[Examples] Next, examples embodying the present invention will be described with reference to the same accompanying drawings to provide an understanding of the present invention.

ここに、第1図は本発明方法の一実施例に係る加熱管の
非破壊検査方法を適用している状態を示す断面図、第2
図は上記実施例に使用するプローブの斜視図、第3図は
上記実施例に使用した探傷装置の概略構成図である。
Here, FIG. 1 is a cross-sectional view showing a state in which a method for non-destructive testing of heating tubes according to an embodiment of the method of the present invention is applied, and FIG.
The figure is a perspective view of the probe used in the above embodiment, and FIG. 3 is a schematic configuration diagram of the flaw detection apparatus used in the above embodiment.

第2図に示すように、まず本発明の一実施例に係る加熱
管の非破壊検査方法に使用したプローブ10を示すが、
図に示すように断面半円形のヘークライトのコア11の
周囲に深さが1〜3闘(好ましくは2mm)の溝を設け
、この部分にプローブコイル12.13を巻いている。
As shown in FIG. 2, first, a probe 10 used in a method for non-destructive testing of heating tubes according to an embodiment of the present invention is shown.
As shown in the figure, a groove having a depth of 1 to 3 mm (preferably 2 mm) is provided around a heckleite core 11 having a semicircular cross section, and probe coils 12 and 13 are wound around this groove.

このプローブコイル12.13はそれぞれこの実施例に
おいては200回巻き程度で、その間隔はa=5mm、
b=4mm程度であり、上記コア11の寸法はc=50
mm、d=50mmであった。
Each of the probe coils 12 and 13 has about 200 turns in this embodiment, and the interval between them is a=5 mm.
b=about 4 mm, and the dimension of the core 11 is c=50
mm, d=50 mm.

このプローブ10は第3図に示すように周知の構造の渦
流探傷装置14に接続しているが、該渦流探傷装置14
は、10kHzと40kHzの三周波を発信装置15.
16によって発信しこれをミキサー17によって混合し
、ブリッジ回路18に加えている。このブリッジ回路1
8には上記プローブコイル12.13が接続され、電圧
源を上記三周波混合電圧とし、上記ブリッジ回路18の
出力を検出し、適当にアンプで増幅した後、基準周波数
と比較してその位相及び絶対値を検出し、必要な相回転
を加えた後、10kHz及び40kHzに対応するベク
トル出力(x+−yz)及び(Xy 2)を出力するよ
うになっている。
As shown in FIG. 3, this probe 10 is connected to an eddy current flaw detection device 14 having a well-known structure.
The transmitter 15 transmits three frequencies of 10kHz and 40kHz.
16, mixed by mixer 17, and added to bridge circuit 18. This bridge circuit 1
8 is connected to the probe coils 12 and 13, the voltage source is the three-frequency mixed voltage, the output of the bridge circuit 18 is detected, amplified appropriately with an amplifier, and then compared with the reference frequency to determine its phase and After detecting the absolute value and adding the necessary phase rotation, vector outputs (x+-yz) and (Xy 2) corresponding to 10 kHz and 40 kHz are output.

これを次のブラウン管デイスプレィ装置19に加え、C
RT20に上記ベクトル出力及びこれを適当に加減算し
たxy小出力りサージュ図形をそれぞれ描かせるように
なっている。
Add this to the next cathode ray tube display device 19, and
The RT 20 is configured to draw the above vector output and xy small output rissage figures obtained by appropriately adding and subtracting the vector output.

従って、この装置14.19を使用して第1図に示すよ
うな加熱用輻射管21(SCH22)を検査する場合に
は、予め該加熱用輻射管21に同等の材質、形状で欠陥
のない試験用パイプを用意し、これにプローブ10を上
記プローブコイル12.13の直線部22.23の中心
が丁度試験用パイプの側線に一致するように当接し、上
記装置14.19をノイズを検出しないように全体を調
整する。この調整は、10kHz及び40kHzの2周
波の信号と、該それぞれの信号を相回転させた信号と加
減した信号とをCRT20上に表示させながら行う。
Therefore, when inspecting the heating radiant tube 21 (SCH22) as shown in FIG. A test pipe is prepared, the probe 10 is brought into contact with it so that the center of the straight portion 22.23 of the probe coil 12.13 exactly coincides with the side line of the test pipe, and the above device 14.19 is used to detect noise. Adjust the whole thing so that it doesn't happen. This adjustment is performed while displaying on the CRT 20 two frequency signals of 10 kHz and 40 kHz, a signal obtained by rotating the phase of each signal, and a signal obtained by adjusting the phase of each signal.

次に、上記プローブ10を測定しようとする加熱用輻射
管21に第1図に示すような方向で当接させ、これを徐
々に長さ方向(場合によっては周方向に)移動させるこ
とによって行う。
Next, the probe 10 is brought into contact with the heating radiation tube 21 to be measured in the direction shown in FIG. 1, and this is gradually moved in the lengthwise direction (in some cases circumferential direction) .

