JP3282925B2 - Manufacturing method of carbon coated optical fiber - Google Patents

Manufacturing method of carbon coated optical fiber

Info

Publication number
JP3282925B2
JP3282925B2 JP21680594A JP21680594A JP3282925B2 JP 3282925 B2 JP3282925 B2 JP 3282925B2 JP 21680594 A JP21680594 A JP 21680594A JP 21680594 A JP21680594 A JP 21680594A JP 3282925 B2 JP3282925 B2 JP 3282925B2
Authority
JP
Japan
Prior art keywords
optical fiber
thermal cvd
carbon
gas
cvd reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21680594A
Other languages
Japanese (ja)
Other versions
JPH0881240A (en
Inventor
慎一 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP21680594A priority Critical patent/JP3282925B2/en
Publication of JPH0881240A publication Critical patent/JPH0881240A/en
Application granted granted Critical
Publication of JP3282925B2 publication Critical patent/JP3282925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor
    • C03C25/22Deposition from the vapour phase
    • C03C25/223Deposition from the vapour phase by chemical vapour deposition or pyrolysis

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はカーボン被覆光ファイバ
の製造方法に関するもので、更に詳しくは裸光ファイバ
の周囲にカーボン膜を被覆する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a carbon-coated optical fiber, and more particularly to a method for coating a bare optical fiber with a carbon film.

【0002】[0002]

【従来の技術】ハーメチック被覆光ファイバの製造方法
としては、線引直後の裸光ファイバの表面に熱CVD法
を用いて200〜1000Åの無機材料層を合成するも
のが一般的に行われている。このような方法で製造され
るハーメチックの無機材料層としてはカーボン及びカー
ボン化合物膜のものがよく知られいる。このカーボン膜
はH2 の侵入をほぼ完全に防ぐため、光ファイバの耐水
素特性は著しい改善をみせる。同時に、H2 Oの侵入を
防ぐので、石英ガラスに見られるH2 Oに起因する応力
腐食が起こらず、当然疲労特性も著しく改善される。更
にカーボン被覆光ファイバの初期強度も通常の光ファイ
バと同等あるいはそれ以上の初期強度を有するファイバ
が製造可能となっており、現在通信線路、光学部品等の
分野で使われ始めている。
2. Description of the Related Art As a method of producing a hermetic coated optical fiber, a method of synthesizing an inorganic material layer having a thickness of 200 to 1000 DEG by using a thermal CVD method on a surface of a bare optical fiber immediately after drawing is generally performed. . As the hermetic inorganic material layer manufactured by such a method, a layer of carbon and a carbon compound film is well known. Since this carbon film almost completely prevents H 2 from entering, the hydrogen resistance of the optical fiber is significantly improved. At the same time, H 2 O is prevented from penetrating, so that stress corrosion due to H 2 O found in quartz glass does not occur and, as a matter of course, fatigue characteristics are significantly improved. Further, it is possible to manufacture a fiber having an initial strength of a carbon-coated optical fiber equal to or higher than that of a normal optical fiber, and the fiber is now being used in fields such as communication lines and optical components.

【0003】[0003]

【発明が解決しようとする課題】従来の光ファイバのカ
ーボン膜の合成方法は、原料ガスを熱分解させて石英か
らなる光ファイバのクラッド上にカーボン膜を成膜させ
ている。カーボン膜を成膜したカーボン被覆光ファイバ
の破断強度やハーメチック特性等のカーボン被覆光ファ
イバの諸特性を決める要因として、原料ガスの組成、原
料ガスの濃度、熱分解反応時の温度等が挙げられる。
In a conventional method for synthesizing a carbon film of an optical fiber, a raw material gas is thermally decomposed to form a carbon film on a cladding of an optical fiber made of quartz. Factors that determine various properties of the carbon-coated optical fiber, such as the breaking strength and hermetic properties, of the carbon-coated optical fiber having the carbon film formed thereon include the composition of the source gas, the concentration of the source gas, and the temperature during the thermal decomposition reaction. .

【0004】通常行われている光ファイバの線引過程で
のオンラインでカーボン膜を合成するカーボン膜被覆装
置は原料ガスを熱分解反応させカーボン膜を被覆する熱
CVD反応炉とシール室を備えている。前記シール室内
にはAr、He、N2 等の不活性ガスあるいは高温にお
いても原料ガスとほとんど反応しないガスによって満た
され熱CVD反応炉内に外部雰囲気が流入しないように
なっている。
[0004] A carbon film coating apparatus for synthesizing a carbon film on-line during the process of drawing an optical fiber is usually provided with a thermal CVD reactor and a seal chamber for performing a thermal decomposition reaction of a raw material gas to coat the carbon film. I have. The seal chamber is filled with an inert gas such as Ar, He, and N 2 or a gas that hardly reacts with the source gas even at a high temperature so that an external atmosphere does not flow into the thermal CVD reactor.

【0005】従来はシール室へ流すシールガスであるA
r、He、N2 等の不活性ガスの適切な流量を決定する
手段がなく、熱CVD反応炉へ流す原料ガスの量に係わ
らずシールガスが一定である場合が多かった。熱CVD
反応炉内へ外部雰囲気の流入を防ぐ目的で、また熱CV
D反応炉内の原料ガス或いは反応生成ガス或いは煤等の
反応生成物が外部に漏れ周りの環境に悪影響を与えるこ
とを防ぐ目的で、かなり多量のシールガスを流してい
た。
Conventionally, a seal gas A flowing into a seal chamber is used.
There is no means for determining an appropriate flow rate of an inert gas such as r, He, and N 2 , and the seal gas is often constant regardless of the amount of the source gas flowing into the thermal CVD reactor. Thermal CVD
In order to prevent the outside atmosphere from flowing into the reactor, heat CV
In order to prevent a reaction gas such as a raw material gas, a reaction product gas, or a soot in the D reactor from leaking to the outside and adversely affecting the surrounding environment, a considerably large amount of a sealing gas is supplied.

【0006】このような状態のときにはシール室の圧力
が熱CVD反応炉に比べ高くなりすぎており多量のシー
ルガスが熱CVD反応炉内へ流れ込むことになる。シー
ルガスが熱CVD反応炉内へ流れ込むと熱CVD反応炉
内の特にシール室開口部鉛直方向にあるファイバ近傍の
原料ガス濃度が低下してしまい、原料ガスの熱分解速度
が低下し、その結果十分な膜厚及び膜質の炭素膜を短時
間で合成する事が困難となり、カーボン膜の強度及びハ
ーメチック特性を悪化させる原因となっていた。また、
長尺のカーボン被覆光ファイバを線引する際に線引に伴
って熱CVD反応炉内に煤が堆積する。この堆積した煤
は熱CVD反応炉内での原料ガスの流れを変化させる。
この原料ガスの流れの変化はシール室と熱CVD反応炉
間の開口部圧力差を変化させるので、シール室から熱C
VD反応炉へ流れこむシールガスの量が反応炉内の煤の
堆積量に伴って変化する。こうした影響で熱CVD反応
炉内の原料ガス濃度が長手で変化し長尺のカーボン被覆
光ファイバの長手での特性変化の1つの原因となってい
た。
In such a state, the pressure in the seal chamber is too high as compared with the thermal CVD reactor, and a large amount of seal gas flows into the thermal CVD reactor. When the sealing gas flows into the thermal CVD reactor, the concentration of the raw material gas in the thermal CVD reactor, particularly near the fiber in the vertical direction at the opening of the sealing chamber, decreases, and the thermal decomposition rate of the raw material gas decreases. It has been difficult to synthesize a carbon film of sufficient thickness and quality in a short time, which has been a cause of deteriorating the strength and hermetic properties of the carbon film. Also,
When a long carbon-coated optical fiber is drawn, soot is deposited in the thermal CVD reactor as the wire is drawn. The deposited soot changes the flow of the source gas in the thermal CVD reactor.
This change in the flow of the source gas changes the pressure difference between the opening of the sealing chamber and the thermal CVD reactor.
The amount of sealing gas flowing into the VD reactor changes with the amount of soot deposited in the reactor. Due to such influence, the raw material gas concentration in the thermal CVD reactor changes longitudinally, which is one cause of the characteristic change in the longitudinal direction of the long carbon-coated optical fiber.

【0007】本発明は上記の課題を解決し、シール室か
ら熱CVD反応炉へ流れ込むシールガスの量を必要最小
量にすることによりカーボン膜の強度及びハーメチック
特性のすぐれたカーボン被覆光ファイバの製造方法を提
供することを目的とするものである。
[0007] The present invention solves the above-mentioned problems, and manufactures a carbon-coated optical fiber having excellent carbon film strength and hermetic characteristics by minimizing the amount of a sealing gas flowing from a sealing chamber into a thermal CVD reactor. It is intended to provide a method.

【0008】[0008]

【課題を解決するための手段】本発明は上記の課題を解
決するために以下のような手段を有している。
The present invention has the following means to solve the above problems.

【0009】本発明のうち請求項1のカーボン被覆光フ
ァイバの製造方法は、線引直後の光ファイバを熱CVD
反応炉を備えた炭素膜被覆装置を通過させて前記光ファ
イバの表面にカーボン膜を被覆するカーボン被覆光ファ
イバの製造方法において、少なくとも前記炭素膜被覆装
置は光ファイバ挿入側に前記熱CVD反応炉と外部雰囲
気を遮断する為のシールガスを充填する上部シール室を
設け、該上部シール室と前記熱CVD反応炉の圧力差を
測定して前記上部シール室に最適な量のシールガスを供
給することを特徴とする。
According to a first aspect of the present invention, there is provided a method for producing a carbon-coated optical fiber, comprising:
In a method for producing a carbon-coated optical fiber, wherein the surface of the optical fiber is coated with a carbon film by passing through a carbon-film coating apparatus having a reaction furnace, at least the carbon-film coating apparatus is provided with a thermal CVD reactor on an optical fiber insertion side. And an upper seal chamber filled with a seal gas for shutting off an external atmosphere. A pressure difference between the upper seal chamber and the thermal CVD reactor is measured to supply an optimal amount of the seal gas to the upper seal chamber. It is characterized by the following.

【0010】本発明のうち請求項2のカーボン被覆光フ
ァイバの製造方法は、線引直後の光ファイバを熱CVD
反応炉を備えた炭素膜被覆装置を通過させて前記光ファ
イバの表面にカーボン膜を被覆するカーボン被覆光ファ
イバの製造方法において、前記炭素膜被覆装置は光ファ
イバ挿入側に前記熱CVD反応炉と外部雰囲気を遮断す
る為のシールガスを充填する上部シール室を設けるとと
もに、前記熱CVD反応炉の光ファイバ送出側に前記熱
CVD反応炉と外部雰囲気を遮断する為のシールガスを
充填する下部シール室を設け、少なくとも前記下部シー
ル室と前記熱CVD反応炉の圧力差を測定して前記下部
シール室に最適な量のシールガスを供給することを特徴
とする。
According to a second aspect of the present invention, in the method for manufacturing a carbon-coated optical fiber, the optical fiber immediately after drawing is subjected to thermal CVD.
In a method of manufacturing a carbon-coated optical fiber for coating a carbon film on the surface of the optical fiber by passing through a carbon-film coating apparatus having a reaction furnace, the carbon-film coating apparatus includes a thermal CVD reactor on an optical fiber insertion side. An upper seal chamber for filling a seal gas for shutting off an external atmosphere is provided, and a lower seal for filling a seal gas for shutting off the external atmosphere with the thermal CVD reactor on the optical fiber delivery side of the thermal CVD reactor. A chamber is provided, and at least a pressure difference between the lower seal chamber and the thermal CVD reactor is measured to supply an optimal amount of seal gas to the lower seal chamber.

【0011】本発明のうち請求項3のカーボン被覆光フ
ァイバの製造方法は、シール室の圧力と熱CVD反応炉
の圧力をモニターしながら前記シール室と前記熱CVD
反応炉の圧力差が一定となるように前記シール室にシー
ルガスを供給することを特徴とする。
According to a third aspect of the present invention, there is provided a method of manufacturing a carbon-coated optical fiber, comprising:
A seal gas is supplied to the seal chamber so that the pressure difference in the reactor becomes constant.

【0012】本発明のうち請求項4のカーボン被覆光フ
ァイバの製造方法は、光ファイバの表面に被覆されたカ
ーボン膜の電気抵抗等のカーボン膜質をオンラインでモ
ニターし、カーボン膜質が一定となるようにシール室に
シールガスを供給することを特徴とする。
According to a fourth aspect of the present invention, in the method of manufacturing a carbon-coated optical fiber, the quality of the carbon film, such as the electrical resistance, of the carbon film coated on the surface of the optical fiber is monitored online so that the carbon film quality becomes constant. And supplying a seal gas to the seal chamber.

【0013】[0013]

【作用】本発明のうち請求項1ないし請求項4のカーボ
ン被覆光ファイバの製造方法によれば、線引直後の光フ
ァイバを熱CVD反応炉を備えた炭素膜被覆装置を通過
させて光ファイバの表面にカーボン膜を被覆するカーボ
ン被覆光ファイバの製造方法において、少なくとも炭素
膜被覆装置は光ファイバ挿入側に熱CVD反応炉と外部
雰囲気を遮断する為のシールガスを充填する上部シール
室を設けるとともに、熱CVD反応炉の光ファイバ送出
側に熱CVD反応炉と外部雰囲気を遮断する為のシール
ガスを充填する下部シール室を設け、少なくとも一方の
シール室と前記熱CVD反応炉の圧力差を測定して、測
定したシール室に最適な量のシールガスを供給すること
により、熱CVD反応炉に余分なシールガスを流入させ
ることがなくなる。その結果、熱CVD反応炉内のシー
ル室開口部鉛直方向にある光ファイバ近傍の原料ガス濃
度を低下させることがなくなるので、熱CVD反応炉内
の原料ガスの熱分解速度が保証され十分な膜厚及び膜質
のカーボン膜を合成することができ、カーボン膜の強度
及びハーメチック特性を向上させる。
According to the method for producing a carbon-coated optical fiber of the present invention, the optical fiber immediately after drawing is passed through a carbon film coating apparatus equipped with a thermal CVD reactor, and In a method of manufacturing a carbon-coated optical fiber for coating a surface of a carbon film, at least the carbon-film coating apparatus is provided with a thermal CVD reactor and an upper seal chamber filled with a seal gas for shutting off an external atmosphere on an optical fiber insertion side. At the same time, a lower seal chamber is provided at the optical fiber delivery side of the thermal CVD reactor for filling the thermal CVD reactor with a seal gas for shutting off an external atmosphere, and a pressure difference between at least one of the seal chambers and the thermal CVD reactor is reduced. By supplying the optimum amount of the sealing gas to the measured and measured sealing chamber, no extra sealing gas flows into the thermal CVD reactor. As a result, the concentration of the source gas in the vicinity of the optical fiber in the vertical direction of the opening of the seal chamber in the thermal CVD reactor is not reduced, so that the rate of thermal decomposition of the source gas in the thermal CVD reactor is ensured and sufficient film is formed. A carbon film having a thickness and a film quality can be synthesized, and the strength and hermetic characteristics of the carbon film are improved.

【0014】炭素膜被覆装置のシール室から熱CVD反
応炉に流れるシールガスは、シール室及び熱CVD反応
炉間の圧力差よりシール室開口部全体から流れるシール
ガスと、特に上部シールガスにおいては光ファイバ近傍
の境界層付近を光ファイバに伴われて熱CVD反応炉に
流れ込むシールガスに分けられる。シール室及び熱CV
D反応炉間の開口部面積は光ファイバの断面積に比べ遥
かに大きいので熱CVD反応炉へ流れ込むシールガスの
大部分は開口部圧力差と開口部面積によって決まること
になる。
The sealing gas flowing from the sealing chamber of the carbon film coating apparatus to the thermal CVD reactor is the sealing gas flowing from the entire opening of the sealing chamber due to the pressure difference between the sealing chamber and the thermal CVD reactor, and especially the upper sealing gas. The vicinity of the boundary layer near the optical fiber is divided into a seal gas flowing into the thermal CVD reactor along with the optical fiber. Seal chamber and heat CV
Since the opening area between the D reactors is much larger than the cross-sectional area of the optical fiber, most of the seal gas flowing into the thermal CVD reactor is determined by the opening pressure difference and the opening area.

【0015】光ファイバ線引中の光ファイバの揺れ等の
問題回避等のための光ファイバ線引上の際には多くの制
約を受ける。このような制約から開口部面積を必要以上
に小さくすることは困難なので、シール室と熱CVD反
応炉間の圧力差を小さくすることがシールガスの熱CV
D反応炉への流入を最小限にする方法になり、原料ガス
の流量に係わることなくシールガスによる原料ガス濃度
の低下を最小限にする唯一の方法となる。
There are many restrictions when drawing an optical fiber for avoiding problems such as fluctuation of the optical fiber during drawing of the optical fiber. Because of these restrictions, it is difficult to reduce the opening area more than necessary. Therefore, it is necessary to reduce the pressure difference between the seal chamber and the thermal CVD reactor to reduce the heat CV of the seal gas.
This is a method for minimizing the flow into the D reactor, and is the only method for minimizing the decrease in the source gas concentration due to the seal gas regardless of the flow rate of the source gas.

【0016】また、線引中光ファイバの長手に渡って圧
力差を一定に制御することによりシールガスの熱CVD
反応炉への流入を一定にすることができ、原料ガス濃度
を光ファイバの線引中常に一定とするできる。ただし上
記の方法を用いてシールガス流量を制御すると、シール
室でシールガス流量が変化することになり熱分解反応時
のファイバ表面温度に微妙な変化が生じることになる。
そこで、カーボン膜の電気抵抗等のカーボン膜質を測定
しながらシール機能を果たす範囲でシール室のシールガ
スを制御すると、シールガスの熱CVD反応炉への流入
量の変化によるカーボン膜生成条件の1つである原料ガ
ス濃度と、カーボン膜生成条件の1つであるファイバ表
面の温度とを同時に変化させることになる。
Further, by controlling the pressure difference to be constant over the length of the optical fiber during drawing, the thermal CVD of the seal gas is performed.
The flow into the reactor can be kept constant, and the raw material gas concentration can be kept constant during drawing of the optical fiber. However, if the flow rate of the sealing gas is controlled by using the above method, the flow rate of the sealing gas changes in the sealing chamber, and a delicate change occurs in the fiber surface temperature during the thermal decomposition reaction.
Therefore, if the sealing gas in the sealing chamber is controlled within the range of fulfilling the sealing function while measuring the quality of the carbon film such as the electric resistance of the carbon film, one of the conditions for forming the carbon film due to the change in the amount of the sealing gas flowing into the thermal CVD reactor is as follows. The raw material gas concentration, which is one of the conditions, and the temperature of the fiber surface, which is one of the conditions for forming the carbon film, are simultaneously changed.

【0017】カーボン膜質の測定手段として電気抵抗測
定を選択した場合、カーボン膜の電気抵抗を大きくした
い(カーボン膜の膜厚を薄くしたい)際には原料ガス濃
度を低下せることと反応温度を低くすることがともに有
効であり、またカーボン膜の電気抵抗を小さくしたい
(カーボン膜の膜厚を厚くしたい)際には原料ガス濃度
を上げることと反応温度を高くすることがともに有効で
あるため、シールガス流量によりカーボン膜の特性を光
ファイバの長手に渡って一定に保つことができ、原料ガ
ス濃度を変化させることによりカーボン膜の強度及びハ
ーメチック特性の光ファイバ長手の変化をより抑えるこ
とができる。
When the electric resistance measurement is selected as the carbon film quality measuring means, when the electric resistance of the carbon film is to be increased (to reduce the film thickness of the carbon film), it is necessary to lower the raw material gas concentration and lower the reaction temperature. In order to reduce the electrical resistance of the carbon film (to increase the thickness of the carbon film), it is effective to increase the source gas concentration and increase the reaction temperature. The characteristics of the carbon film can be kept constant over the length of the optical fiber by the flow rate of the seal gas, and the change in the strength of the carbon film and the change in the length of the optical fiber in the hermetic characteristics can be further suppressed by changing the concentration of the raw material gas. .

【0018】[0018]

【実施例】以下に本発明を実施例により詳細に説明す
る。光ファイバのカーボン膜の合成は図1の装置を用い
て行った。コア部にGeO 2 がドーパントとして添加さ
れたシングルモード光ファイバ母材1をヒーター2を内
包する線引炉3で外径125μmの光ファイバ4に線引
きする。この線引き直後の光ファイバ4を線引炉3の直
下に設置された炭素膜被覆装置5に導入する。この炭素
膜被覆装置5内には原料ガス供給口6より原料ガスが供
給され、この原料ガスの熱分解により線引き直後の光フ
ァイバ4の表面にカーボン膜を形成してカーボン被覆光
ファイバ8が製造される。
The present invention will be described in more detail with reference to the following examples.
You. The carbon film of the optical fiber was synthesized using the apparatus shown in FIG.
I went. GeO in the core TwoIs added as a dopant
Single-mode optical fiber preform 1 with heater 2 inside
The optical fiber 4 having an outer diameter of 125 μm is drawn by the drawing furnace 3 to be wrapped
To The optical fiber 4 immediately after drawing is directly connected to the drawing furnace 3.
It is introduced into the carbon film coating apparatus 5 installed below. This carbon
Source gas is supplied from the source gas supply port 6 into the film coating apparatus 5.
Optical fiber immediately after drawing by thermal decomposition of this raw material gas.
A carbon film is formed on the surface of fiber 4 to form a carbon-coated light.
The fiber 8 is manufactured.

【0019】該カーボン被覆光ファイバ8は、しかる後
その表面にUV樹脂を施すダイス9に導かれて、UV樹
脂を塗布され、その後UV灯を有する硬化装置10にお
いてUV樹脂を硬化される。カーボン被覆及びUV樹脂
被覆を施された光ファイバは引取機により引き取られ図
示しない巻取機に巻き取られる。なお、図において符号
7はガス排気口であり、符号11はカーボン膜電気抵抗
測定機である。
The carbon-coated optical fiber 8 is guided to a die 9 for applying a UV resin to the surface thereof, and is coated with the UV resin. Thereafter, the UV resin is cured in a curing device 10 having a UV lamp. The optical fiber coated with the carbon coating and the UV resin is taken by a take-up machine and taken up by a take-up machine (not shown). In the drawing, reference numeral 7 denotes a gas exhaust port, and reference numeral 11 denotes a carbon film electric resistance measuring instrument.

【0020】本発明に用いた炭素膜被覆装置5について
図2を参照してより詳細に説明する。炭素膜被覆装置5
は上部に上部シール室21、中央部に熱CVD反応炉2
2及び下部に下部シール室23を有している。上部シー
ル室21へのシールガスの供給は導入口24より行われ
る。また、下部シール室23へのシールガスの供給は導
入口27より行われる。上部シール室21と熱CVD反
応炉22の圧力差の測定を圧力測定部28、29により
行う。図において、符号31は冷却水供給口、30は冷
却水排水口である。
The carbon film coating apparatus 5 used in the present invention will be described in more detail with reference to FIG. Carbon film coating equipment 5
Is an upper seal chamber 21 in the upper part, and a thermal CVD reactor 2 in the central part.
2 and a lower seal chamber 23 in the lower part. The supply of the seal gas to the upper seal chamber 21 is performed from the inlet 24. The supply of the seal gas to the lower seal chamber 23 is performed through the inlet 27. The pressure difference between the upper seal chamber 21 and the thermal CVD reactor 22 is measured by the pressure measuring units 28 and 29. In the drawing, reference numeral 31 denotes a cooling water supply port, and 30 denotes a cooling water drain port.

【0021】なお、以下に説明する実施例、比較例と
も、樹脂被覆外径は250μm、線引炉3の温度は約2
000℃、紡糸速度は350m毎分であり、原料ガス供
給口6より供給する原料ガスの組成も同じである。
In each of the examples and comparative examples described below, the resin-coated outer diameter is 250 μm, and the temperature of the drawing furnace 3 is about 2 μm.
The spinning speed was 350 m / min at 000 ° C., and the composition of the raw material gas supplied from the raw material gas supply port 6 was the same.

【0022】(実施例1)上記に説明した図1および図
2の装置により以下の方法によりカーボン被覆光ファイ
バを製造した。 実施例1−1:圧力測定部28、29を用いて上部シー
ル室21の圧力を熱CVD反応炉22の圧力より0.80 m
mH2O分高くなるようにして上部シール室21へシールガ
スを流し、上部シールガス流量を0.35 l/min とし
た。 実施例1−2:圧力測定部28、29を用いて上部シー
ル室21の圧力を熱CVD反応炉22の圧力より0.81 m
mH2O分高くなるようにして上部シール室21へシールガ
スを流し、上部シールガス流量を0.90 l/min とし
た。
Example 1 A carbon-coated optical fiber was manufactured by the following method using the apparatus shown in FIGS. 1 and 2 described above. Example 1-1: The pressure in the upper seal chamber 21 was reduced by 0.80 m from the pressure in the thermal CVD reactor 22 using the pressure measuring units 28 and 29.
The seal gas was flowed into the upper seal chamber 21 so as to increase the amount by mH 2 O, and the flow rate of the upper seal gas was set to 0.35 l / min. Example 1-2: The pressure in the upper seal chamber 21 was increased by 0.81 m from the pressure in the thermal CVD reactor 22 using the pressure measuring units 28 and 29.
The seal gas was flowed into the upper seal chamber 21 so as to increase the mH 2 O content, and the flow rate of the upper seal gas was set to 0.90 l / min.

【0023】比較例1−1:圧力測定部28、29を用
いて上部シール室21の圧力を熱CVD反応炉22の圧
力より18.0 mmH2O分高くなるようにして上部シール室2
1へシールガスを流し、上部シールガス流量を1.50
l/min とした。 比較例1−2:圧力測定部28、29を用いて上部シー
ル室21の圧力を熱CVD反応炉22の圧力より20.0 m
mH2O分高くなるようにして上部シール室21へシールガ
スを流し、上部シールガス流量を4.35 l/min とし
た。
COMPARATIVE EXAMPLE 1-1 Using the pressure measurement units 28 and 29, the pressure in the upper seal chamber 21 was set to be higher than the pressure in the thermal CVD reactor 22 by 18.0 mmH 2 O by 28.0 mmH 2 O.
1 and the upper seal gas flow rate was 1.50.
l / min. Comparative Example 1-2: The pressure in the upper seal chamber 21 was set to be 20.0 m higher than the pressure in the thermal CVD reactor 22 using the pressure measurement units 28 and 29.
The seal gas was flowed into the upper seal chamber 21 so as to be higher by mH 2 O, and the flow rate of the upper seal gas was set to 4.35 l / min.

【0024】実施例1−1、実施例1−2、比較例1−
1及び比較例1−2の上部シールガスとして、光ファイ
バ4の表面温度が変化する事を防ぐ為に熱分解反応温度
である1500℃に加熱したArを使用した。実施例、
比較例の原料ガス流量及び上部シールガス流量とカーボ
ン膜諸特性の測定結果を表1に示す。
Example 1-1, Example 1-2, Comparative Example 1
As the upper seal gas of Example 1 and Comparative Example 1-2, Ar heated to 1500 ° C., which is a pyrolysis reaction temperature, was used to prevent the surface temperature of the optical fiber 4 from changing. Example,
Table 1 shows the measurement results of the raw material gas flow rate, the upper seal gas flow rate, and various characteristics of the carbon film of the comparative example.

【0025】[0025]

【表1】 [Table 1]

【0026】なお、表1において50%破断強度測定条
件は評点間距離10m、歪速度5%毎分、n=49とし
た。耐水素特性測定条件は温度85℃、H2 分圧1at
mの条件に144hr暴露後、λ=1.24 μmにおける伝
送損失増加量とした。実施疲労特性測定条件は評点間距
離300mm、歪速度0.1%毎分、0.3%毎分、
1.0%毎分、3.3%毎分、10.0%毎分で各速度
水準n=19測定後破断強度中央値よりn値を計算し
た。
In Table 1, the conditions for measuring the 50% breaking strength were as follows: distance between evaluation points: 10 m; strain rate: 5% per minute; n = 49. Conditions for measuring hydrogen resistance were as follows: temperature 85 ° C, H 2 partial pressure 1at
After exposure for 144 hours to the condition of m, the transmission loss increase amount at λ = 1.24 μm was defined as the amount of increase in transmission loss. The conditions for measuring the actual fatigue properties were as follows: the distance between the scores was 300 mm, the strain rate was 0.1% per minute, 0.3% per minute,
After measuring each speed level n = 19 at 1.0% / min, 3.3% / min and 10.0% / min, the n value was calculated from the median breaking strength.

【0027】(実施例2)上記に説明した図1および図
2の装置により以下の方法によりカーボン被覆光ファイ
バを製造した。 実施例2:上部シール室21と熱CVD反応炉22の圧
力差が一定となるように上部シール室21にシールガス
を充填しながら500分間線引を行った。なお、本実施
例ではカーボン膜を被覆した直後にカーボン膜電気抵抗
測定機11を用いてカーボン膜の電気抵抗を測定した。
このときの上部シール室21と熱CVD反応炉22の圧
力差の長手変化を図3に示す。また、線引中に流したシ
ールガス量を図4に、カーボン膜の電気抵抗の長手変化
を図5に示す。
Example 2 A carbon-coated optical fiber was manufactured by the following method using the apparatus shown in FIGS. 1 and 2 described above. Example 2: While the upper seal chamber 21 was filled with a seal gas so that the pressure difference between the upper seal chamber 21 and the thermal CVD reactor 22 was constant, drawing was performed for 500 minutes. In this example, immediately after coating the carbon film, the electric resistance of the carbon film was measured using the carbon film electric resistance measuring device 11.
FIG. 3 shows a longitudinal change in the pressure difference between the upper seal chamber 21 and the thermal CVD reactor 22 at this time. FIG. 4 shows the amount of the sealing gas flowing during drawing, and FIG. 5 shows the longitudinal change of the electric resistance of the carbon film.

【0028】比較例2:上部シール室21に一定(0.
5l/min の一定)のシールガスを流しながら500分
間線引を行った。なお、本比較例においても実施例2と
同様に、カーボン膜を被覆した直後にカーボン膜電気抵
抗測定機11を用いてカーボン膜の電気抵抗を測定し
た。このときの上部シール室21と熱CVD反応炉22
の圧力差の長手変化を図6に、カーボン膜の電気抵抗の
長手変化を図7に示す。実施例2と比較例2の線引した
カーボン被覆光ファイバの線引始め部、中間部、線引終
わり部のカーボン膜諸特性の測定結果を表2に記載す
る。
Comparative Example 2: The upper seal chamber 21 is fixed (0.
Drawing was performed for 500 minutes while a seal gas (at a fixed rate of 5 l / min) was flowed. In this comparative example, similarly to Example 2, the electric resistance of the carbon film was measured using the carbon film electric resistance measuring device 11 immediately after the carbon film was coated. At this time, the upper seal chamber 21 and the thermal CVD reactor 22
6 shows the longitudinal change in the pressure difference, and FIG. 7 shows the longitudinal change in the electrical resistance of the carbon film. Table 2 shows the measurement results of the carbon film properties of the drawn carbon-coated optical fibers of Example 2 and Comparative Example 2 at the drawing start portion, the intermediate portion, and the drawing end portion.

【0029】[0029]

【表2】 [Table 2]

【0030】なお、表2において50%破断強度測定条
件、耐水素特性測定条件及び実施疲労特性測定条件は表
1と同じ条件である。
In Table 2, the conditions for measuring the 50% strength at break, the conditions for measuring the hydrogen resistance, and the conditions for measuring the actual fatigue properties are the same as those in Table 1.

【0031】(実施例3)上記に説明した図1および図
2の装置により以下の方法によりカーボン被覆光ファイ
バを製造した。 実施例3:カーボン膜電気抵抗測定機11で測定した電
気抵抗が一定となるよう500分間線引を行った。カー
ボン膜電気抵抗を小さくするためには上部シール室21
に供給するシールガスを若干減らし、反対にカーボン膜
電気抵抗を大きくするためには上部シール室21に供給
するシールガスを若干増やした。このときの上部シール
室21と熱CVD反応炉22の圧力差の長手変化を図8
に示す。また、線引中に流したシールガス量を図9に、
カーボン膜電気抵抗の長手変化を図10に示す。なお、
本実施例では冷却水供給口31より冷却水を供給して、
熱CVD反応炉22の内壁の冷却を行った。
Example 3 A carbon-coated optical fiber was manufactured by the following method using the apparatus shown in FIGS. 1 and 2 described above. Example 3 Drawing was performed for 500 minutes so that the electric resistance measured by the carbon film electric resistance measuring device 11 became constant. In order to reduce the electric resistance of the carbon film, the upper seal chamber 21 is required.
The seal gas supplied to the upper seal chamber 21 was slightly increased in order to slightly reduce the seal gas supplied to the upper seal chamber 21 and to increase the electric resistance of the carbon film. FIG. 8 shows a longitudinal change in the pressure difference between the upper seal chamber 21 and the thermal CVD reactor 22 at this time.
Shown in FIG. 9 shows the amount of sealing gas flowing during drawing.
FIG. 10 shows the longitudinal change in the electrical resistance of the carbon film. In addition,
In the present embodiment, cooling water is supplied from the cooling water supply port 31,
The inner wall of the thermal CVD reactor 22 was cooled.

【0032】本発明のカーボン被覆光ファイバの製造方
法は、実施例1からわかる通り、原料ガスの流量に応じ
たシールガスを上部シール室21に充填することによ
り、上部シール室21と熱CVD反応炉22間の圧力差
が適正に保たれ、シールガスによる原料ガスの希釈が抑
えられるので原料ガスの熱分解反応速度の低下が少なく
十分な強度と良好なハーメチック特性を兼ね備えたカー
ボン被覆光ファイバ8が製造可能となる。
As can be seen from the first embodiment, the method of manufacturing the carbon-coated optical fiber of the present invention is such that the upper seal chamber 21 is filled with a seal gas in accordance with the flow rate of the raw material gas, thereby allowing the upper seal chamber 21 to react with the thermal CVD reaction. Since the pressure difference between the furnaces 22 is properly maintained and the dilution of the raw material gas by the seal gas is suppressed, the reduction of the rate of thermal decomposition reaction of the raw material gas is small, and the carbon-coated optical fiber 8 having both sufficient strength and good hermetic characteristics is provided. Can be manufactured.

【0033】実施例1においては、上部シール室21と
熱CVD反応炉22間の圧力差が0.8mmH2O程度にしたと
きに良好な特性のカーボン被覆光ファイバが得られた。
熱CVD反応炉22及び上部シール室21部分の形状に
大きく影響されるが、これ以上圧力差を減らすと熱CV
D反応炉22内に線引きされた光ファイバに伴われて外
部雰囲気が熱CVD反応炉に流入し、その結果カーボン
膜の特性が損なわれるので好ましくない。外部雰囲気の
熱CVD反応炉内への流入がない限り上部シール室21
と熱CVD反応炉22の圧力差の値が小さくなるに従っ
てシールガスの熱CVD反応炉内への流入量が減少する
ので原料ガス濃度の管理が容易になりカーボン被覆光フ
ァイバの特性低下を防ぎ易い傾向にある。
In Example 1, when the pressure difference between the upper seal chamber 21 and the thermal CVD reactor 22 was about 0.8 mmH 2 O, a carbon-coated optical fiber having good characteristics was obtained.
The shape of the thermal CVD reactor 22 and the upper seal chamber 21 greatly affects the shape.
The external atmosphere flows into the thermal CVD reactor along with the optical fiber drawn into the D reactor 22, which is not preferable because the properties of the carbon film are impaired. Unless the external atmosphere flows into the thermal CVD reactor, the upper seal chamber 21
As the value of the pressure difference in the thermal CVD reactor 22 decreases, the flow rate of the seal gas into the thermal CVD reactor decreases, so that the control of the raw material gas concentration is facilitated and the deterioration of the characteristics of the carbon-coated optical fiber is easily prevented. There is a tendency.

【0034】なお、実施例に示した適正な圧力差は図2
に示した形状の炭素膜被覆装置5における値であり、炭
素膜被覆装置5の形状の変化に伴いシールガスあるいは
熱CVD反応炉22内で原料ガスや煤などの生成物の流
れの影響で適正値が代わり得る。更に、圧力測定部の位
置によりシールガスあるいは熱CVD反応炉22内でガ
スや煤などの生成物の流れの影響の度合いが違うので、
なるべく開口部直近で圧力を測定することが好ましい。
The appropriate pressure difference shown in the embodiment is shown in FIG.
Is the value in the carbon film coating apparatus 5 having the shape shown in FIG. 1, and is appropriate due to the influence of the flow of products such as raw material gas and soot in the seal gas or the thermal CVD reactor 22 as the shape of the carbon film coating apparatus 5 changes. Values can change. Furthermore, since the degree of the influence of the flow of products such as gas or soot in the seal gas or the thermal CVD reactor 22 differs depending on the position of the pressure measurement unit,
It is preferable to measure the pressure as close to the opening as possible.

【0035】実施例2、実施例3から明かなように、長
尺のカーボン被覆光ファイバ8を製造する際に比較例で
は長手で20%程度強度が低下しておりハーメチック特
性もかなり悪化しているが、本発明を用いることにより
ハーメチック特性の低下が大きく抑えられている。特に
実施例3に於いては強度、ハーメチック特性の低下は認
められなかった。
As is apparent from the second and third embodiments, when the long carbon-coated optical fiber 8 is manufactured, the strength is reduced by about 20% in the longitudinal direction in the comparative example, and the hermetic characteristics are considerably deteriorated. However, the use of the present invention greatly suppresses the deterioration of hermetic characteristics. Particularly, in Example 3, no reduction in strength and hermetic characteristics was observed.

【0036】また、実施例3のように電気抵抗等のカー
ボン膜質を測定しその測定結果からシールガス流量を制
御する場合はシールガスが減少して熱CVD反応炉22
からガスや煤等が洩れるのを防ぐため上部シール室21
と熱CVD反応炉22間の圧力差をモニターしながら圧
力差の最低値も設けそれ以上にシールガス流量を減らさ
ないようにすると良い。
When the quality of the carbon film such as electric resistance is measured and the sealing gas flow rate is controlled based on the measurement result as in the third embodiment, the amount of the sealing gas is reduced and the thermal CVD reactor 22 is used.
Upper seal chamber 21 to prevent gas and soot from leaking from
It is preferable to set the minimum value of the pressure difference while monitoring the pressure difference between the reactor and the thermal CVD reactor 22 so that the flow rate of the seal gas is not further reduced.

【0037】以上説明した実施例に於いては上部シール
室21と熱CVD反応炉22の圧力差を測定して上部シ
ール室21の上部シールガスの流量についてのみ述べた
が、下部シール室と熱CVD反応炉22の圧力差を測定
して下部シール室の下部シールガスの流量を制御しても
本発明の効果は得られる。特に原料ガスを熱CVD反応
炉22下部から導入しながらカーボン被覆光ファイバを
製造する際に下部シールガスの流量制御に本発明を用い
ると効果は絶大である。また、両シール室と熱CVD反
応炉22の圧力差を測定して両シール室のシールガスの
流量を制御しても本発明の効果は得られる。
In the embodiment described above, the pressure difference between the upper seal chamber 21 and the thermal CVD reactor 22 was measured and only the flow rate of the upper seal gas in the upper seal chamber 21 was described. Even if the pressure difference of the CVD reactor 22 is measured to control the flow rate of the lower seal gas in the lower seal chamber, the effect of the present invention can be obtained. In particular, when the present invention is used to control the flow rate of the lower seal gas when producing the carbon-coated optical fiber while introducing the raw material gas from the lower part of the thermal CVD reactor 22, the effect is remarkable. Also, the effect of the present invention can be obtained by controlling the flow rate of the seal gas in both the seal chambers by measuring the pressure difference between the two seal chambers and the thermal CVD reactor 22.

【0038】[0038]

【発明の効果】以上述べたように、本発明のカーボン被
覆光ファイバの製造方法によれば、線引直後の光ファイ
バを熱CVD反応炉を備えた炭素膜被覆装置を通過させ
て光ファイバの表面にカーボン膜を被覆するカーボン被
覆光ファイバの製造方法において、少なくとも炭素膜被
覆装置は光ファイバ挿入側に熱CVD反応炉と外部雰囲
気を遮断する為のシールガスを充填する上部シール室2
1を設け、熱CVD反応炉の光ファイバ送出側に熱CV
D反応炉と外部雰囲気を遮断する為のシールガスを充填
する下部シール室を設け、少なくとも一方のシール室と
熱CVD反応炉の圧力差を測定して、測定したシール室
に最適なシールガスを供給することにより、シールガス
の熱CVD反応炉への流入を最小限にすることができ
る。
As described above, according to the method for producing a carbon-coated optical fiber of the present invention, the optical fiber immediately after drawing is passed through a carbon film coating apparatus equipped with a thermal CVD reactor to reduce the optical fiber. In a method of manufacturing a carbon-coated optical fiber having a surface coated with a carbon film, at least a carbon film coating apparatus is provided on an optical fiber insertion side with a thermal CVD reactor and an upper seal chamber 2 filled with a seal gas for shutting off an external atmosphere.
1 and a thermal CV on the optical fiber delivery side of the thermal CVD reactor.
D. Provide a lower seal chamber filled with a seal gas for shutting off the external atmosphere from the reactor, measure the pressure difference between at least one of the seal chambers and the thermal CVD reactor, and determine the optimal seal gas for the measured seal chamber. The supply minimizes the flow of the seal gas into the thermal CVD reactor.

【0039】その結果、熱CVD反応炉内の原料ガスの
熱分解速度が保証され十分な膜厚及び膜質のカーボン膜
を合成することができ、カーボン膜の強度及びハーメチ
ック特性のすぐれたカーボン被覆光ファイバの製造が可
能となる。
As a result, the rate of thermal decomposition of the raw material gas in the thermal CVD reactor is assured, and a carbon film having a sufficient film thickness and quality can be synthesized, and the carbon coating light having excellent strength and hermetic properties of the carbon film. Fiber production becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のカーボン被覆光ファイバの製造方法に
使用する装置の説明図である。
FIG. 1 is an explanatory view of an apparatus used in a method for producing a carbon-coated optical fiber of the present invention.

【図2】(a)は図1のカーボン被覆光ファイバの製造
方法に使用する炭素膜被覆装置の一例を示す縦断面の説
明図、(b)は同装置の上部から見た横断面の説明図で
ある。
2 (a) is an explanatory view of a longitudinal section showing an example of a carbon film coating apparatus used in the method of manufacturing the carbon-coated optical fiber of FIG. 1, and FIG. 2 (b) is an explanation of a transverse section viewed from above the apparatus. FIG.

【図3】実施例2における上部シール室21と熱CVD
反応炉の圧力差の長手変化の図である。
FIG. 3 shows an upper seal chamber 21 and thermal CVD in Example 2.
It is a figure of a longitudinal change of the pressure difference of a reactor.

【図4】実施例2における線引中に流した上シールガス
流量の長手変化の図である。
FIG. 4 is a diagram showing a longitudinal change in the flow rate of an upper seal gas flowing during drawing in Example 2.

【図5】実施例2におけるカーボン膜電気抵抗の長手変
化の図である。
FIG. 5 is a diagram showing a longitudinal change in the electrical resistance of a carbon film in Example 2.

【図6】比較例2における上部シール室と熱CVD反応
炉の圧力差の長手変化の図である。
FIG. 6 is a diagram showing a longitudinal change in a pressure difference between an upper seal chamber and a thermal CVD reactor in Comparative Example 2.

【図7】比較例2におけるカーボン膜電気抵抗の長手変
化の図である。
FIG. 7 is a diagram showing a longitudinal change in the electrical resistance of a carbon film in Comparative Example 2.

【図8】実施例3における上部シール室と熱CVD反応
炉の圧力差の長手変化の図である。
FIG. 8 is a diagram showing a longitudinal change in a pressure difference between an upper seal chamber and a thermal CVD reactor in Example 3.

【図9】実施例3における線引中に流した上シールガス
流量の長手変化の図である。
FIG. 9 is a diagram showing a longitudinal change in the flow rate of an upper seal gas flowing during drawing in Example 3.

【図10】実施例3におけるカーボン膜電気抵抗の長手
変化の図である。
FIG. 10 is a diagram showing a longitudinal change in the electrical resistance of a carbon film in Example 3.

【符号の説明】[Explanation of symbols]

1 シングルモード光ファイバ母材 3 線引炉 4 光ファイバ 5 炭素膜被覆装置 6 原料ガス供給口 8 カーボン被覆光ファイバ 21 上部シール室 22 熱CVD反応炉 23 下部シール室 27 シールガス導入口 28,29 圧力測定部 DESCRIPTION OF SYMBOLS 1 Single mode optical fiber preform 3 Drawing furnace 4 Optical fiber 5 Carbon film coating device 6 Raw material gas supply port 8 Carbon coated optical fiber 21 Upper seal chamber 22 Thermal CVD reactor 23 Lower seal chamber 27 Seal gas inlet 28,29 Pressure measurement section

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 線引直後の光ファイバを熱CVD反応炉
を備えた炭素膜被覆装置を通過させて前記光ファイバの
表面にカーボン膜を被覆するカーボン被覆光ファイバの
製造方法において、少なくとも前記炭素膜被覆装置は光
ファイバ挿入側に前記熱CVD反応炉と外部雰囲気を遮
断する為のシールガスを充填する上部シール室を設け、
該上部シール室と前記熱CVD反応炉の圧力差を測定し
て前記上部シール室に最適な量のシールガスを供給する
ことを特徴とするカーボン被覆光ファイバの製造方法。
1. A method for producing a carbon-coated optical fiber, wherein the optical fiber immediately after drawing is passed through a carbon film coating apparatus equipped with a thermal CVD reactor to coat the surface of the optical fiber with a carbon film. The film coating apparatus is provided on the optical fiber insertion side with an upper seal chamber filled with a seal gas for shutting off the thermal CVD reactor and the outside atmosphere,
A method for producing a carbon-coated optical fiber, comprising: measuring a pressure difference between the upper seal chamber and the thermal CVD reactor, and supplying an optimal amount of seal gas to the upper seal chamber.
【請求項2】 線引直後の光ファイバを熱CVD反応炉
を備えた炭素膜被覆装置を通過させて前記光ファイバの
表面にカーボン膜を被覆するカーボン被覆光ファイバの
製造方法において、前記炭素膜被覆装置は光ファイバ挿
入側に前記熱CVD反応炉と外部雰囲気を遮断する為の
シールガスを充填する上部シール室を設けるとともに、
前記熱CVD反応炉の光ファイバ送出側に前記熱CVD
反応炉と外部雰囲気を遮断する為のシールガスを充填す
る下部シール室を設け、少なくとも前記下部シール室と
前記熱CVD反応炉の圧力差を測定して前記下部シール
室に最適な量のシールガスを供給することを特徴とする
カーボン被覆光ファイバの製造方法。
2. The method for producing a carbon-coated optical fiber, wherein the optical fiber immediately after drawing is passed through a carbon-film coating apparatus equipped with a thermal CVD reactor to coat the surface of the optical fiber with a carbon film. The coating apparatus is provided with an upper seal chamber on the optical fiber insertion side, which is filled with a seal gas for shutting off the thermal CVD reactor and the external atmosphere,
The thermal CVD is provided on the optical fiber delivery side of the thermal CVD reactor.
A lower seal chamber filled with a seal gas for shutting off a reactor and an external atmosphere is provided, and a pressure difference between at least the lower seal chamber and the thermal CVD reactor is measured, and an optimum amount of the seal gas is supplied to the lower seal chamber. And a method for producing a carbon-coated optical fiber.
【請求項3】 シール室の圧力と熱CVD反応炉の圧力
をモニターしながら前記シール室と前記熱CVD反応炉
の圧力差が一定となるように前記シール室にシールガス
を供給することを特徴とする請求項1又は請求項2記載
のカーボン被覆光ファイバの製造方法。
3. A seal gas is supplied to the seal chamber so that the pressure difference between the seal chamber and the thermal CVD reactor is constant while monitoring the pressure in the seal chamber and the pressure in the thermal CVD reactor. The method for producing a carbon-coated optical fiber according to claim 1 or 2, wherein
【請求項4】 光ファイバの表面に被覆されたカーボン
膜の電気抵抗等のカーボン膜質をオンラインでモニター
し、カーボン膜の膜質が一定となるようにシール室にシ
ールガスを供給することを特徴とする請求項1ないし請
求項3記載のカーボン被覆光ファイバの製造方法。
4. A method of monitoring the quality of a carbon film such as electric resistance of a carbon film coated on the surface of an optical fiber on-line, and supplying a sealing gas to a sealing chamber so that the film quality of the carbon film is constant. The method for producing a carbon-coated optical fiber according to any one of claims 1 to 3.
JP21680594A 1994-09-12 1994-09-12 Manufacturing method of carbon coated optical fiber Expired - Fee Related JP3282925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21680594A JP3282925B2 (en) 1994-09-12 1994-09-12 Manufacturing method of carbon coated optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21680594A JP3282925B2 (en) 1994-09-12 1994-09-12 Manufacturing method of carbon coated optical fiber

Publications (2)

Publication Number Publication Date
JPH0881240A JPH0881240A (en) 1996-03-26
JP3282925B2 true JP3282925B2 (en) 2002-05-20

Family

ID=16694172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21680594A Expired - Fee Related JP3282925B2 (en) 1994-09-12 1994-09-12 Manufacturing method of carbon coated optical fiber

Country Status (1)

Country Link
JP (1) JP3282925B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284963A (en) 2007-05-16 2008-11-27 Honda Motor Co Ltd Vehicle

Also Published As

Publication number Publication date
JPH0881240A (en) 1996-03-26

Similar Documents

Publication Publication Date Title
US4863760A (en) High speed chemical vapor deposition process utilizing a reactor having a fiber coating liquid seal and a gas sea;
EP2803643B1 (en) Optical fiber production method and optical fiber
US4897100A (en) Apparatus and process for fiberizing fluoride glasses using a double crucible and the compositions produced thereby
JPWO2010119696A1 (en) Manufacturing method of optical fiber
CA1128318A (en) Process for the production of optical fibers for transmission of communication
JPH0489333A (en) Method and device for producing hermetically coated optical fiber
EP0998431A1 (en) Decreased h2 sensitivity in optical fiber
JP3282925B2 (en) Manufacturing method of carbon coated optical fiber
US5900036A (en) Multi-cylinder apparatus for making optical fibers, process and product
JP2005507845A (en) Method and apparatus for forming a chlorine-doped optical waveguide preform
JP2003335545A (en) Method and apparatus for drawing optical fiber
KR950006203B1 (en) Apparatus and method for manufacturing hermetically coated optical fiber
US5235666A (en) Production of a hermetically coated optical fiber
KR20170044044A (en) Consumable optical fiber for measuring a temperature of a molten steel bath
JP2583392B2 (en) Method for manufacturing hermetic coated optical fiber
JP2004338972A (en) Method and apparatus for manufacturing optical fiber
JPH06211535A (en) Optical fiber drawing method
JPH02145462A (en) Production of hermetic coat fiber
JP2727702B2 (en) Manufacturing method of carbon coated optical fiber
JP2729112B2 (en) Apparatus and method for producing hermetic coated optical fiber
JPH10167770A (en) Production of carbon-coated optical core fiber
CN107703591A (en) A kind of corrosion resistant type flexible optical cable and preparation method thereof
JP3316290B2 (en) Method for producing hermetic coated optical fiber
JPH03271141A (en) Production of optical fiber
JP3489630B2 (en) Method and apparatus for producing hermetic coated fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees