JPH04119604A - Manufacture of bonded magnet - Google Patents

Manufacture of bonded magnet

Info

Publication number
JPH04119604A
JPH04119604A JP2238988A JP23898890A JPH04119604A JP H04119604 A JPH04119604 A JP H04119604A JP 2238988 A JP2238988 A JP 2238988A JP 23898890 A JP23898890 A JP 23898890A JP H04119604 A JPH04119604 A JP H04119604A
Authority
JP
Japan
Prior art keywords
same
heat treatment
oxidation
powder
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2238988A
Other languages
Japanese (ja)
Inventor
Yoshio Matsuo
良夫 松尾
Tomoyuki Hayashi
智幸 林
Takaaki Yasumura
隆明 安村
Teruo Kiyomiya
照夫 清宮
Hirofumi Nakano
廣文 中野
Kazuo Matsui
一雄 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2238988A priority Critical patent/JPH04119604A/en
Publication of JPH04119604A publication Critical patent/JPH04119604A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To recover the magnetic characteristics deteriorated by pulverization to provide a high magnetic characteristics by a method wherein, after bulk material has been powdered, classified and heat-treated, the powder is coated with the oxidation- resistant substance consisting of the single metal or the alloy of two or more kinds selected from Al, Sn, Zn, In, Pb and Ga, or an eutectic compound containing a kind of the above-mentioned elements. CONSTITUTION:After sintered type or high-speed quenched type permanent magnet bulk material, containing rare-earth element, iron and boron as fundamental components, has been powdered, classified and heat-treated, the powder is coated with the single metal of a kind selected from Al, Sn, In, Pb and Ga, or the alloy of two or more kinds, or the oxidation-resistant substance consisting of the eutectic compound containing at least a kind of the above-mentioned six kinds of elements. After a heat treatment has been conducted again, the above material is mixed with a binder, and molded in a magnetic filed. Or, after powdering, classification and heat treatment have been finished, oxidation-resistant substance consisting of resin is coated or R(R indicates a kind of Nd, Pr, Dy, Ho and Tb and/or a kind of La, Ce, Sm, Er, Eu, Yb, La and Y) is added or coated, and then a heat treatment is conducted at 400 to 900 deg.C for the period not exceeding three hours in a vacuum or inert atmosphere.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、希土類元素(R)鉄及びボロンを基本成分と
する原料粉体を合成樹脂により結合させたボンド磁石の
製造する方法に関し、特に、焼結型および急冷型のR−
Fe−B系永久磁石バルク体を原料として、高い磁気特
性を発揮するボンド磁石を製造する方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a bonded magnet in which raw material powder containing rare earth elements (R) iron and boron as basic components is bonded with a synthetic resin. , sintered type and quenched type R-
The present invention relates to a method of manufacturing a bonded magnet that exhibits high magnetic properties using a bulk Fe-B permanent magnet as a raw material.

(従来の技術) 従来、希土類磁石として、R−Fe−B系の磁石が開発
されている。
(Prior Art) Conventionally, R-Fe-B magnets have been developed as rare earth magnets.

このR−Fe−B系磁石には、焼結型と高速急冷型とか
ある。
This R-Fe-B magnet includes a sintered type and a high-speed quenched type.

一方、ボンド磁石は、従来、例えば、次のような方法で
製造されていた。
On the other hand, bonded magnets have conventionally been manufactured, for example, by the following method.

すなわち、上記の高速急冷型あるいは焼結型のR−Fe
−B系永久磁石バルク体を原料とし、これを粉砕し、粒
径毎に分級する。そして分級された粉体に、この粉体の
バインダーである合成樹脂(例えば、エポキシ樹脂等)
を添加混合し、均一に混練する。そしてその混練物を磁
場中で所定の形状に成形した後、成形体をキュアーする
That is, the above-mentioned high-speed quenching type or sintering type R-Fe
-B-based permanent magnet bulk body is used as a raw material, which is pulverized and classified according to particle size. Then, synthetic resin (for example, epoxy resin, etc.), which is the binder of this powder, is added to the classified powder.
Add and mix and knead uniformly. After the kneaded product is molded into a predetermined shape in a magnetic field, the molded product is cured.

なお、上記の磁場中成形は、一般に、圧縮成形法を採用
し、成形体の密度を高めて、良好な磁気特性を有するボ
ンド磁石を製造している。
In addition, the above-mentioned molding in a magnetic field generally employs a compression molding method to increase the density of the molded body to produce a bonded magnet having good magnetic properties.

(発明か解決しようとする課題) しかし、焼結型のR−Fe−B系永久磁石バルク体を原
料として、ボンド磁石を製造すると、保磁力の劣化が激
しく、充分な磁気特性を有する製品を得ることができな
い。
(Problem to be solved by the invention) However, when bonded magnets are manufactured using sintered R-Fe-B permanent magnet bulk materials as raw materials, the coercive force deteriorates significantly, making it difficult to produce products with sufficient magnetic properties. can't get it.

また、高速急冷型のR−Fe−B系永久磁石バルク体を
原料とするボンド磁石においては、保磁力の劣化はない
ものの、角型性の劣化やエネルギー積の減少があり、充
分な高磁気特性を引き出すことは困難である。
In addition, in bonded magnets made from high-speed quenched R-Fe-B permanent magnet bulk material, although there is no deterioration in coercive force, there is deterioration in squareness and a decrease in energy product, and it is necessary to obtain a sufficiently high magnetic field. It is difficult to bring out its characteristics.

以上のような高速急冷型バルク体を原料とする場合の角
型性の劣化、焼結型バルク体を原料とする場合の保磁力
の劣化やエネルギー積の減少は、これらのバルク体を粉
砕する際に発生する酸化やストレスの影響と考えられる
As mentioned above, the deterioration of squareness when using high-speed quenched bulk bodies as raw materials, the deterioration of coercive force and the decrease in energy product when using sintered bulk bodies as raw materials, are caused by the fact that these bulk bodies are crushed. This is thought to be due to the effects of oxidation and stress that occur during this process.

本発明は、以上の諸点に鑑みてなされたものであって、
その目的とするところは、上記の粉砕により劣化した磁
気特性を回復し、高い磁気特性を有するボンド磁石を製
造する方法を提案するにある。
The present invention has been made in view of the above points, and
The purpose is to restore the magnetic properties deteriorated by the above-mentioned pulverization and to propose a method for producing a bonded magnet with high magnetic properties.

(課題を解決するための手段) 本発明は、上記目的を達成するために、(1)希土類元
素1鉄及びボロンを基本成分とする焼結型又は高速急冷
型永久磁石バルク体を粉砕、分級し、熱処理した後、A
l,Sn、Zn、In。
(Means for Solving the Problems) In order to achieve the above-mentioned objects, the present invention (1) crushes and classifies a sintered or high-speed quenched permanent magnet bulk body containing rare earth elements 1 iron and boron as basic components; After heat treatment, A
l, Sn, Zn, In.

Pb、Gaのいずれか1種の単体金属若しくは2種以上
の合金、あるいは該6種の元素の少なくとも1種を含む
共晶化合物からなる耐酸化性物質をコーティングし、再
度熱処理した後、バインダーと混合して、磁場中成形す
ることを特徴とするボンド磁石を製造する方法。
After coating with an oxidation-resistant substance made of a single metal of Pb or Ga, an alloy of two or more, or a eutectic compound containing at least one of the six elements, heat-treated again, and then coated with a binder. A method for manufacturing a bonded magnet, which comprises mixing and forming in a magnetic field.

(2)希土類元素、鉄およびボロンを基本成分とする焼
結型又は高速急冷型永久磁石バルク体を粉砕2分級し、
熱処理した後、樹脂からなる耐酸化性物質をコーティン
グし、次いでバインダーと混合して、磁場中成形するこ
とを特徴とする特許磁石を製造する方法。
(2) A sintered or high-speed quenched permanent magnet bulk body containing rare earth elements, iron and boron as basic components is crushed and classified into two parts,
1. A method for producing a patented magnet, characterized in that, after heat treatment, it is coated with an oxidation-resistant material made of resin, then mixed with a binder, and then molded in a magnetic field.

(3)バルク体を粉砕、分級した後、該分級粉体に、下
記(A)〜(P)のいずれか1つを添加又はコーティン
グすることを特徴とする請求項1.2記載のボンド磁石
を製造する方法。
(3) The bonded magnet according to claim 1.2, wherein after the bulk body is crushed and classified, any one of the following (A) to (P) is added or coated to the classified powder. How to manufacture.

(B)RXTM、(R; (A)と同じ、TM ;Fe
、Coのうちの少なくとも1種又は1部をSt、Ti、
V、Cr、Mn、Ni、Zr。
(B) RXTM, (R; Same as (A), TM; Fe
, Co at least one kind or a part thereof is replaced with St, Ti,
V, Cr, Mn, Ni, Zr.

Nb、Mo、If、Ta、W、Mg、Caのうちの少な
くとも1種で置換したFe、Coのうちの少なくとも1
種、 10<x<100.0<y<90゜ )H+y=100)。
At least one of Fe and Co substituted with at least one of Nb, Mo, If, Ta, W, Mg, and Ca
Seed, 10<x<100.0<y<90°)H+y=100).

(C)RM  (R;(A)と同じ、     y M;Ag、Cu、Zn、Ga、Ge、Ag、In。(C) RM (R; Same as (A), y M; Ag, Cu, Zn, Ga, Ge, Ag, In.

Sn、Sb、Au、Biのうちの少なくとも1種、20
<x<100.0<y<80゜ x+y−100)。
At least one of Sn, Sb, Au, and Bi, 20
<x<100.0<y<80°x+y-100).

(D)RxTMy  M   (R;(A)と同じ、T
M :   yZ (B)と同じ、M 、 (C)と同じ、10<x<10
0.O<y<90゜ Q<z<80.x+y+z=100) (E) RTM   (B、  C) z  (R: 
(A)と同し、y TM ;(B)と同じ、 10<x<100.O<y<90゜ 0<z<80.x+y+z−100) (F)RxTMy  M  (B、  C)、  (R
;(A)と同X     yz じ、TM;(B) と同じ、M 、 (C)と同じ、1
0<x<100.0<y<90゜ 0<z<80.  0<w<80゜ x+y+z+w−100)。
(D) RxTMy M (R; Same as (A), T
M: yZ Same as (B), M, Same as (C), 10<x<10
0. O<y<90°Q<z<80. x+y+z=100) (E) RTM (B, C) z (R:
Same as (A), y TM ; Same as (B), 10<x<100. O<y<90°0<z<80. x+y+z-100) (F)RxTMy M (B, C), (R
; Same as (A) X yz same, TM; Same as (B), M, same as (C), 1
0<x<100.0<y<90°0<z<80. 0<w<80°x+y+z+w-100).

(4)バルク体を粉砕し分級した後、又は該分級粉体に
請求項3の(A)〜(P)のいずれか1つを添加又はコ
ーティングした後の熱処理を、真空又は不活性雰囲気中
、400〜900℃で3時間以内行うことを特徴とする
請求項1〜3記載のボンド磁石を製造する方法、を特徴
とする。
(4) After crushing and classifying the bulk material, or after adding or coating any one of (A) to (P) of claim 3 to the classified powder, heat treatment is performed in a vacuum or an inert atmosphere. A method for producing a bonded magnet according to any one of claims 1 to 3, characterized in that the bonded magnet is manufactured at a temperature of 400 to 900°C for within 3 hours.

(作 用) 本発明はボンド磁石化した際の磁気特性が、原料となる
焼結型及び高速急冷型R−Fe−B系永久磁石バルク粉
体の酸化や機械的歪みの影響を大きく受けることに着目
したもので、この酸化や機械的歪みと言った上記原料粉
体の欠陥をバインダーとしての合成樹脂の混合前に、 (1)上記粉体の熱処理−AIl、Sn、Zn。
(Function) The present invention is characterized in that the magnetic properties when formed into a bonded magnet are greatly affected by oxidation and mechanical distortion of the raw material sintered and rapidly quenched R-Fe-B permanent magnet bulk powder. (1) Heat treatment of the powder - AIl, Sn, Zn.

In、Pb、Gaのいずれか1種の単体金属若しくは2
種以上の合金、あるいは該6種の元素の少なくとも1種
を含む共晶化合物からなる耐酸化性物質のコーティング
−熱処理、あるいは、(2)上記粉体の熱処理−樹脂か
らなる耐酸化性物質のコーティングあるいは、 (3)上記粉体に前述の(A)〜(F)のいずれか1つ
の添加又はコーティング−上記(1)又は(2)の工程
を行なうことにより解消するものである。
Any one of In, Pb, Ga or two
Coating with an oxidation-resistant substance made of an alloy of six or more elements, or a eutectic compound containing at least one of the six elements - heat treatment, or (2) heat treatment of the above powder - coating with an oxidation-resistant substance made of a resin. Coating or (3) Adding or coating any one of the above-mentioned (A) to (F) to the above-mentioned powder - This problem can be solved by performing the above-mentioned step (1) or (2).

すなわち、焼結型R−Fe−B系永久磁石バルク体は、
第2図(A)−1の模式図に示すように、例えば、Nd
2Fe14Bを主相1とし、これをNdリッチ相2やB
リッチ相3が取り囲んでいるニュークリエーション型磁
石である。
That is, the sintered R-Fe-B permanent magnet bulk body is
As shown in the schematic diagram of FIG. 2(A)-1, for example, Nd
2Fe14B is the main phase 1, and this is used as the Nd-rich phase 2 and B
It is a nucleation type magnet surrounded by rich phase 3.

ニュークリエーション型磁石は、上記の主相1を取り囲
むNdリッチ相2との界面が保磁力を発生させる重要な
働きをしており、さらに主相内に逆磁区の芽となる欠陥
(例えばクラック、転位)の少ないものが第2図(A)
−2に示すような良好な磁気特性を発揮する。
In nucleation magnets, the interface between the main phase 1 and the Nd-rich phase 2 that surrounds it plays an important role in generating coercive force, and the main phase also has defects (such as cracks, The one with few dislocations is shown in Figure 2 (A).
Exhibits good magnetic properties as shown in -2.

このようなバルク体を粉砕すると、第2図(B)−1の
模式図に示すように、主相1が割れ、主相1の周囲にN
dリッチ相の欠は部分が生じたり、主相1内にクラック
等の欠陥が発生し、第2図(B)−1に示すように保磁
力は激減する。
When such a bulk body is crushed, the main phase 1 is cracked, and N is formed around the main phase 1, as shown in the schematic diagram of Figure 2 (B)-1.
Some defects occur in the d-rich phase, and defects such as cracks occur in the main phase 1, resulting in a sharp decrease in coercive force as shown in FIG. 2(B)-1.

本発明では、このような粉砕粉体に上記の(1)または
(2)または(3)の処理を施す。
In the present invention, such pulverized powder is subjected to the above-mentioned treatment (1), (2), or (3).

(1) 、 (2)の処理の場合は、先ず、熱処理によ
り第3図(a)の模式図に示すように、第2図(B)−
1のNdリッチ相2の欠は部分が解消され、第3図(b
)に示すように磁気特性が回復する。次いで、第3図(
a)に示す状態の粉体表面に耐酸化性物質がコーティン
グされる。そのため、その後の処理の際に大気との接触
が防止され、表面の劣化がほとんど無くなり、従来以上
の磁気特性が発現する。
In the case of treatments (1) and (2), first, as shown in the schematic diagram of FIG. 3(a), by heat treatment,
The defects in the Nd-rich phase 2 of 1 have been partially eliminated, and as shown in Fig. 3 (b
), the magnetic properties are restored. Next, Figure 3 (
The surface of the powder in the state shown in a) is coated with an oxidation-resistant substance. Therefore, contact with the atmosphere is prevented during subsequent processing, there is almost no surface deterioration, and magnetic properties are developed that are better than conventional ones.

なお、上記(2)の耐酸化性物質として樹脂を用いる場
合は熱処理を必要としない。これは、この樹脂として例
えば、エポキシ、アクリル、フェノール系樹脂を使用す
る場合、これらの樹脂を溶媒で希釈し、これを不活性雰
囲気中で粉体に噴霧したり、あるいは溶媒で希釈した樹
脂中に粉体を浸漬する等して粉体表面に均一にコーティ
ングすることができるからである。
Note that when a resin is used as the oxidation-resistant substance in (2) above, heat treatment is not required. For example, when using an epoxy, acrylic, or phenolic resin as the resin, this may be done by diluting these resins with a solvent and spraying this onto the powder in an inert atmosphere, or This is because the surface of the powder can be uniformly coated by, for example, dipping the powder in the solution.

これに対し、上記(1)の耐酸化性物質を使用する場合
は、粉体表面に均一にコーティングさせるために、粉体
の表面で、この耐酸化性物質を融解させる必要があるた
め、コーテイング後に熱処理を行なわなければならない
On the other hand, when using the oxidation-resistant substance described in (1) above, it is necessary to melt the oxidation-resistant substance on the powder surface in order to uniformly coat the powder surface. A heat treatment must be performed afterwards.

また、上記(3)の処理の場合は、第2図(B)−2の
状態の粉体に前述の(A)〜(P)のいずれか1つを添
加又はコーティングし、これを熱処理すると、(A)〜
(F)のいずれか1つが粉体表面で融解して、粉体表面
に流れ、内部に浸透して、Ndリッチ相2の欠は部分を
補い、機械的歪みゃ、酸化皮膜等の不都合を解消し、主
相1の界面を再び元の界面と同等の界面となるように回
復する。そして、回復した界面部か、その後の処理で侵
されないように、上記の耐酸化性物質で保持する。
In addition, in the case of the above treatment (3), any one of the above-mentioned (A) to (P) is added or coated to the powder in the state shown in Figure 2 (B)-2, and this is heat-treated. , (A) ~
Any one of (F) melts on the powder surface, flows to the powder surface, and penetrates into the powder, filling the gaps in the Nd-rich phase 2 and preventing disadvantages such as mechanical distortion and oxide film. The interface of the main phase 1 is restored to the same level as the original interface. The recovered interface is then held with the above-mentioned oxidation-resistant material so that it will not be attacked during subsequent processing.

以上の(1)〜(3)の処理における熱処理((1)の
処理の場合は耐酸化性物質のコーティングの前後に行な
う熱処理)で、上記のような作用を得るために、温度は
、400〜900℃で、特に600〜800℃とするの
が良い。すなわち400℃より低温であると、原子拡散
が不充分で、上記のような作用が生じない。900℃よ
り高温であると、結晶粒径が粗大化したり、酸化が生じ
て、磁気特性がかえって劣化するばかりでなく、成形体
の形状変化が生じる等の不都合が生じる。
In order to obtain the above effects in the heat treatment in the above treatments (1) to (3) (in the case of treatment (1), the heat treatment is performed before and after coating with the oxidation-resistant substance), the temperature is set at 400°C. The temperature is preferably 600 to 800°C, particularly 600 to 800°C. That is, if the temperature is lower than 400° C., atomic diffusion will be insufficient and the above effects will not occur. If the temperature is higher than 900° C., the crystal grain size becomes coarse and oxidation occurs, which not only deteriorates the magnetic properties but also causes problems such as changes in the shape of the molded product.

また、上記の熱処理の時間は、上記の熱処理温度に応じ
て適宜選択されるが、3時間を超えると、結晶粒径の粗
大化及び酸化により磁気特性を劣化させるため、本発明
では3時間以内とするのである。
Further, the time for the above heat treatment is appropriately selected depending on the above heat treatment temperature, but if it exceeds 3 hours, the magnetic properties will deteriorate due to coarsening of the crystal grain size and oxidation, so in the present invention, the time is within 3 hours. That is to say.

なお、0,2時間より短時間であると、上記粒子間及び
結晶粒界面での原子拡散が不充分となることがあるため
、熱処理時間の下限は0.2時間とすることが好ましい
Note that if the heat treatment time is shorter than 0.2 hours, atomic diffusion between the particles and at the grain interface may become insufficient, so the lower limit of the heat treatment time is preferably 0.2 hours.

更に、上記の熱処理を真空又は不活性雰囲気中で行なう
のは、上記の割れ面及びクラック4や界面破壊5の酸化
が熱により促進されるため、この酸化を防止するためで
ある。
Furthermore, the reason why the above heat treatment is performed in a vacuum or in an inert atmosphere is to prevent oxidation of the above-mentioned broken surfaces, cracks 4, and interfacial fractures 5, since this oxidation is promoted by heat.

また、上記の熱処理は、第4図(A)に示すように連続
的な熱処理に限られることなく、第4図(B)に示すよ
うにA+B十C十D・・・・・・−3時間以内となるよ
うな不連続的な熱処理であっても上記の作用を得ること
ができる。
Further, the above heat treatment is not limited to continuous heat treatment as shown in FIG. 4(A), and as shown in FIG. 4(B), Even with discontinuous heat treatment within hours, the above effect can be obtained.

本発明では、以上の熱処理の後に、樹脂含浸を行なう。In the present invention, resin impregnation is performed after the above heat treatment.

これにより、成形後の粒子に樹脂が侵入し粒子と粒子と
をロックさせ、成形後の形状を強固に保つことが可能と
なる。
As a result, the resin penetrates into the particles after molding and locks the particles together, making it possible to firmly maintain the shape after molding.

以上の作用を発現させるための原料である焼結型のR−
Fe−B系永久磁石バルク体として、本発明では、R(
Rは、Nd、Pr、Dy、Ho。
Sintered R- which is the raw material for expressing the above effects.
In the present invention, R(
R is Nd, Pr, Dy, Ho.

Tbのうちの少なくとも1種又は更にLa、Ce。At least one of Tb or further La, Ce.

Sm、  Gd、  Er、  Eu、Tm、Yb、 
 Lu、Yのうちの少なくとも1種からなる)8〜3o
原子%、B2〜28原子%Fe42〜9o原子%の組成
からなるものが好ましく使用される。更に、キューリー
点の向上等を目的として、Feに対してCoを50%ま
で置換しても良い。
Sm, Gd, Er, Eu, Tm, Yb,
consisting of at least one of Lu, Y) 8 to 3o
A composition having a composition of 2 to 28 atomic % of B, 42 to 9 atomic % of Fe is preferably used. Furthermore, for the purpose of improving the Curie point, etc., up to 50% of Co may be substituted for Fe.

また、高速急冷型については、結晶粒径の差はあるが同
様の作用を示す。
Furthermore, the high-speed quenching type exhibits similar effects although there is a difference in crystal grain size.

(実施例) 実施例1 第1図(A)に示すフローにより本発明に係る方法を実
施した。
(Example) Example 1 The method according to the present invention was carried out according to the flow shown in FIG. 1(A).

本例では、組成式(Nd   Pr   Dy   )
14.1   0.4    1.5 Fe     B 18.0  77.0 7.0で表されるNd−Fe−
B系合金をジェットミルにより粉砕し、平均粒径3μs
の微粉体とし、この粉体を磁場中成形後、焼結し、時効
処理して得た焼結型Nd−Fe−B系永久磁石バルク体
を原料とした。なお、この原料バルク体の磁気特性は、
次の通りであった。
In this example, the composition formula (NdPrDy)
14.1 0.4 1.5 Fe B 18.0 77.0 7.0 Nd-Fe-
The B-based alloy was ground with a jet mill to give an average particle size of 3 μs.
A sintered Nd-Fe-B permanent magnet bulk body obtained by molding this powder in a magnetic field, sintering it, and aging it was used as a raw material. In addition, the magnetic properties of this raw material bulk body are
It was as follows.

上記の原料をショークラッシャーにより粉砕し、分級し
て125μm以下の粉体を得た。
The above raw material was crushed using a show crusher and classified to obtain a powder of 125 μm or less.

この分級粉体をI X 10 =Torrの真空中、7
00℃で1時間熱処理した。この時の熱処理は、第4図
(A)に示すパターンで行なった。
This classified powder was heated in a vacuum of I x 10 = 7 Torr.
Heat treatment was performed at 00°C for 1 hour. The heat treatment at this time was carried out in the pattern shown in FIG. 4(A).

この粉体を蒸着装置内に導入し、lXl0−6Torr
の真空中で耐酸化性金属としてAfi、Zn。
This powder was introduced into a vapor deposition apparatus and
Afi, Zn as oxidation-resistant metals in vacuum.

Pb、Al1−3i、Pb−8eを使用し、これらが平
均膜厚0.5μIとなるように蒸着させた。
Pb, Al1-3i, and Pb-8e were used and deposited to an average film thickness of 0.5 μI.

これらの蒸着後の粉体をI X 10−6Torrの真
空中、700℃で1時間熱処理した。この時の熱処理は
、第4図(A)に示すパターンで行なった。
These vapor-deposited powders were heat-treated at 700°C for 1 hour in a vacuum of I x 10-6 Torr. The heat treatment at this time was carried out in the pattern shown in FIG. 4(A).

次いで、これらの粉体に対して3vt%のエポキシ樹脂
を乳鉢によって十分に混合し、15kOeの磁場中で配
向させながら、成形圧3ton/c−で圧縮成形し、1
20℃で2時間のアフターキュアーを行なった。
Next, 3 vt% of epoxy resin was thoroughly mixed with these powders in a mortar, and while oriented in a magnetic field of 15 kOe, compression molding was performed at a molding pressure of 3 ton/c-.
After-cure was performed at 20°C for 2 hours.

以上のようにして、各々3個のボンド磁石(試料)を製
造した。この各々3個の試料について、磁気特性を測定
し、この結果を第1表に示す。
Three bonded magnets (sample) were manufactured in the above manner. The magnetic properties of each of these three samples were measured, and the results are shown in Table 1.

尚、比較のために第5図(A)に示す従来法のフローで
製造した3個の試料について同様の磁気測定を行ない、
その結果を第1表に併せて示す。
For comparison, similar magnetic measurements were carried out on three samples manufactured using the conventional method flow shown in Figure 5 (A).
The results are also shown in Table 1.

第1表から明らかなように、従来法比較例1)ではBr
、iHc、  (B−H)    ともに著しくax 低いボンド磁石が得られることがわかる。このことから
、原料バルク体の粉砕により低下した磁気特性は、比較
例1の圧縮成形のみては回復しないことかわかる。これ
に対し粒子表面にコーティングし、熱処理を行なう本発
明例1では、Br。
As is clear from Table 1, in conventional method comparative example 1), Br
, iHc, and (B-H), it can be seen that bonded magnets with extremely low ax can be obtained. From this, it can be seen that the magnetic properties deteriorated due to the pulverization of the raw material bulk body cannot be recovered by compression molding of Comparative Example 1 alone. On the other hand, in Example 1 of the present invention, in which the particle surface is coated and heat treated, Br.

iHc、(B−H)   ともに著しく増加していAa
X ることがわかる。
Both iHc and (B-H) significantly increased, and Aa
I understand that

実施例2 第1図(A)に示すフローにより本発明に係る方法を実
施した。
Example 2 The method according to the present invention was carried out according to the flow shown in FIG. 1(A).

本例では、組成式 Nd   Fe   C。In this example, the composition formula is Nd Fe C.

13.3  78.5  2.8 B  で表されるNd−Fe−Co−B系合金の5.4 溶解液を急冷し、薄帯を得、これを粉砕、ホットプレス
及びダイアップセットの熱間加工を施して得た高速急冷
型Nd−F e−Co−B系永久磁石バルク体を原料と
した。
The 5.4 solution of the Nd-Fe-Co-B alloy represented by 13.3 78.5 2.8 B is rapidly cooled to obtain a ribbon, which is crushed, hot pressed, and heated by die-up setting. The raw material was a high-speed quenched Nd-Fe-Co-B permanent magnet bulk body obtained through preliminary processing.

尚、この原料バルク体の磁気特性は次の通りであった。The magnetic properties of this raw material bulk body were as follows.

上記の原料を使用する以外は、実施例1と全く同様にし
てボンド磁石を製造し、各々の試料についての磁気特性
の測定結果に本発明例2として併せて示す。
A bonded magnet was manufactured in exactly the same manner as in Example 1, except for using the above raw materials, and the results of measuring the magnetic properties of each sample are also shown as Inventive Example 2.

また、比較のために、第5図(B)に示す従来法のフロ
ーで製造した3個の試料について同様の磁気特性を測定
し、その結果を第1表に比較例2として併せて示す。
For comparison, similar magnetic properties were measured for three samples manufactured by the conventional flow shown in FIG. 5(B), and the results are also shown in Table 1 as Comparative Example 2.

第1表から明らかなように、本発明例2では、比較例2
に比し、Br、(B・、H)   共に増加aX していることがわかる。
As is clear from Table 1, in Invention Example 2, Comparative Example 2
It can be seen that both Br and (B., H) have increased compared to aX.

第 表 実施例3 第1図(B)に示すフローにより本発明に係る方法を実
施した。
Table 1 Example 3 The method according to the present invention was carried out according to the flow shown in FIG. 1(B).

また、原料バルク体は実施例1.実施例2と同じ粉体を
使用した。
In addition, the raw material bulk body is the same as in Example 1. The same powder as in Example 2 was used.

この粉体を蒸着装置内に導入し、lX1O−6Torr
の真空中で次の(A)〜(P)の組成物を平均膜厚0,
5μmとなるように蒸着させた。
This powder was introduced into a vapor deposition apparatus and
The following compositions (A) to (P) were prepared in a vacuum with an average film thickness of 0,
It was deposited to a thickness of 5 μm.

(A)Nd、Dy (B)Nd Fe 、Pr79Fe21(C) N d
 85Ail 15.  P r 8□Aff H(D
)Nd67Fe26C7 (E) Nd e7F 628 B 7(P) D V
 67’F e 28Cu 7蒸着後の粉体をI X 
10 =Torrの真空中、700℃で1時間熱処理し
た。この時の熱処理は第4図(A)に示すパターンで行
った。
(A) Nd, Dy (B) Nd Fe, Pr79Fe21 (C) N d
85Ail 15. P r 8□Aff H(D
) Nd67Fe26C7 (E) Nd e7F 628 B 7(P) D V
67'F e 28Cu 7 Powder after vapor deposition I
Heat treatment was performed at 700° C. for 1 hour in a vacuum of 10 Torr. The heat treatment at this time was carried out in the pattern shown in FIG. 4(A).

次に、これらの粉体を、再度、蒸着装置内に導入し、I
 X 10−6Torrの真空中で耐酸化性金属として
An)を平均膜厚0,5μlとなるように蒸着させた。
Next, these powders are introduced into the vapor deposition apparatus again, and the I
An oxidation-resistant metal (An) was deposited in a vacuum of X 10-6 Torr to an average film thickness of 0.5 μl.

蒸着後の粉体をI X 10  ’Torrの真空中、
700℃で1時間熱処理した。この時の熱処理は第4図
(A)に示すパターンで行なった。
The powder after vapor deposition is placed in a vacuum of I x 10' Torr.
Heat treatment was performed at 700°C for 1 hour. The heat treatment at this time was carried out in the pattern shown in FIG. 4(A).

そして、これらの粉体に対して3vt%のエポキシ樹脂
を乳鉢によって十分に混合し、15kOeの磁場中で配
向させながら、成形圧3ton/c−て圧縮成形し、1
20℃で2時間のアフターキュアーを行なった。
Then, 3 vt% of epoxy resin was thoroughly mixed with these powders in a mortar, and while oriented in a magnetic field of 15 kOe, compression molding was carried out under a molding pressure of 3 ton/c.
After-cure was performed at 20°C for 2 hours.

以上のようにして各々3個のボンド磁石試料を製造した
。これら各々3個の試料について、磁気特性を測定し、
この結果を第2表の本発明例3及び第3表の本発明例4
に夫々示す。
Three bonded magnet samples were manufactured in the above manner. The magnetic properties of each of these three samples were measured,
The results are summarized as Invention Example 3 in Table 2 and Invention Example 4 in Table 3.
are shown respectively.

第2表、第3表から明らかなように、第1表に示す従来
例に比べ、焼結型については、Br、iHc、(B−H
)   共に著しい向上がみられ、aX 同様高速急冷型についてもBr、(B−H)、aXの向
上がみられる。しかも、希土類元素及びこれらを含む合
金を蒸着することにより、第1表に示す本発明例1及び
2以上の高特性のボンド磁石が得られることが判る。
As is clear from Tables 2 and 3, compared to the conventional example shown in Table 1, Br, iHc, (B-H
) Significant improvements were seen in both cases, and similar to aX, improvements in Br, (B-H), and aX were also seen in the high-speed quenching type. Furthermore, it can be seen that by vapor depositing rare earth elements and alloys containing these elements, bonded magnets with high characteristics as shown in Invention Examples 1 and 2 shown in Table 1 can be obtained.

実施例4 熱処理温度を種々変えた以外は実施例1と全く同様にし
て本発明に係る方法を実施し、得られたボンド磁石の磁
気特性を測定した。この結果を第6図に示す。
Example 4 The method according to the present invention was carried out in exactly the same manner as in Example 1 except that the heat treatment temperature was variously changed, and the magnetic properties of the obtained bonded magnets were measured. The results are shown in FIG.

同図から明らかなように、磁気特性は熱処理温度にかな
り依存しており、400℃より低温では熱処理効果が見
られず、400℃でその効果が現れる。また、400℃
より高温になるにしたがい、iHc、(B−H)   
ともに増加して行き、7aX 00℃で(B−H)   が最高になり、900℃aX を超えると著しく減少する。iHcと(B−H)□8の
ピーク位置の違いは、700℃以上で4π1−Hループ
の角型性が減少するためである。以上により、熱処理効
果は、400〜900℃、好ましくは600〜800℃
の範囲で発現することがわかる。
As is clear from the figure, the magnetic properties are considerably dependent on the heat treatment temperature; no heat treatment effect is observed at temperatures lower than 400°C, and the effect appears at 400°C. Also, 400℃
As the temperature increases, iHc, (B-H)
Both of them increase, and (B-H) reaches its maximum at 7aX 00℃, and decreases markedly when it exceeds 900℃aX. The difference between the peak positions of iHc and (B-H)□8 is due to the decrease in the squareness of the 4π1-H loop at temperatures above 700°C. According to the above, the heat treatment effect is 400 to 900°C, preferably 600 to 800°C.
It can be seen that the expression occurs within the range of .

実施例5 熱処理時間を種々変えた以外は実施例−1と全く同様に
して本発明に係る方法を実施し、得られたボンド磁石の
磁気特性を測定した。この結果を第7図に示す。
Example 5 The method according to the present invention was carried out in the same manner as in Example-1 except that the heat treatment time was varied, and the magnetic properties of the obtained bonded magnets were measured. The results are shown in FIG.

同図から明らかなように、3時間より長時間であると磁
気特性の低下がみられ、また1時間より短時間であって
も磁気特性の低下がみられる。
As is clear from the figure, if the heating time is longer than 3 hours, the magnetic properties deteriorate, and even if the heating time is shorter than 1 hour, the magnetic properties deteriorate.

実施例6 実施例1で調整した分級粉体を実施例1と同じ条件で熱
処理した後、この粉体を粘度20センチポアズのエポキ
シ樹脂の入った容器の中に入れ、これをデシケータ−中
に移し、真空度1×1O−2Torrに脱気処理し、3
0分間保持後、これらの粉体表面の残エポキシ樹脂を吸
湿性のシートにて吸収させ、その後真空中、120’C
で1時間加熱硬化処理を行なった。
Example 6 After heat-treating the classified powder prepared in Example 1 under the same conditions as in Example 1, the powder was placed in a container containing an epoxy resin with a viscosity of 20 centipoise, and transferred into a desiccator. , degassed to a vacuum degree of 1 x 1 O-2 Torr, and
After holding for 0 minutes, the remaining epoxy resin on the surface of these powders was absorbed with a hygroscopic sheet, and then heated at 120'C in vacuum.
Heat curing treatment was performed for 1 hour.

そして、これらの粉体に対して3νt%のエポキシ樹脂
を乳鉢によって十分に混合し、15kOeの磁場中で配
向させながら、成形圧3ton/cシで圧縮成形し、1
20℃で2時間のアフターキュアーを行なった。
Then, 3vt% of epoxy resin was thoroughly mixed with these powders in a mortar, and compression molded at a molding pressure of 3 ton/c while oriented in a 15 kOe magnetic field.
After-cure was performed at 20°C for 2 hours.

以上のようにして、各々3個のボンド磁石(試料)を製
造した。
Three bonded magnets (sample) were manufactured in the above manner.

この各々3個の試料について、磁気特性を測定し、この
結果を第4表に本発明例5として示す。
The magnetic properties of each of these three samples were measured, and the results are shown in Table 4 as Invention Example 5.

第4表 第4表から明らかなように、耐酸化物質を高分子樹脂と
しても実施例1と同様な効果が得られることが判る。
Table 4 As is clear from Table 4, it can be seen that the same effects as in Example 1 can be obtained even when the oxidation-resistant substance is a polymer resin.

なお、本例では、この耐酸化性物質であるエポキシ樹脂
をコーティングした後、120℃で1時間の加熱硬化処
理を行なったが、この加熱硬化処理を省略しても第4表
と同様の効果を得ることができた。
In this example, after coating with this oxidation-resistant epoxy resin, heat curing treatment was performed at 120°C for 1 hour, but even if this heat curing treatment is omitted, the same effect as shown in Table 4 can be obtained. I was able to get

(発明の効果) 以上詳述した本発明に係る方法によれば、原料である焼
結型及び高速急冷型永久磁石バルク体の粉砕により生じ
る粉体の化学的活性に起因する欠陥を、成形の前に、耐
酸化性物質、あるいは希土類元素と耐酸化性物質とのコ
ーティング及び熱処理により解消することができる。
(Effects of the Invention) According to the method according to the present invention detailed above, defects caused by chemical activity of the powder produced by crushing the sintered mold and high-speed quenched permanent magnet bulk material, which are the raw materials, can be eliminated during molding. This can be solved by coating with an oxidation-resistant material or a rare earth element and an oxidation-resistant material and heat treatment beforehand.

これにより従来以上の高磁気特性を有するボンド磁石を
製造することができる。
Thereby, it is possible to manufacture a bonded magnet having higher magnetic properties than conventional ones.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A) 、 (B)は本発明に係る方法を工程順
に示す図、第2図〜第3図は本発明に係る方法の作用を
説明するための図、第4図(A) 、 (B)は本発明
に係る熱処理パターンを示す図、第5図(A)。 (B)は従来法のフローを示す図、第6図〜第7図は本
発明の実施例と結果を示す図である。
Figures 1 (A) and (B) are diagrams showing the method according to the present invention in order of steps, Figures 2 and 3 are diagrams for explaining the action of the method according to the present invention, and Figure 4 (A) , (B) is a diagram showing a heat treatment pattern according to the present invention, and FIG. 5 (A). (B) is a diagram showing the flow of the conventional method, and FIGS. 6 and 7 are diagrams showing examples and results of the present invention.

Claims (4)

【特許請求の範囲】[Claims] (1)希土類元素,鉄及びボロンを基本成分とする焼結
型又は高速急冷型永久磁石バルク体を粉砕、分級し、熱
処理した後、Al,Sn,Zn,In,Pb,Gaのい
ずれか1種の単体金属若しくは2種以上の合金、あるい
は該6種の元素の少なくとも1種を含む共晶化合物から
なる耐酸化性物質をコーティングし、再度熱処理した後
、バインダーと混合して、磁場中成形することを特徴と
するボンド磁石を製造する方法。
(1) After pulverizing, classifying, and heat-treating a sintered or high-speed quenched permanent magnet bulk body containing rare earth elements, iron, and boron as basic components, any one of Al, Sn, Zn, In, Pb, and Ga is used. After coating with an oxidation-resistant substance consisting of a single metal, an alloy of two or more types, or a eutectic compound containing at least one of the six elements, heat-treated again, mixed with a binder, and molded in a magnetic field. A method of manufacturing a bonded magnet, characterized by:
(2)希土類元素,鉄及びボロンを基本成分とする焼結
型又は高速急冷型永久磁石バルク体を粉砕,分級し、熱
処理した後、樹脂からなる耐酸化性物質をコーティング
し、次いでバインダーと混合して、磁場中成形すること
を特徴とするボンド磁石を製造する方法。
(2) After pulverizing, classifying, and heat-treating a sintered or rapidly quenched permanent magnet bulk body containing rare earth elements, iron, and boron as basic components, it is coated with an oxidation-resistant material made of resin, and then mixed with a binder. A method for producing a bonded magnet, characterized by forming the bonded magnet in a magnetic field.
(3)バルク体を粉砕、分級した後、該分級粉体に、下
記(A)〜(F)のいずれか1つを添加又はコーティン
グすることを特徴とする請求項1,2記載のボンド磁石
を製造する方法。 (A)R(R;Nd,Pr,Dy,Ho,Tbのうちの
少なくとも1種及び/又はLa,Ce,Sm,Er,E
u,Yb,Lu,Yのうちの少なくとも1種), (B)R_xT_M_y(R;(A)と同じ、T_M;
Fe,Coのうちの少なくとも1種又は1部をSi,T
i,V,Cr,Mn,Ni,Zr,Nb,Mo,Hf,
Ta,W,Mg,Caのうちの少なくとも1種で置換し
たFe,Coのうちの少なくとも1種、 10<x<100,0<y<90, x+y=100), (C)R_xM_y(R;(A)と同じ、 M;Al,Cu,Zn,Ga,Ge,Ag,In,Sn
,Sb,Au,Biのうちの少なくとも1種、20<x
<100,0<y<80, x+y=100), (D)R_x(T_M)_yM_z(R;(A)と同じ
、T_M;(B)と同じ、M;(C)と同じ、 10<x<100,0<y<90, 0<zく80,x+y+z=100), (E)R_x(T_M)_y(B,C)_z(R;(A
)と同じ、T_M;(B)と同じ、 10<x<100,0<y<90, 0<z<80,x+y+z=100), (F)R_x(T_M)_yM_z(B,C)_W(R
;(A)と同じ、T_M;(B)と同じ、M;(C)と
同じ、10<x<100,0<y<90, 0<z<80,0<w<80, x+y+z+w=100),
(3) The bonded magnet according to claim 1 or 2, wherein after the bulk material is crushed and classified, any one of the following (A) to (F) is added or coated to the classified powder. How to manufacture. (A) R(R; at least one of Nd, Pr, Dy, Ho, Tb and/or La, Ce, Sm, Er, E
u, Yb, Lu, Y), (B) R_xT_M_y (R; same as (A), T_M;
At least one or a part of Fe, Co is replaced with Si, T
i, V, Cr, Mn, Ni, Zr, Nb, Mo, Hf,
At least one of Fe and Co substituted with at least one of Ta, W, Mg, and Ca, 10<x<100, 0<y<90, x+y=100), (C) R_xM_y(R; Same as (A), M; Al, Cu, Zn, Ga, Ge, Ag, In, Sn
, Sb, Au, Bi, 20<x
<100, 0<y<80, x+y=100), (D)R_x(T_M)_yM_z(R; Same as (A), T_M; Same as (B), M; Same as (C), 10<x <100, 0<y<90, 0<z 80, x+y+z=100), (E)R_x(T_M)_y(B,C)_z(R;(A
), T_M; same as (B), 10<x<100, 0<y<90, 0<z<80, x+y+z=100), (F)R_x(T_M)_yM_z(B,C)_W( R
; Same as (A), T_M; Same as (B), M; Same as (C), 10<x<100, 0<y<90, 0<z<80, 0<w<80, x+y+z+w=100 ),
(4)バルク体を粉砕し分級した後、又は該分級粉体に
請求項3の(A)〜(F)のいずれか1つを添加又はコ
ーティングした後の熱処理を、真空又は不活性雰囲気中
、400〜900℃で3時間以内行うことを特徴とする
請求項1〜3記載のボンド磁石を製造する方法。
(4) After crushing and classifying the bulk material, or after adding or coating any one of (A) to (F) of claim 3 to the classified powder, heat treatment is performed in a vacuum or an inert atmosphere. 4. The method of manufacturing a bonded magnet according to claim 1, wherein the method is carried out at 400 to 900°C for within 3 hours.
JP2238988A 1990-09-11 1990-09-11 Manufacture of bonded magnet Pending JPH04119604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2238988A JPH04119604A (en) 1990-09-11 1990-09-11 Manufacture of bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2238988A JPH04119604A (en) 1990-09-11 1990-09-11 Manufacture of bonded magnet

Publications (1)

Publication Number Publication Date
JPH04119604A true JPH04119604A (en) 1992-04-21

Family

ID=17038254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2238988A Pending JPH04119604A (en) 1990-09-11 1990-09-11 Manufacture of bonded magnet

Country Status (1)

Country Link
JP (1) JPH04119604A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6105367A (en) * 1996-11-15 2000-08-22 Hitachi Construction Machinery Co. Ltd. Hydraulic drive system
US6192681B1 (en) 1996-11-21 2001-02-27 Hitachi Construction Machinery Co., Ltd. Hydraulic drive apparatus
WO2002035691A1 (en) * 2000-10-25 2002-05-02 Nec Tokin Corporation Magnetic core, coil component comprising it, and power source circuit
JP2002359127A (en) * 2001-05-31 2002-12-13 Nec Tokin Corp Core, coil component using core and power supply circuit
CN104167272A (en) * 2014-07-28 2014-11-26 宁波韵升股份有限公司 Sintered neodymium iron boron magnet containing cerium and manufacturing method thereof
CN108122655A (en) * 2017-12-21 2018-06-05 宁波金轮磁材技术有限公司 A kind of sintered NdFeB magnet and preparation method thereof
CN108172357A (en) * 2017-12-21 2018-06-15 宁波金轮磁材技术有限公司 A kind of microwave sintering NdFeB magnets and preparation method thereof
CN110444359A (en) * 2019-07-09 2019-11-12 浙江东阳东磁稀土有限公司 A kind of method and additive reducing sintered neodymium iron boron material oxygen content
CN111341514A (en) * 2020-03-25 2020-06-26 余姚市宏伟磁材科技有限公司 Low-cost neodymium iron boron magnet and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6105367A (en) * 1996-11-15 2000-08-22 Hitachi Construction Machinery Co. Ltd. Hydraulic drive system
US6192681B1 (en) 1996-11-21 2001-02-27 Hitachi Construction Machinery Co., Ltd. Hydraulic drive apparatus
WO2002035691A1 (en) * 2000-10-25 2002-05-02 Nec Tokin Corporation Magnetic core, coil component comprising it, and power source circuit
US6611187B2 (en) 2000-10-25 2003-08-26 Nec Tokin Corporation Magnetic core, coil assembly and power supply circuit using the same
JP2002359127A (en) * 2001-05-31 2002-12-13 Nec Tokin Corp Core, coil component using core and power supply circuit
CN104167272A (en) * 2014-07-28 2014-11-26 宁波韵升股份有限公司 Sintered neodymium iron boron magnet containing cerium and manufacturing method thereof
CN108122655A (en) * 2017-12-21 2018-06-05 宁波金轮磁材技术有限公司 A kind of sintered NdFeB magnet and preparation method thereof
CN108172357A (en) * 2017-12-21 2018-06-15 宁波金轮磁材技术有限公司 A kind of microwave sintering NdFeB magnets and preparation method thereof
CN108172357B (en) * 2017-12-21 2020-10-16 宁波金轮磁材技术有限公司 Microwave sintered NdFeB magnet and preparation method thereof
CN110444359A (en) * 2019-07-09 2019-11-12 浙江东阳东磁稀土有限公司 A kind of method and additive reducing sintered neodymium iron boron material oxygen content
CN110444359B (en) * 2019-07-09 2021-09-14 浙江东阳东磁稀土有限公司 Method for reducing oxygen content of sintered neodymium-iron-boron material and additive
CN111341514A (en) * 2020-03-25 2020-06-26 余姚市宏伟磁材科技有限公司 Low-cost neodymium iron boron magnet and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0239031B2 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
JP2596835B2 (en) Rare earth anisotropic powder and rare earth anisotropic magnet
JPH04119604A (en) Manufacture of bonded magnet
JPH04241402A (en) Permanent magnet
JPS6151901A (en) Manufacture of permanent magnet
JPH04114406A (en) Manufacture of bonded magnet
JPH03214608A (en) Manufacture of bonded magnet
JPS5848608A (en) Production of permanent magnet of rare earths
KR102236096B1 (en) Method for manufacturing ceramic bonded magnet and ceramic bonded magnet manufactured therefrom
JP3178848B2 (en) Manufacturing method of permanent magnet
JPH04114409A (en) Manufacture of bonded magnet
JP2591845B2 (en) Manufacturing method of bonded magnet
JPH04114408A (en) Manufacture of bonded magnet
JPH05205921A (en) Manufacture of magnet material powder and manufacture of bondded magnet using the powder
JPH03214609A (en) Manufacture of bonded magnet
JPH03214604A (en) Manufacture of bonded magnet
JPH05291017A (en) Manufacture of rare earth magnet powder
JPH01239901A (en) Rare-earth magnet and its manufacture
JPH05175025A (en) Rare earth permanent magnet
JPH05121221A (en) Production of rare earth bonded magnet
JPH03214606A (en) Manufacture of bonded magnet
JPH03214607A (en) Manufacture of bonded magnet
JPH04114405A (en) Manufacture of bonded magnet
JPH03217003A (en) Manufacture of bond-type permanent magnet
JPH0620816A (en) R-t-m-n bonded magnet and manufacture thereof