この場合、10−ブコイルI2、I3によって生じる磁
束は、その直線部22.23をそれぞれ中心として加熱
用輻射管21の内部を通り、導体である加熱用輻射管2
1に渦電流を発生させ、これが実効抵抗骨としてインピ
ーダンスを変化させる。
In this case, the magnetic flux generated by the 10-build coils I2 and I3 passes through the inside of the heating radiation tube 21 centering on the straight portions 22 and 23, respectively, and passes through the heating radiation tube 21, which is a conductor.
1 generates eddy currents, which act as effective resistance and change impedance.

上記加熱用輻射管21に傷があれば、渦電流に変化が住
じるので、上記プローブコイル12.13との位置によ
って渦流探傷装置14のブリッジ回路18のバランスが
崩れ、出力を発生ずる。
If there is a flaw in the heating radiation tube 21, the eddy current will change, and the balance of the bridge circuit 18 of the eddy current flaw detector 14 will be lost depending on the position with respect to the probe coil 12, 13, causing an output to be generated.

上記方法によって渦流探傷を行うと、第1表に示す実験
結果を得た。
When eddy current flaw detection was performed using the above method, the experimental results shown in Table 1 were obtained.

第  1  表 従って、この表から、上記方法を用いることによって、
外表面から3mmの位置になる傷、割れ等を確実に検出
することができる。
Table 1 Therefore, from this table, by using the above method,
Scratches, cracks, etc. located 3 mm from the outer surface can be reliably detected.

なお、上記実施例においては、巻形状が半円形状のコイ
ルを使用したが、直線部を有すれば、:角形あるいは四
角形の巻形状のコイルを使用することも可能であり、ま
た、コイルの巻数をその周波数あるいは検出深さに合わ
せて変えることも可能である。
In the above embodiment, a coil with a semicircular winding shape was used, but it is also possible to use a coil with a rectangular or square winding shape if it has a straight part. It is also possible to change the number of turns depending on the frequency or detection depth.

なお、上記実施例においては、2重周波数の交流をプロ
ーブコイル12.13に流して、ノイズの除去及び測定
深さを広げたが、条件によっては検出深さに対応する単
周波数の交流を使用することも可能である。
In the above embodiment, dual-frequency alternating current is passed through the probe coils 12 and 13 to remove noise and expand the measurement depth, but depending on the conditions, single-frequency alternating current corresponding to the detection depth may be used. It is also possible to do so.

〔発明の効果] 請求項第1項記載の加熱管の非破壊検査方法は、以上の
説明からも明らかなように、加熱管の外側に直線部を有
するプローブコイルを当接あるいは極近接させることに
よって、多い磁束を加熱管内に通過させ、発生する渦電
流の変化によって、従来円筒状のコイルを用いては測定
が困難であった加熱管の内部から発生する割れを外側か
ら探傷できることとなった。
[Effects of the Invention] As is clear from the above explanation, the method for non-destructive testing of a heating tube according to claim 1 involves bringing a probe coil having a linear portion into contact with or very close to the outside of the heating tube. By passing a large amount of magnetic flux through the heating tube, changes in the generated eddy current made it possible to detect cracks occurring from the inside of the heating tube from the outside, which was difficult to measure using conventional cylindrical coils. .

この場合、上記プローブコイルは直線部を有し、加熱管
の表面の長い距離に渡って同時に当接あるいは極近接さ
せながら、検査を行なえるので、従来のペンシル型のプ
ローブを使用する場合に比較して効率良く渦流探傷を行
なえることなった。
In this case, the above-mentioned probe coil has a straight section, and inspection can be performed while simultaneously contacting or very close to the surface of the heating tube over a long distance, compared to when using a conventional pencil-type probe. This made it possible to perform eddy current flaw detection efficiently.

請求項第2項記載の加熱管の非破壊検査方法においては
、周波数の異なる交流をミックスしてプローブコイルに
かけているので、浅い範囲から深い範囲までの探傷が可
能となり、更には、検出するそれぞれの信号値を演算す
ることによってノイズ分を除去することができるので、
欠陥をより正確に検出できることとなった。
In the method for non-destructive testing of heating tubes according to claim 2, alternating current with different frequencies is mixed and applied to the probe coil, so flaw detection can be performed from shallow to deep ranges, and furthermore, each of the detected Since the noise can be removed by calculating the signal value,
Defects can now be detected more accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施例に係る加熱管の非破壊検
査方法を適用している状態を示す断面図、第2図は上記
実施例に使用するプローブの斜視図、第3図は上記実施
例に使用した探傷装置の概略構成図である。 [符号の説明〕
Fig. 1 is a sectional view showing a state in which a non-destructive inspection method for heating tubes according to an embodiment of the method of the present invention is applied, Fig. 2 is a perspective view of a probe used in the above embodiment, and Fig. 3 is a It is a schematic block diagram of the flaw detection apparatus used in the said Example. [Explanation of symbols]

Claims (2)

【特許請求の範囲】[Claims] (1)加熱管の外部にプローブコイルを配置し、該加熱
管の発生する割れを探傷する渦流探傷方法において、上
記プローブコイルを対となるコイルによって形成すると
共に、該コイルの巻形状を直線部を有する閉形状とし、
該対となるコイルの直線部を上記加熱管に外側から当接
あるいは近接するようにして探傷を行うことを特徴とす
る加熱管の非破壊検査方法。
(1) In an eddy current flaw detection method in which a probe coil is placed outside a heating tube to detect cracks occurring in the heating tube, the probe coil is formed by a pair of coils, and the winding shape of the coil is changed to a straight part. A closed shape having
A method for non-destructive testing of a heating tube, characterized in that flaw detection is performed by bringing the straight portions of the pair of coils into contact with or close to the heating tube from the outside.
(2)プローブコイルに流す交流は異なる2つの周波数
の交流をミックスした2重周波数交流である請求項第1
項記載の加熱管の非破壊検査方法。
(2) Claim 1, wherein the alternating current flowing through the probe coil is a dual frequency alternating current that is a mixture of alternating currents of two different frequencies.
Non-destructive testing method for heating tubes as described in section.
JP2114387A 1990-04-28 1990-04-28 Non-destructive inspection method of heating tube Expired - Fee Related JP2743109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2114387A JP2743109B2 (en) 1990-04-28 1990-04-28 Non-destructive inspection method of heating tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2114387A JP2743109B2 (en) 1990-04-28 1990-04-28 Non-destructive inspection method of heating tube

Publications (2)

Publication Number Publication Date
JPH0412266A true JPH0412266A (en) 1992-01-16
JP2743109B2 JP2743109B2 (en) 1998-04-22

Family

ID=14636403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2114387A Expired - Fee Related JP2743109B2 (en) 1990-04-28 1990-04-28 Non-destructive inspection method of heating tube

Country Status (1)

Country Link
JP (1) JP2743109B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6851541B1 (en) * 1998-01-30 2005-02-08 Scan Coin Industries Ab Discriminator for bimetallic coins
CN116174347A (en) * 2023-03-06 2023-05-30 珠海东方电热科技有限公司 Electric heater check out test set

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6851541B1 (en) * 1998-01-30 2005-02-08 Scan Coin Industries Ab Discriminator for bimetallic coins
CN116174347A (en) * 2023-03-06 2023-05-30 珠海东方电热科技有限公司 Electric heater check out test set
CN116174347B (en) * 2023-03-06 2023-08-22 珠海东方电热科技有限公司 Electric heater check out test set

Also Published As

Publication number Publication date
JP2743109B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
US3693075A (en) Eddy current system for testing tubes for defects,eccentricity,and wall thickness
JP4756409B1 (en) Nondestructive inspection apparatus and nondestructive inspection method using alternating magnetic field
JPS63298053A (en) Circumferential compensation eddy current probe
JPS63298052A (en) Eddy current probe
JPH04232458A (en) Eddy current probe
JPH04233452A (en) Eddy current probe
KR101746072B1 (en) Nondestructive inspection apparatus for ferromagnetic steam generator tubes and method thereof
JP5535296B2 (en) Test piece for eddy current testing, eddy current testing method using the same, and manufacturing method thereof
JPH0412266A (en) Method for non-destructive inspection of heating tube
JP2666301B2 (en) Magnetic flaw detection
JP2016161562A (en) Eddy current inspection device and eddy current inspection method
JPS599552A (en) Electromagnetic induction tester
JP2001272379A (en) Method and device for non destructive test for tube
Yang et al. Skin effect in eddy current testing with bobbin coil and encircling coil
JPH0552816A (en) Internally inserted probe for pulse-type eddy current examination
KR20200062972A (en) Probe for nondestructive testing device using crossed gradient induction current and method for manufacturing induction coil for nondestructive testing device
JPH0943204A (en) Coil for detecting defect in circumferential direction
JPH03105245A (en) Remote field type probe for eddy current flaw detection
JPH0429054A (en) Eddy current flaw detecting device for metallic pipe
JP2000356624A (en) Eddy current flaw detection method
JPH075408Y2 (en) Metal flaw detection probe
Koyama et al. Eddy current flaw testing probe with high performance in detecting flaws during in‐service inspection of tubing
Qiu et al. Normal Magnetizing-Based Eddy Current Testing Method for Multidirectional Cracks on Steel Plate Surface Based on Permeability Perturbation
JP2002055083A (en) Eddy current flaw detection probe
JPH08145954A (en) Method and apparatus for eddy current detection testing

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees