JPH04119946A - Method for monitoring carbon film of optical fiber - Google Patents

Method for monitoring carbon film of optical fiber

Info

Publication number
JPH04119946A
JPH04119946A JP2236287A JP23628790A JPH04119946A JP H04119946 A JPH04119946 A JP H04119946A JP 2236287 A JP2236287 A JP 2236287A JP 23628790 A JP23628790 A JP 23628790A JP H04119946 A JPH04119946 A JP H04119946A
Authority
JP
Japan
Prior art keywords
carbon film
optical fiber
quality
carbon
dielectric loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2236287A
Other languages
Japanese (ja)
Inventor
Takeshi Shimomichi
毅 下道
Keiji Ohashi
圭二 大橋
Shinji Araki
荒木 真治
Hideo Suzuki
秀雄 鈴木
Yutaka Katsuyama
豊 勝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Fujikura Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Nippon Telegraph and Telephone Corp filed Critical Fujikura Ltd
Priority to JP2236287A priority Critical patent/JPH04119946A/en
Publication of JPH04119946A publication Critical patent/JPH04119946A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To continuously measure the quality of the carbon film formed on a bare optical fiber without contact by measuring the film quality of the carbon film from a change in the dielectric loss of the resonance frequency region of the optical fiber 1 on which the carbon film is formed. CONSTITUTION:The bare fiber of the optical fiber on which the carbon film is formed is inserted into a coil in which a high-frequency current flows and the quality of the above-mentioned carbon film is measured from the change in the dielectric loss of the resonance frequency region. The reasons thereof are as follows: Since the electric conductivity of the carbon film occurs in the orbital of the pi electrons existing in the Z-axial direction of a graphite type crystal structure, the electrical conductivity in the horizontal direction of the crystal is better as the degree of crystallization of the graphite is larger and the orientability of the two-dimensional graphite crystal is larger. Since the electric conductivity of the amorphous carbon film occurs in the orbital of the pi electrons, the change in electric resistance appears as a change in the dielectric constant as well and the orientability of the two-dimensional graphite crystal appears in the form of the dielectric loss.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、表面に炭素被膜が形成された光ファイバを
製造する際などに、炭素被膜の膜質を非接触連続的に測
定する炭素被膜のモニタ方法に関する。
Detailed Description of the Invention "Industrial Application Field" This invention is a carbon coating method for continuously measuring the quality of the carbon coating in a non-contact manner, such as when manufacturing optical fibers with a carbon coating formed on the surface. Regarding monitoring methods.

「従来の技術J 石英系光ファイバは、水素と接触するとファイバ内に拡
散した水素分子の分子振動に起因する吸収損失が増大し
、さらにドーパントとして含有されているP to s
、G eo IB tOsなどが水素と反応しOH基と
してファイバガラス中に取り込まれるため、OH基の吸
収による伝送損失も増大してしまう問題があった。
"Conventional Technology J When a silica-based optical fiber comes into contact with hydrogen, absorption loss due to molecular vibration of hydrogen molecules diffused within the fiber increases, and furthermore, P to s contained as a dopant increases.
, G eo IB tOs, etc., react with hydrogen and are incorporated into the fiber glass as OH groups, so there is a problem that transmission loss due to absorption of OH groups also increases.

このような弊害に対処するため、水素吸収能を有する液
状の組成物を光ケーブル内に充填する方法(特願昭61
−2510808号)などが考えられているが、その効
果が不十分である上、構造が複雑となって、経済的にも
問題がある。
In order to deal with such adverse effects, a method of filling an optical cable with a liquid composition having hydrogen absorption ability (Japanese Patent Application No. 1983) was proposed.
-2510808), but the effect is insufficient and the structure is complicated, resulting in economical problems.

このような問題を解決するため、最近化学気相成長法(
以下、CVD法と略称する)によって、光フアイバ表面
に炭素被膜を形成し、これによって、光ファイバの耐水
素特性を向上させうろことが発表されている。この製造
方法は、光フアイバ裸線表面にCVD法によって炭素被
膜を形成した後、紫外線硬化型樹脂や熱硬化型樹脂によ
って保護被覆層を形成して光ファイバとする方法である
In order to solve these problems, chemical vapor deposition method (
It has been announced that a carbon film can be formed on the surface of an optical fiber by a CVD method (hereinafter abbreviated as CVD method), thereby improving the hydrogen resistance properties of the optical fiber. This manufacturing method is a method in which a carbon film is formed on the surface of a bare optical fiber by a CVD method, and then a protective coating layer is formed using an ultraviolet curable resin or a thermosetting resin to produce an optical fiber.

ところで、光フアイバ裸線表面に形成された炭素波、膜
の耐水素特性は、その膜質および膜厚によって大きく変
化することが知られている。そして従来から光フアイバ
裸線表面に形成された炭素被膜の膜質および膜厚を測定
するには、光ファイノ(を切断し、その断面を顕微鏡で
観察する方法が用いられている。
By the way, it is known that the carbon wave and hydrogen resistance properties of a film formed on the surface of a bare optical fiber vary greatly depending on the quality and thickness of the film. Conventionally, in order to measure the quality and thickness of a carbon film formed on the surface of a bare optical fiber, a method has been used in which an optical fiber is cut and its cross section is observed using a microscope.

しかしながら、この測定方法では、光ファイバの切断を
余儀なくされ、非破壊的に測定を行うことができないば
かりでなく、連続測定が不可能であるという不都合があ
った。
However, with this measurement method, the optical fiber has to be cut, which not only makes it impossible to perform non-destructive measurements, but also makes it impossible to perform continuous measurements.

このような問題を解決する方法として、本発明者らによ
って、光ファイバの長さ方向に沿って炭素被膜の電気抵
抗値を測定し、この測定値に基づいて炭素被膜の形成条
件を制御することが提案されている。
As a method to solve such problems, the present inventors measured the electrical resistance value of the carbon film along the length of the optical fiber, and controlled the formation conditions of the carbon film based on this measured value. is proposed.

「発明が解決しようとする課題」 ところが、電気抵抗値を測定するこの方法は非破壊的か
つ、連続的に光ファイバの品質管理を行うとし)う観点
にたって提案されたものであるので、その点においては
問題が解決されているものの、光ファイバと測定電極と
の直接接触をさけることができず、光ファイバの強度低
下のおそれが生じる点、および測定電極の汚れによる測
定誤差が発生する点などにおいて改善の余地があった。
``Problem to be Solved by the Invention'' However, this method of measuring electrical resistance was proposed from the viewpoint of non-destructive and continuous quality control of optical fibers. Although the problem has been solved in some respects, direct contact between the optical fiber and the measurement electrode cannot be avoided, which may cause a decrease in the strength of the optical fiber, and measurement errors may occur due to dirt on the measurement electrode. There was room for improvement in these areas.

本発明は前記課題を解決するためになされたもので、光
フアイバ裸線上に形成された炭素被膜の膜質を非接触連
続的に測定する炭素被膜のモニタ方法を提供することを
目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a carbon coating monitoring method for continuously measuring the quality of a carbon coating formed on a bare optical fiber in a non-contact manner.

「課題を解決するための手段」 本発明は前記課題を解決するために、表面に炭素被膜が
形成された光ファイバ裸線を高周波電流の流れるコイル
の中に挿通し、共振周波数領域の誘電損失の変化から上
記炭素被膜の膜質を測定することを特徴とする光ファイ
バの炭素被膜のモニタ方法としたものである。
"Means for Solving the Problems" In order to solve the problems described above, the present invention provides a method for inserting a bare optical fiber having a carbon coating on its surface into a coil through which a high-frequency current flows, thereby reducing the dielectric loss in the resonant frequency region. This is a method for monitoring a carbon coating of an optical fiber, characterized in that the quality of the carbon coating is measured from changes in the carbon coating.

「作用」 表面に炭素被膜が形成された光ファイバの裸線を高周波
電流の流れているコイルの中に挿通し、共振周波数領域
の誘電損失の変化から上記炭素被膜の膜質を測定する。
"Operation" A bare optical fiber with a carbon coating formed on its surface is inserted into a coil through which a high-frequency current is flowing, and the quality of the carbon coating is measured from the change in dielectric loss in the resonance frequency region.

またその測定値をもとに炭素被膜の形成条件を制御する
ことにより、均一な炭素被膜の形成された光ファイバを
製造することかできるものである。
Furthermore, by controlling the conditions for forming the carbon film based on the measured values, it is possible to manufacture an optical fiber having a uniform carbon film formed thereon.

「実施例」 第1図は、光ファイバの製造に好適に用いられる製造装
置の一例を示したものである。
Embodiment FIG. 1 shows an example of a manufacturing apparatus suitably used for manufacturing optical fibers.

第1図中、符号Iは光ファイバ裸線である。この光ファ
イバ裸線lは、光フアイバ母材2を紡糸装置3内で溶融
紡糸したものであり、この紡糸装置3の下段に設けられ
たCVD反応炉4内で、その表面に炭素被膜が形成され
るようになっている。
In FIG. 1, reference numeral I indicates a bare optical fiber. This bare optical fiber 1 is obtained by melt-spinning an optical fiber base material 2 in a spinning device 3, and a carbon film is formed on its surface in a CVD reactor 4 provided at the bottom of the spinning device 3. It is now possible to do so.

このCVD反応炉4は、内部にて光フアイバ裸線1表面
に炭素被膜を形成する反応管5と、この反応管5を加熱
する発熱体6とからなるものである。
This CVD reactor 4 consists of a reaction tube 5 that forms a carbon film on the surface of the bare optical fiber 1 inside, and a heating element 6 that heats the reaction tube 5.

またこのCVD反応炉4の下段には、光フアイバ裸線1
表面に形成された炭素被膜の誘電損失を測定し、この測
定値から炭素被膜の膜質を評価する評価装置7が設けら
れており、上段のCVD反応炉4とこの評価装置7とは
コントローラ8を介して接続されており、評価装置7で
得られた結果がCVD反応炉4ヘフイードバツクされる
ようになっている。
Also, in the lower stage of this CVD reactor 4, there is a bare optical fiber 1.
An evaluation device 7 is provided that measures the dielectric loss of the carbon film formed on the surface and evaluates the film quality of the carbon film based on the measured value. The results obtained by the evaluation device 7 are fed back to the CVD reactor 4.

本発明におけるこの評価装置7は、例えば第2図に示し
たように、炭素被膜が形成された光ファイバ裸線11が
挿通できるようなコイル9を電磁ノール10で囲ったも
のである。
The evaluation device 7 according to the present invention, for example, as shown in FIG. 2, has a coil 9 surrounded by an electromagnetic nozzle 10 through which a bare optical fiber 11 coated with a carbon film can be inserted.

前記コイル9には、高周波電流を流し、また誘電損失を
測定するLCRメータ16が接続されている。
An LCR meter 16 is connected to the coil 9 for flowing a high frequency current and measuring dielectric loss.

さらに、評価装置7の下段には樹脂液塗布装置14およ
び硬化装fli15とが連続して設けられており、炭素
被膜が形成された光フアイバ上に必要に応じて保護被膜
層が形成できるようになっている。
Furthermore, a resin liquid coating device 14 and a curing device fli 15 are successively provided at the lower stage of the evaluation device 7, so that a protective coating layer can be formed as necessary on the optical fiber on which the carbon coating has been formed. It has become.

このような製造装置を用いて、表面に炭素被膜が形成さ
れた光ファイバを製造するには、以下の工程による。
In order to manufacture an optical fiber having a carbon film formed on its surface using such a manufacturing apparatus, the following steps are performed.

まず光フアイバ母材2を用意し、これを紡糸装置3に設
置し、溶融紡糸して光ファイバ裸線lとする。ついでこ
の光ファイバ裸線1をCVD反応炉4内に挿通し、光フ
ァイバ裸線1表面にCVD反応により炭素被膜を形成す
る。ついでこの炭素被膜の耐水素特性を評価装置7にて
評価する。
First, an optical fiber preform 2 is prepared, placed in a spinning device 3, and melt-spun into a bare optical fiber 1. Next, this bare optical fiber 1 is inserted into a CVD reactor 4, and a carbon film is formed on the surface of the bare optical fiber 1 by a CVD reaction. Next, the hydrogen resistance properties of this carbon film are evaluated using an evaluation device 7.

一般に炭素の結晶形態にはダイヤモンド型と黒鉛型との
2種類があるが、CVD法によって光フアイバ裸線1表
面に形成される炭素被膜は通常アモルファスカーボンで
あり、上記ダイヤモンド型結晶構造と黒鉛型結晶構造と
が混在している状態である。そして上記2種の結晶構造
の混在比率によってその耐水素特性も大きく変化する。
In general, there are two types of carbon crystal structures: diamond type and graphite type, but the carbon film formed on the surface of bare optical fiber 1 by the CVD method is usually amorphous carbon, and the diamond type crystal structure and graphite type This is a state in which crystal structures are mixed. The hydrogen resistance properties also vary greatly depending on the mixing ratio of the above two types of crystal structures.

ところで炭素被膜の導電性は黒鉛型結晶構造の2軸方向
に存在するπ電子のオービタルに起因するものであるた
め、黒鉛の結晶化度が大きいほど、また二次元黒鉛結晶
の配向性が大きいほど結晶水平方向の導電率がよくなる
。このようにアモルファスカーボン膜の導電性がπ電子
のオービタルに起因しているため、電気抵抗の変化は誘
電率の変化としても現れ、二次元黒鉛結晶の配向性は誘
電損失のかたちで現れる。
By the way, the conductivity of the carbon film is due to the orbital of π electrons existing in the biaxial direction of the graphite crystal structure, so the higher the crystallinity of graphite and the higher the orientation of the two-dimensional graphite crystal, the higher the The conductivity in the horizontal direction of the crystal is improved. Since the conductivity of the amorphous carbon film is caused by the orbital π electrons, changes in electrical resistance also appear as changes in dielectric constant, and orientation of two-dimensional graphite crystals appears in the form of dielectric loss.

従って、表面に炭素被膜が形成された光ファイバの裸線
を高周波電流の流れているコイルの中に挿通し、共振周
波数領域の誘電損失の変化から上記炭素被膜の膜質を測
定することかできる。
Therefore, by inserting a bare optical fiber having a carbon coating on its surface into a coil through which a high-frequency current is flowing, the quality of the carbon coating can be measured from the change in dielectric loss in the resonant frequency region.

実際に光ファイバを製造するにあたっては、予め良好な
耐水素特性を示すような光ファイバを評価装置7内に挿
通させてその誘電損失と耐水素特性との関係を調べてお
き、評価装置7内で測定された誘電損失の値を制御信号
としてCVD反応炉4内に送り、この制御信号に基づい
て例えば反応管5を加熱する発熱体6の加熱温度を変化
させたり、反応管5内に供給する原料ガスの濃度を変更
させて、一定の耐水素特性を示す炭素被膜を形成するよ
うに制御する。このようにすると一定の耐水素特性を示
す炭素被膜が形成された光ファイバを容易に得ることが
できる。
When actually manufacturing an optical fiber, an optical fiber that exhibits good hydrogen resistance characteristics is inserted into the evaluation device 7 in advance, and the relationship between its dielectric loss and hydrogen resistance characteristics is investigated. The value of the dielectric loss measured in is sent to the CVD reactor 4 as a control signal, and based on this control signal, for example, the heating temperature of the heating element 6 that heats the reaction tube 5 is changed, The concentration of the raw material gas is controlled so as to form a carbon film exhibiting certain hydrogen resistance properties. In this way, it is possible to easily obtain an optical fiber having a carbon coating that exhibits certain hydrogen resistance characteristics.

そして炭素被膜が形成された光ファイバを樹脂液塗布袋
rR14に挿通し、紫外線硬化型樹脂液等を塗布した後
、硬化装置15内にて上記樹脂液を硬化させて、炭素被
膜と保護被覆層とが形成されて耐水素特性と機械的強度
とに優れた光ファイバを得ることができる。
Then, the optical fiber on which the carbon film has been formed is inserted into the resin liquid coating bag rR14, and after applying an ultraviolet curable resin liquid, etc., the resin liquid is cured in the curing device 15 to form a carbon film and a protective coating layer. An optical fiber having excellent hydrogen resistance and mechanical strength can be obtained.

また、炭素被膜の膜質を測定した後に樹脂保護被膜層を
形成する他に、樹脂保護被膜層の形成された後の光ファ
イバをコイルに挿通して炭素被膜層の膜質を測定するこ
とも可能である。
In addition to forming a resin protective film layer after measuring the film quality of the carbon film, it is also possible to measure the film quality of the carbon film layer by inserting an optical fiber into the coil after the resin protective film layer has been formed. be.

尚、後述するように耐水素特性の指針となる負荷Qを算
出するための共振周波数領域における周波数と透過電力
比の関係を第3図に示す。
Incidentally, as will be described later, FIG. 3 shows the relationship between the frequency and the transmitted power ratio in the resonant frequency region for calculating the load Q, which is a guideline for hydrogen resistance characteristics.

ここで、 Δf= f(H)−rcL ’1 fo= (f(L )+ rcH))/ 2Q (L 
)= f、/Δf また、f(L )、f(H)は挿入損失最小値の透過電
力の1/2となる周波数で、Q(L)が負荷Qとよばれ
る。
Here, Δf=f(H)-rcL'1 fo=(f(L)+rcH))/2Q(L
)=f,/Δf In addition, f(L) and f(H) are frequencies that are 1/2 of the transmitted power at the minimum insertion loss value, and Q(L) is called load Q.

(測定例) 下記の諸条件のもとで、実際に炭素被膜が形成された光
ファイバの測定誘電損失から負荷Qを導き、負荷Qと耐
水素特性の関係を第4図に示した。
(Measurement Example) Under the following conditions, the load Q was derived from the measured dielectric loss of an optical fiber actually coated with carbon, and the relationship between the load Q and the hydrogen resistance characteristics is shown in FIG.

コイル  ・導体径φ0.41巻数70ターン測定周波
数:10M 〜40MHz 共振周波数+25MHz 測定心線 :外径250μm、UV樹脂二層コート処理
   :水素分圧;latm、80℃、24時間以上の
ように本発明による炭素被膜のモニタ方法では、カーボ
ン膜質(結晶化度、結晶の配向)の変化を直接反映する
誘電損失の変化をモニタするものであるので、炭素被膜
の膜質の変化に非常に敏感である。
Coil ・Conductor diameter φ0.41 Number of turns 70 turns Measurement frequency: 10M to 40MHz Resonance frequency + 25MHz Measurement core wire: Outer diameter 250μm, UV resin double-layer coating treatment: Hydrogen partial pressure: latm, 80℃, 24 hours or more The carbon film monitoring method according to the invention monitors changes in dielectric loss, which directly reflects changes in carbon film quality (crystallinity, crystal orientation), and is therefore extremely sensitive to changes in carbon film quality. .

さらに、炭素被膜に非接触で測定するため、電極の汚れ
等の影響を受けず、正確な測定ができ、さらにまた、製
造された光フアイバ表面を汚染する心配がなく、光フア
イバ表面に傷が発生する恐れもなくなったので、より機
械的強度の高い光ファイバを得ることができるようにな
る。
Furthermore, since the measurement is performed without contacting the carbon coating, accurate measurements are possible without being affected by dirt on the electrodes, etc. Furthermore, there is no need to worry about contaminating the surface of the manufactured optical fiber, and there is no need to worry about scratches on the surface of the optical fiber. Since there is no longer any possibility of this occurring, it becomes possible to obtain an optical fiber with higher mechanical strength.

また、炭素被膜の耐水素特性を非破壊的に連続測定する
ことができるので、製造される光ファイバの品質管理が
非常に簡便となる効果がある。
Furthermore, since the hydrogen resistance properties of the carbon coating can be continuously measured in a non-destructive manner, the quality control of manufactured optical fibers is greatly simplified.

さらにまた、本発明のモニタ方法により得られた測定値
を制御信号としてCVD反応炉に送り、これによりCV
D反応炉での炭素被膜形成条件を制御すれば、良好な耐
水素特性を示す炭素被膜を均一に形成することができる
Furthermore, the measured values obtained by the monitoring method of the present invention are sent to the CVD reactor as a control signal, thereby
By controlling the conditions for forming the carbon film in reactor D, it is possible to uniformly form a carbon film that exhibits good hydrogen resistance.

なお、第1図に示した例にあっては、炭素被膜を形成す
る基材として光ファイバ裸線を用いたがこの発明の炭素
被膜のモニタ方法はこれに限定されるものではない。
In the example shown in FIG. 1, a bare optical fiber is used as the base material on which the carbon film is formed, but the method of monitoring the carbon film of the present invention is not limited to this.

「発明の効果」 以上説明したように本発明は、表面に炭素被膜が形成さ
れた光ファイバ裸線を高周波電流の流れるコイルの中に
挿通することにより炭素被膜の膜質を測定するものなの
で、非接触かつ連続的に炭素被膜の膜質を測定すること
ができ、炭素被膜を損傷させることなく、光ファイバの
強度低下の原因となることがなく、測定電極の汚れによ
る測定誤差も生じることがない。
"Effects of the Invention" As explained above, the present invention measures the film quality of the carbon film by inserting a bare optical fiber with a carbon film formed on the surface into a coil through which a high-frequency current flows. The quality of the carbon coating can be measured in a contact and continuous manner, without damaging the carbon coating, causing no reduction in the strength of the optical fiber, and without causing measurement errors due to dirt on the measurement electrode.

また、この測定値に基づいて炭素被膜の形成条件を制御
することにより、常に一定の耐水素特性を示す均一な炭
素被膜を形成できるようになるとともに、光ファイバの
品質管理を簡便に行うことができる。
In addition, by controlling the conditions for forming the carbon film based on these measured values, it is possible to form a uniform carbon film that always exhibits constant hydrogen resistance, and it is also possible to easily control the quality of optical fibers. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光ファイバの製造装置の一実施例の概略構成図
、第2図は評価装置を示す図、第3図は周波数と透過電
力比の関係を示す図、第4図は負荷Qと耐水素特性の関
係を示す図である。 l・・・光ファイバ裸線、2・・・光フアイバ母材、3
・・・紡糸装置、4・・・CVD反応炉、5・・・反応
管、6・・・発熱体、7・・・評価装置、8・・・コン
トローラ、9・・・コイル、10・・・電磁ノール、1
1・・・炭素被膜の形成された光ファイバ、14・・・
樹脂塗布装置、15・・・硬化装置、】6・・・LCR
メータ。
Fig. 1 is a schematic configuration diagram of an embodiment of an optical fiber manufacturing device, Fig. 2 is a diagram showing an evaluation device, Fig. 3 is a diagram showing the relationship between frequency and transmitted power ratio, and Fig. 4 is a diagram showing the relationship between load Q and FIG. 3 is a diagram showing the relationship between hydrogen resistance characteristics. l... Optical fiber bare wire, 2... Optical fiber base material, 3
... Spinning device, 4... CVD reactor, 5... Reaction tube, 6... Heating element, 7... Evaluation device, 8... Controller, 9... Coil, 10...・Electromagnetic Knoll, 1
1... Optical fiber with carbon coating formed, 14...
Resin coating device, 15... Curing device, ]6... LCR
meter.

Claims (1)

【特許請求の範囲】[Claims] 表面に炭素被膜が形成された光ファイバ裸線を高周波電
流の流れるコイルの中に挿通し、共振周波数領域の誘電
損失の変化から上記炭素被膜の膜質を測定することを特
徴とする光ファイバの炭素被膜のモニタ方法。
A carbon fiber optical fiber characterized in that a bare optical fiber having a carbon film formed on its surface is inserted into a coil through which a high-frequency current flows, and the film quality of the carbon film is measured from changes in dielectric loss in a resonant frequency region. How to monitor coatings.
JP2236287A 1990-09-06 1990-09-06 Method for monitoring carbon film of optical fiber Pending JPH04119946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2236287A JPH04119946A (en) 1990-09-06 1990-09-06 Method for monitoring carbon film of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2236287A JPH04119946A (en) 1990-09-06 1990-09-06 Method for monitoring carbon film of optical fiber

Publications (1)

Publication Number Publication Date
JPH04119946A true JPH04119946A (en) 1992-04-21

Family

ID=16998556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2236287A Pending JPH04119946A (en) 1990-09-06 1990-09-06 Method for monitoring carbon film of optical fiber

Country Status (1)

Country Link
JP (1) JPH04119946A (en)

Similar Documents

Publication Publication Date Title
USRE30635E (en) Method of producing internally coated glass tubes for the drawing of fibre optic light conductors
Hamada et al. Structures and physical properties of carbon fibers from coal tar mesophase pitch
EP0748452B1 (en) Method of manufacturing a faraday-effect sensing coil with stable birefringence
Gallego et al. Structure–property relationships for high thermal conductivity carbon fibers
WO1983000232A1 (en) Optical fibres and their manufacture
US20020178758A1 (en) Method of measuring the twist imparted to an optical fibre and procedure for processing an optical fibre using this method
KR102243797B1 (en) Quartz glass thread and quartz glass cloth
US4949038A (en) Optical fiber having a helical core for sensing a magnetic field
JP2785241B2 (en) Optical fiber manufacturing method
JPH04119946A (en) Method for monitoring carbon film of optical fiber
DE68908110T2 (en) Process for the production of an optical fiber.
KR970000904B1 (en) Measuring and controlling the thickness of a coating on elongated article
JP2723301B2 (en) Optical fiber manufacturing method
US20020026811A1 (en) Method for suppressing oxygen bubble formation in glass melts, apparatus for performing same uses for glasses made by same
EP0622344B1 (en) Large aperture device for controlling thickness of conductive coating on optical fibers
JP3116331B2 (en) Monitoring apparatus, monitoring method and manufacturing method for carbon coated optical fiber
JPH02243540A (en) Production of optical fiber
JP2719050B2 (en) Method for monitoring carbon coating of optical fiber
JPS6096545A (en) Optical fiber
KR930009888B1 (en) Method and device for producing conductive thin film-coated optical fiber
JP3603368B2 (en) Glass fiber twist detection method
JP3301136B2 (en) Optical fiber manufacturing method and optical fiber manufacturing apparatus
JP4115200B2 (en) Optical fiber manufacturing method
EP0577408A2 (en) High compressive strength pitch based carbon fiber
JP2002257770A (en) Composite material for monitoring of molding and method for monitoring