JPH03214606A - Manufacture of bonded magnet - Google Patents

Manufacture of bonded magnet

Info

Publication number
JPH03214606A
JPH03214606A JP2008426A JP842690A JPH03214606A JP H03214606 A JPH03214606 A JP H03214606A JP 2008426 A JP2008426 A JP 2008426A JP 842690 A JP842690 A JP 842690A JP H03214606 A JPH03214606 A JP H03214606A
Authority
JP
Japan
Prior art keywords
hydrogen
bonded magnet
thin film
manufacturing
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008426A
Other languages
Japanese (ja)
Inventor
Yoshio Matsuo
良夫 松尾
Hirofumi Nakano
廣文 中野
Kazuo Matsui
一雄 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2008426A priority Critical patent/JPH03214606A/en
Publication of JPH03214606A publication Critical patent/JPH03214606A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Abstract

PURPOSE:To obtain a bonded magnet whose magnetic characteristic is high by a method wherein a permanent-magnet bulk body is collapsed by hydrogen, a thin film of a rare-earth element is applied to the surface of an obtained raw-material particle, a molding operation is then executed in a magnetic field and a heat treatment is executed. CONSTITUTION:A permanent-magnet bulk body obtained by quenching and, after that, hot- working the molten solution of an alloy whose fundamental components are a rare-earth element, iron and boron is collapsed by hydrogen; in addition, it is crushed mechanically and classified. A thin film of a rare-earth element is applied to the surface of a classified pulverized body. The body is molded in a magnetic field; after that, it is heat-treated in an inert atmosphere; then, it is impregnated with a resin. That is to say, when the permanent- magnet bulk body is placed in an atmosphere of hydrogen, it occludes hydrogen and is collapsed. In addition, when it is crushed mechanically, a crystal particle 11 is split into a plurality of particles 11a, 11b. However, the particles are placed in the atmosphere of hydrogen and are not subjected to a bad influence such as oxidation or the like. The thin film of the rare-earth element is applied; split faces and the like are protected; the body is molded to a desired shape in the magnetic field and heat-treated. The crystal particles 11a, 11b are bonded at the split faces; a bad influence on a chemical activity by the split faces is eliminated. Thereby, it is possible to obtain a bonded magnet which can display a high magnetic characteristic.

Description

【発明の詳細な説明】 《産業上の利用分野》 本発明は、希土類元素2鉄及びボロンを基本成分とする
磁性材料粉体を合成樹脂により結合させたボンド磁石の
製造方法に関し、特に、高い磁気特性を発揮する上記の
基本成分からなる異方性ボンド磁石の製造方法に関する
[Detailed Description of the Invention] <<Industrial Application Field>> The present invention relates to a method for manufacturing a bonded magnet in which magnetic material powder containing rare earth elements diiron and boron as basic components is bonded with a synthetic resin. The present invention relates to a method of manufacturing an anisotropic bonded magnet made of the above-mentioned basic components that exhibits magnetic properties.

《従来の技術》 従来、ボンド磁石、特にNdタイプの異方性ボンド磁石
は、例えば、次のような方法で製造されていた。
<<Prior Art>> Conventionally, bonded magnets, particularly Nd type anisotropic bonded magnets, have been manufactured, for example, by the following method.

先ず、所望の組成に調整した合金の溶融液を液体急冷し
、この急冷粉をグラファイト等の容器に入れ真空又は不
活性雰囲気中で1軸方向の圧力を加えながら熱処理する
ホットプレス法で高密度に成形した後、再度加熱しなが
ら1軸性の塑性加工を加えるダイアップセット法を行っ
てバルク体の異方性磁石を製造する。
First, the melted alloy adjusted to the desired composition is quenched into liquid, and the quenched powder is placed in a graphite container and heat-treated while applying uniaxial pressure in a vacuum or inert atmosphere to create a high density. After molding, a die-up setting method is performed in which uniaxial plastic working is applied while heating again to produce a bulk anisotropic magnet.

次いで、第1図(B)に示すように、上記のバルク体を
粉砕し、粒径毎に分級する。分級された粉体に、この粉
体(Ndタイプ異方性合金粉体)の接着剤である合成樹
脂(例えば、エポキシ樹脂等)を混合し、均一に混練す
る。混線物を磁場中で所定の形状に成型した後、成型体
をキュアーする。
Next, as shown in FIG. 1(B), the above bulk body is pulverized and classified according to particle size. A synthetic resin (for example, epoxy resin), which is an adhesive for this powder (Nd type anisotropic alloy powder), is mixed with the classified powder and kneaded uniformly. After the crosstalk is molded into a predetermined shape in a magnetic field, the molded body is cured.

なお、上記の磁場中成型は、一般に、圧縮成型法を採用
し、成型体の密度を高めて、良好な磁気特性を有するボ
ンド磁石を製造している。
In addition, the above-mentioned molding in a magnetic field generally employs a compression molding method, increases the density of the molded body, and manufactures a bonded magnet having good magnetic properties.

《発明が解決しようとする課題》 しかし、前記従来の製造方法で製造されたボンド磁石、
特にNdタイプの異方性ボンド磁石は、磁気特性が充分
でない。
<<Problem to be solved by the invention>> However, bonded magnets manufactured by the conventional manufacturing method,
In particular, Nd type anisotropic bonded magnets do not have sufficient magnetic properties.

SmCoタイプのボンド磁石と比較すると、上記のNd
タイプの異方性ボンド磁石は、明らかに磁気特性が劣っ
ている。
Compared to SmCo type bonded magnets, the above Nd
This type of anisotropic bonded magnet clearly has inferior magnetic properties.

この理由は、次のように考えられる。The reason for this is thought to be as follows.

この種粉体(Ndタイプ異方性合金粉体)は、化学的に
非常に活性であるため、前述のバルク体の粉砕により発
生する粉体が発生と同時(すなわち、粉砕中)に酸化さ
れ、また粉砕によるストレスの影響を大きく受ける。そ
して、これら酸化やストレスによる大きな影響が、製品
ボンド磁石の4πI−Hループの角型性を著しく劣化さ
せ、磁気特性を低下させる。つまり、上記の酸化やスト
レスが磁気特性に大きな影響を及ぼしているものと考え
られる。
This type of powder (Nd-type anisotropic alloy powder) is chemically very active, so the powder generated by crushing the bulk material mentioned above is oxidized at the same time as it is generated (i.e., during crushing). , and is greatly affected by the stress caused by crushing. The large influence of these oxidation and stress significantly deteriorates the squareness of the 4πI-H loop of the product bonded magnet, and deteriorates the magnetic properties. In other words, it is thought that the above-mentioned oxidation and stress have a large influence on the magnetic properties.

本発明は、以上の諸点に鑑みてなされたものであって、
その目的とするところは、4πI−Hループの角型性の
著しい劣化を防止し、高い磁気特性を発揮し得るボンド
磁石、特にNdタイプの異方性ボンド磁石を製造する方
法を提案するにある。
The present invention has been made in view of the above points, and
The purpose is to propose a method for manufacturing bonded magnets, especially Nd type anisotropic bonded magnets, that can prevent significant deterioration of the squareness of the 4πI-H loop and exhibit high magnetic properties. .

《課題を解決するための手段》 上記目的を達成するために、本発明は、希土類元素,鉄
及びボロンを基本成分とするボンド磁石を製造する方法
において、前記基本成分からなる合金の溶解液を急冷後
熱間加工して得た永久磁石バルク体を水素崩壊させ、更
に機械的に粉砕し、分級し、該分級粉体表面に希土類元
素の薄膜を被着させ、該薄膜被着粉体を磁場中成型した
後、真空又は不活性雰囲気中で熱処理し、次いで該熱処
理成型体に樹脂を含浸させることを特徴とする。
<<Means for Solving the Problems>> In order to achieve the above object, the present invention provides a method for manufacturing a bonded magnet whose basic components are rare earth elements, iron, and boron, in which a solution of an alloy consisting of the basic components is dissolved. The permanent magnet bulk body obtained by hot processing after quenching is hydrogen-disintegrated, further mechanically crushed and classified, a thin film of a rare earth element is deposited on the surface of the classified powder, and the thin film-coated powder is It is characterized in that after molding in a magnetic field, it is heat-treated in a vacuum or an inert atmosphere, and then the heat-treated molded product is impregnated with a resin.

3 また、好ましくは、上記の水素崩壊を、30To r 
r 〜5 0 K g/ atlの水素ガス圧.室温〜
500℃で行うことである。
3 Preferably, the hydrogen decay described above is carried out at 30 Torr.
Hydrogen gas pressure of r ~50 K g/atl. room temperature~
It is to be carried out at 500°C.

更に、上記の真空又は不活性雰囲気中での熱処理を、4
00〜900’C,3時間以内で行うようにしてもよい
Furthermore, the above heat treatment in vacuum or inert atmosphere is
The heating may be carried out at 00 to 900'C for up to 3 hours.

《作 用》 本発明は、前述のようにボンド磁石の磁気特性が原料粉
末の酸化やストレスの影響を大きく受けることに着目し
たもので、この酸化やストレスと言った原料粉末(粒子
)の欠陥を、■原料粉末を永久磁石バルク体を所謂水素
崩壊により得ること、■得られた原料粒子の表面を保護
すること、■表面を保護した原料粉末を樹脂の添加混合
前に磁場中成型し熱処理すること、により解消するもの
である。
<<Function>> The present invention focuses on the fact that, as mentioned above, the magnetic properties of bonded magnets are greatly affected by the oxidation and stress of the raw material powder, and defects in the raw material powder (particles) such as oxidation and stress ■ Obtaining a permanent magnetic bulk body from the raw material powder by so-called hydrogen decay; ■ Protecting the surface of the obtained raw material particles; ■ Molding and heat-treating the raw material powder with the surface protected in a magnetic field before adding and mixing the resin. This can be resolved by doing something.

すなわち、基本成分からなる合金の溶解液を急冷後熱間
加工して得た永久磁石バルク体は、第2図(A−1)に
示すように、Nd2Fe14Bからなる約0.50切以
下の結晶粒11がNdリッチ4 相12によって囲まれている。そして第2図(A一2)
に示すような良好な4πI一Hループの角型性を示して
いる。
That is, as shown in Figure 2 (A-1), a permanent magnet bulk body obtained by hot processing a solution of an alloy consisting of the basic components after quenching has crystals of about 0.50 mm or less consisting of Nd2Fe14B. Grains 11 are surrounded by Nd-rich 4 phase 12. And Figure 2 (A-2)
It shows good squareness of the 4πI-H loop as shown in FIG.

このような永久磁石バルク体が水素雰囲気下に置かれ水
素を吸蔵して崩壊し、更に機械的に粉砕されると、第2
図(B−1)に示すように、結晶粒11がそれぞれll
aとllbのように複数個に割れ、この割れ面が化学的
に大きな活性を示す。
When such a permanent magnet bulk body is placed in a hydrogen atmosphere, absorbs hydrogen, collapses, and is further mechanically crushed, a second
As shown in Figure (B-1), each crystal grain 11 is
It cracks into multiple parts as shown in a and llb, and this crack surface exhibits high chemical activity.

水素崩壊を採用する本発明では、この化学的に活性な面
は、水素雰囲気下にあり、酸化等の悪影響を受けること
がない。加えて、その理由は明らかでないが、第2図(
B−1)に示すように、水索′論゛壊により得られる粉
末(粒子)の保磁力(iHe)は著しく低い。この著し
く低い保磁力は、磁場成型時における粒子の配同性を著
しく向上させる作用がある。
In the present invention, which employs hydrogen decay, this chemically active surface is under a hydrogen atmosphere and is not subject to adverse effects such as oxidation. In addition, although the reason is not clear, Figure 2 (
As shown in B-1), the coercive force (iHe) of the powder (particles) obtained by breaking the water cable is extremely low. This extremely low coercive force has the effect of significantly improving the distribution of particles during magnetic field molding.

更に、本発明では、上記の割れ面、割れ面以外の結晶粒
11a,llb表面、及び上記の水素崩壊や機械的粉砕
で割れなかった結晶粒11表面に希土類元素の薄膜を被
着させることにより、これらの面を保護し、化学的活性
の悪影響をなくす。
Furthermore, in the present invention, by depositing a thin film of a rare earth element on the crack surface, the surface of the crystal grains 11a and llb other than the crack surface, and the surface of the crystal grain 11 that was not cracked by the hydrogen decay or mechanical crushing, , protecting these surfaces and eliminating the negative effects of chemical activity.

この後、上記の希土類元素薄膜被着粒子を所望の形状に
磁場中成型し、続いて熱処理する。
Thereafter, the rare earth element thin film-coated particles are molded into a desired shape in a magnetic field, and then heat treated.

この磁場中成型と熱処理により、第2図(C−1)に示
すように、2つに割れた結晶粒11aと1lbとが略割
れ面同士で結合し、元の第2図(A−1)に近い状態に
なる。
As a result of this magnetic field molding and heat treatment, the crystal grains 11a and 1lb, which have been split into two, are combined approximately at the cracked surfaces, as shown in Figure 2 (C-1), and the crystal grains 11a and 1lb are combined with each other approximately at the crack surfaces, as shown in Figure 2 (A-1). ).

この結果、4πI−Hループの角型性も、第2図(C 
− 2)に示すように、良好な状態を示すようになる。
As a result, the squareness of the 4πI-H loop also changes as shown in Figure 2 (C
- As shown in 2), the condition will be good.

これに対し、前述した従来のボンド磁石の製造法によれ
ば、第2図(B−1)に示す状態のものに、樹脂が添加
混合されて混練されてしまうため、上記の割れ面による
化学的活性の悪影響が解消されず、製品ボンド磁石の4
π1−}Iループの角型性が、第2図(B−2)に示す
ように、著しく劣化してしまうのである。
On the other hand, according to the conventional manufacturing method of bonded magnets described above, resin is added and mixed into the state shown in Figure 2 (B-1), so the chemical reaction caused by the above-mentioned crack surface 4 of product bonded magnets due to unresolved negative effects of physical activity.
The squareness of the π1-}I loop deteriorates significantly, as shown in FIG. 2 (B-2).

一方、上記の水素崩壊時の水素ガス圧及び温度が低過ぎ
ると、水素吸蔵に時間がかかり過ぎで実用的でなく、逆
に水素ガス圧及び温度が高過ぎると、水素崩壊に使用す
る装置の安全性に問題か生じるため、本発明では水素崩
壊が良好に行われ、上記の割れ面の酸化防止作用や、保
磁力の著しい低下作用を良好に得ることのできる30T
o r r〜50kg/c4の水素ガス圧1常温〜50
0℃の温度とするのである。
On the other hand, if the hydrogen gas pressure and temperature during the hydrogen decay described above are too low, hydrogen absorption takes too long and is impractical; conversely, if the hydrogen gas pressure and temperature are too high, the equipment used for hydrogen decay Since this may cause a safety problem, the present invention uses 30T, which allows hydrogen decay to occur well and provides the above-mentioned oxidation prevention effect on the cracked surface and the effect of significantly lowering the coercive force.
o r r~50kg/c4 hydrogen gas pressure 1 normal temperature~50
The temperature is set at 0°C.

また、上記の希土類元素の薄膜の厚さは余り薄過ぎると
、上記の割れ面及び粒子表面に保護作用を得ることがで
きず、逆に余り厚過ぎても、保護作用が飽和して不経済
となるため、0.005〜3μs程度の厚さとすること
か好ましい。
Furthermore, if the thin film of the rare earth element is too thin, it will not be able to provide protection to the cracked surfaces and particle surfaces, and if it is too thick, the protective effect will become saturated, making it uneconomical. Therefore, it is preferable to have a thickness of about 0.005 to 3 μs.

この希土類元素としては、Nd,Ce,La,Pr,D
y,Ho,Tb等が好ましく使用され、上記粒子を構成
している希土類元素と同種のものに限らず、異種のもの
であっても良く、また2種以上を併用しても良い。
These rare earth elements include Nd, Ce, La, Pr, D
y, Ho, Tb, etc. are preferably used, and the rare earth elements are not limited to the same type as the rare earth elements constituting the particles, but may be different types, or two or more types may be used in combination.

これら希土類元素の薄膜は、上記の熱処理により、粒子
内に拡散し、製品ボンド磁石の磁気特性に何ら悪影響を
及ほさない。
These thin films of rare earth elements are diffused into the particles by the heat treatment described above, and do not have any adverse effect on the magnetic properties of the product bonded magnet.

希土類元素の薄膜は、蒸着法,スパツタ法,メ7 ッキ法 その他適宜の方法で被着させることができる。Thin films of rare earth elements can be produced by vapor deposition, sputtering, and method. It can be applied by a coating method or other appropriate method.

そして、第2図(C−1)に示す作用を得る上で、上記
の熱処理の温度は400〜900℃、特に600〜80
0℃とするのが好ましい。すなわち400°Cより低温
であると、結晶粒11a.11b間及び結晶粒界面での
原子拡散が不充分で、上記のような作用が生じない。一
方900°Cより高温であると、結晶粒径が粗大化し、
磁気特性が急激に劣化する。
In order to obtain the effect shown in FIG.
The temperature is preferably 0°C. That is, when the temperature is lower than 400°C, the crystal grains 11a. Atomic diffusion between 11b and at the grain interface is insufficient, and the above-mentioned effect does not occur. On the other hand, if the temperature is higher than 900°C, the crystal grain size will become coarser,
Magnetic properties deteriorate rapidly.

また、上記の熱処理の時間は、上記の熱処理温度に応じ
て適宜選択されるが、3時間を超えると、結晶粒径が粗
大化して磁気特性を劣化させるため、本発明では3時間
以内とするのである。
Further, the time for the above heat treatment is appropriately selected depending on the above heat treatment temperature, but if it exceeds 3 hours, the crystal grain size will become coarse and the magnetic properties will deteriorate, so in the present invention, it is set to within 3 hours. It is.

なお、0.2時間より短時間であると、上記粒子間及び
結晶粒界面での原子拡散が不充分となることがあるため
、熱処理時間の下限は0.2時間とすることが好ましい
Note that if the heat treatment time is shorter than 0.2 hours, atomic diffusion between the particles and at the grain interface may become insufficient, so the lower limit of the heat treatment time is preferably 0.2 hours.

更に、上記の熱処理を真空又は不活性雰囲気中で行うの
は、上記の割れ面及び結晶粒表面の酸化6 が熱により促進されるため、この酸化を防止するためで
ある。
Furthermore, the reason why the above heat treatment is performed in a vacuum or an inert atmosphere is to prevent the above-mentioned oxidation of the crack surfaces and crystal grain surfaces, which is promoted by heat.

また、上記の熱処理は、第3図(A)に示すように連続
的な熱処理に限られることなく、第3図(B)に示すよ
うにA+B十C+D・・・・・・=−3時間以内となる
ような不連続的な熱処理であっても上記の作用を得るこ
とができる。
In addition, the above heat treatment is not limited to continuous heat treatment as shown in FIG. 3(A), but as shown in FIG. 3(B), A+B+C+D...=-3 hours. The above effects can be obtained even with discontinuous heat treatment within the range.

本発明では、以上の熱処理の後に、樹脂含浸を行う。In the present invention, resin impregnation is performed after the above heat treatment.

これにより、成型後の粒子間に樹脂か侵入し、粒子と粒
子をロックさせ、成型後の形状を強固に保つことが可能
となる。
As a result, the resin penetrates between the particles after molding, locking the particles together, and making it possible to firmly maintain the shape after molding.

《実 施 例》 実施例1 第1図(A)に示すフローにより本発明に係る方法を実
施し、Nd+s.3Fe7s.,Co2.s B5.4
の組成を有する異方性ボンド磁石を製造した。
<<Examples>> Example 1 The method according to the present invention was carried out according to the flow shown in FIG. 1(A), and Nd+s. 3Fe7s. , Co2. s B5.4
An anisotropic bonded magnet having the composition was manufactured.

すなわち、希土類元素(Nd),Fe,Co及びBから
なる合金の溶解液を急冷し、薄帯を得、これを粉砕し、
ホットプレス及びダイアップセットの熱間加工を施して
得た永久磁石バルク体を、密閉炉(本例では、水素雰囲
気式電気炉)内に入れ、この電気炉内の空気をH2ガス
で充分に置換した後、1 kg / caのH2ガス圧
,250°C中に4時間保持した。
That is, a solution of an alloy consisting of rare earth elements (Nd), Fe, Co and B is rapidly cooled to obtain a thin ribbon, which is crushed,
The permanent magnet bulk body obtained by hot pressing and die-up setting is placed in a closed furnace (in this example, a hydrogen atmosphere electric furnace), and the air in this electric furnace is sufficiently filled with H2 gas. After replacing, it was kept at 250°C and a H2 gas pressure of 1 kg/ca for 4 hours.

このようにして水素崩壊させた粉体を、更にジョークラ
ッシャーにより粉砕し、分級して粒径125〜300縛
の粉体を得た。
The powder thus subjected to hydrogen collapse was further crushed using a jaw crusher and classified to obtain a powder having a particle size of 125-300.

この分級粉体を真空蒸着装置内に挿入し、真空度をIX
10−6Torrに設定し、毎分1000人の厚さでN
dを分級粉体表面に蒸着させる操作を2分間で1回とし
て、計8回行った。
This classified powder is inserted into a vacuum evaporation device, and the degree of vacuum is increased to IX.
Set at 10-6 Torr, with a thickness of 1000 N per minute
The operation of vapor-depositing d on the surface of the classified powder was performed 8 times in total, once every 2 minutes.

この後、このNd薄膜(0.5庫)被着粉体を磁界15
KOe中で配向させながら、4.5ton/c+ffで
加圧成型し、成型体を真空中、750℃,1時間で熱処
理した。なお、熱処理方法は、第3図(A)に示す方法
とした。
After that, this Nd thin film (0.5 cup) was applied to the adhering powder in a magnetic field of 15
Pressure molding was carried out at 4.5 ton/c+ff while orienting in KOe, and the molded body was heat-treated in vacuum at 750° C. for 1 hour. Note that the heat treatment method was the method shown in FIG. 3(A).

熱処理後の成型体を粘度10cpsのエポキシ樹脂中に
浸漬し、デシケータに移し、約3分間真空状態とし、成
型体中にエポキシ樹脂を充分含漫さ? lこ 。
The molded body after heat treatment is immersed in an epoxy resin with a viscosity of 10 cps, transferred to a desiccator, and kept in a vacuum state for about 3 minutes to ensure that the molded body is sufficiently saturated with epoxy resin. lko.

次いで、100゜C,60分間のキュアリングを行った
Next, curing was performed at 100°C for 60 minutes.

以上のようにして、5個の試料を製造した。Five samples were manufactured as described above.

また、比較のために、第1図(B)に示す従来法の工程
、すなわち水素崩壊及びNd薄膜の被着を行わず、ジョ
ークラッシャーによる機械的粉砕で得られた分級粉体に
粘度10cpsのエポキシ樹脂を混合し、均一に混練し
た後、磁界15KOe中で配向させながら、4,5to
n/c♂で加圧成型し、100℃.60分間のキュアリ
ングを行って、上記した組成の異方性ボンド磁石の試料
を5個製造した。
For comparison, the conventional process shown in Figure 1 (B), i.e., without hydrogen decomposition and Nd thin film deposition, was applied to the classified powder obtained by mechanical crushing using a jaw crusher with a viscosity of 10 cps. After mixing the epoxy resin and kneading it uniformly, 4,5 to
Pressure molded at n/c♂ and heated at 100°C. Curing was performed for 60 minutes to produce five samples of anisotropic bonded magnets having the compositions described above.

上記の本発明に係る方法による試料5個と、従来法によ
る試料5個につき、残留磁束密度Br最大エネルギ積(
BH)■8及び4πI−Hループの角型性を測定した。
The residual magnetic flux density Br maximum energy product (
BH) ■ The squareness of the 8 and 4πI-H loops was measured.

この結果を第1表に示す。The results are shown in Table 1.

1 1 第1表 第1表から明らかなように、本発明に係る方法によれば
、従来法による場合に比し、角型性及び残留磁束密度が
大幅に向上し、これにより従来法では得られなかった高
い磁気特性を有するボンド1 2 磁石を得ることができることが判る。
1 1 As is clear from Table 1, the method according to the present invention significantly improves the squareness and residual magnetic flux density compared to the conventional method. It can be seen that it is possible to obtain a bonded 1 2 magnet having high magnetic properties that could not be obtained using the bonded 1 2 magnet.

実施例2 熱処理温度を種々変えた以外は実施例1と全く同様にし
て本発明に係る方法を実施し、得られたボンド磁石の磁
気特性を測定した。
Example 2 The method according to the present invention was carried out in exactly the same manner as in Example 1 except that the heat treatment temperature was variously changed, and the magnetic properties of the obtained bonded magnets were measured.

この結果を、第4図に示す。The results are shown in FIG.

同図から明らかなように、400℃より低温及び900
°Cより高温では、磁気特性の低下が見られ、600〜
800℃で磁気特性がピークとなることが判る。
As is clear from the figure, temperatures below 400°C and temperatures below 900°C
At temperatures higher than °C, a decrease in magnetic properties is observed, with temperatures ranging from 600 to
It can be seen that the magnetic properties reach a peak at 800°C.

実施例3 熱処理時間を種々変えた以外は実施例1と全く同様にし
て本発明に係る方法を実施し、得られたボンド磁石の磁
気特性を測定した。
Example 3 The method according to the present invention was carried out in the same manner as in Example 1 except that the heat treatment time was varied, and the magnetic properties of the obtained bonded magnets were measured.

この結果を、第5図に示す。The results are shown in FIG.

同図から明らかなように、3時間より長時間であると磁
気特性の低下か見られ、また750℃で1時間より短時
間であるとやはり磁気特性の低下が見られる。
As is clear from the figure, if the heating time is longer than 3 hours, the magnetic properties will be degraded, and if the heating time is shorter than 1 hour at 750° C., the magnetic properties will also be degraded.

実施例4 分級粉体表面への希土類元素薄膜の被着法として、分級
粉体にNdを8重量%含む有機金属化合物(分子内にキ
レート結合を有する錯塩で、Nd8重量%の他に、不揮
発分を33重量%含み、トルエンに溶解させたものを使
用)を分級粉体の5重量%の割合で添加し、不活性雰囲
気中で]O分間混合する方法を採用し、熱処理条件を7
00℃1時間とする以外は実施例1と全く同様にして本
発明に係る方法を実施し、得られたボンド磁石(5個)
の磁気特性を測定した。
Example 4 As a method of depositing a rare earth element thin film on the surface of classified powder, an organometallic compound containing 8% by weight of Nd (a complex salt having a chelate bond in the molecule, in addition to 8% by weight of Nd, a non-volatile A method was adopted in which 5% by weight of the classified powder was added (containing 33% by weight of 10% by weight and dissolved in toluene) and mixed for 0 minutes in an inert atmosphere, and the heat treatment conditions were set to 7%.
The method according to the present invention was carried out in exactly the same manner as in Example 1 except that the temperature was 00°C for 1 hour, and the obtained bonded magnets (5 pieces)
The magnetic properties of the material were measured.

この結果を第2表に示す。The results are shown in Table 2.

第2表 実施例5 分級粉体表面への希土類元素薄膜の被着法として、分級
粉体にNd金属を陰極ターゲット材として、次の条件で
スパッタリングを施す方法を採用する以外は実施例1と
全く同様にして本発明に係る方法を実施し、得られたボ
ンド磁石(5個)の磁気特性を測定した。
Table 2 Example 5 The method of depositing the rare earth element thin film on the surface of the classified powder was the same as that of Example 1 except that the method of sputtering the classified powder with Nd metal as the cathode target material was adopted under the following conditions. The method according to the present invention was carried out in exactly the same manner, and the magnetic properties of the obtained bonded magnets (5 pieces) were measured.

スパッタ条件 真空度   :IX10−2Torr 入力電圧  :150W スパッタ時間:2時間 上記の結果を第3表に示す。Sputtering conditions Vacuum degree: IX10-2 Torr Input voltage: 150W Sputtering time: 2 hours The above results are shown in Table 3.

第3表 1 5 実施例6 永久磁石バルク体の水素崩壊方法として、バルク体を水
素雰囲気式電気炉内に入れ、この電気炉内を真空に引い
た後、H2ガスを導入してH2ガス雰囲気とした後、5
 0 kg / c♂のH2ガス圧.常温中に1時間保
持する方法を採用し、粉体表血へのNd薄膜被着方法と
して、真空度を1×10Torrとし、2分間で1回の
操作を計4回行う以外は実施例1と全く同様にして本発
明に係る方法を実施し、得られたボンド磁石(5個)の
磁気特性を測定した。
Table 3 1 5 Example 6 As a hydrogen decay method for a permanent magnet bulk body, the bulk body was placed in a hydrogen atmosphere electric furnace, the inside of this electric furnace was evacuated, and then H2 gas was introduced to create an H2 gas atmosphere. After that, 5
H2 gas pressure of 0 kg/c♂. Example 1 except that a method of holding at room temperature for 1 hour was adopted, and the vacuum degree was set to 1 × 10 Torr as a method of depositing a Nd thin film on powder surface blood, and the operation was performed once for 2 minutes for a total of 4 times. The method according to the present invention was carried out in exactly the same manner as described above, and the magnetic properties of the obtained bonded magnets (5 pieces) were measured.

この結果を第4表に示す。The results are shown in Table 4.

第4表 1 6 実施例7 水素崩壊を30To r r,500’C,4時間で行
う以外は実施例1と全く同様にして本発明に係る方法を
実施し、得られたボンド磁石(5個)の磁気特性を測定
した。
Table 4 1 6 Example 7 The method according to the present invention was carried out in the same manner as in Example 1 except that hydrogen decay was carried out at 30 Torr, 500'C, for 4 hours, and the obtained bonded magnets (5 pieces ) was measured.

この結果は、実施例1の第1表と同様であった。The results were similar to those in Table 1 of Example 1.

《発明の効果》 以上詳述した本発明に係る方法によれば、原料粉体(粒
子)を永久磁石バルク体の水素崩壊により得るため、原
料粒子の化学的活性に起因する欠陥が水素ガス雰囲気と
表面に被着される希土類元素の薄膜とにより保護され、
次いで磁場中成型と熱処理により粒子の相互作用で上記
の原料粒子の欠陥を解消することができ、この後樹脂の
含浸を行うため、従来では得られなかった磁気特性を有
するボンド磁石を得ることができる。
<<Effects of the Invention>> According to the method according to the present invention detailed above, since the raw material powder (particles) is obtained by hydrogen decay of the permanent magnet bulk body, defects caused by the chemical activity of the raw material particles are removed from the hydrogen gas atmosphere. and a thin film of rare earth elements deposited on the surface.
Next, by molding in a magnetic field and heat treatment, the defects in the raw material particles mentioned above can be eliminated through particle interaction, and since this is followed by resin impregnation, it is possible to obtain bonded magnets with magnetic properties that could not be obtained with conventional methods. can.

この結果、本発明に係る方法では、良好な角型性を有し
、しかも残留磁束密度及び最大エネルギ積とも優れたボ
ンド磁石を提供することができる。
As a result, the method according to the present invention can provide a bonded magnet that has good squareness and is also excellent in both residual magnetic flux density and maximum energy product.

また、従来不可能であった、リング形状のボンド磁石を
高保磁力で、製造することも、本発明に係る方法によれ
ば可能となる。
Further, according to the method of the present invention, it is possible to manufacture a ring-shaped bonded magnet with a high coercive force, which was previously impossible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)は本発明に係る方法を工程順に示す図、第
1図(B)は従来法を工程順に示す図、第2図は本発明
に係る方法の作用を説明する図、第3図(A),(B)
は本発明に係る方法の熱処理の仕方を示す説明図、第4
図及び第5図は本発明に係る方法の熱処理条件の根拠を
示す図である。
FIG. 1(A) is a diagram showing the method according to the present invention in the order of steps, FIG. 1(B) is a diagram showing the conventional method in the order of steps, FIG. 2 is a diagram explaining the action of the method according to the present invention, Figure 3 (A), (B)
4 is an explanatory diagram showing how to perform heat treatment in the method according to the present invention.
5 and 5 are diagrams showing the basis of the heat treatment conditions of the method according to the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)希土類元素,鉄及びボロンを基本成分とするボン
ド磁石を製造する方法において、前記基本成分からなる
合金の溶解液を急冷後熱間加工して得た永久磁石バルク
体を水素崩壊させ、更に機械的に粉砕し、分級し、その
分級粉体表面に希土類元素の薄膜を被着させ、該薄膜被
着粉体を磁場中成型した後、真空又は不活性雰囲気中で
熱処理し、次いでその熱処理成型体に樹脂を含浸させる
ことを特徴とするボンド磁石の製造方法。
(1) In a method for manufacturing a bonded magnet whose basic components are rare earth elements, iron, and boron, a permanent magnet bulk body obtained by rapidly cooling and hot working a solution of an alloy consisting of the basic components is subjected to hydrogen collapse, Further, the classified powder is mechanically crushed and classified, a thin film of a rare earth element is deposited on the surface of the classified powder, the thin film-coated powder is molded in a magnetic field, and then heat treated in a vacuum or an inert atmosphere. A method for manufacturing a bonded magnet, which comprises impregnating a heat-treated molded body with a resin.
(2)前記水素崩壊を、30Torr〜50Kg/cm
^2の水素ガス圧,室温〜500℃で行うことを特徴と
する請求項1記載のボンド磁石の製造方法。
(2) The hydrogen decay is controlled at 30 Torr to 50 Kg/cm
2. The method for manufacturing a bonded magnet according to claim 1, wherein the bonded magnet manufacturing method is carried out at a hydrogen gas pressure of ^2 and at room temperature to 500°C.
(3)前記真空又は不活性雰囲気中での熱処理を、40
0〜900℃、3時間以内で行うことを特徴とする請求
項1,2記載のボンド磁石の製造方法。
(3) The heat treatment in vacuum or inert atmosphere is performed for 40 minutes.
3. The method for manufacturing a bonded magnet according to claim 1, wherein the manufacturing method is carried out at 0 to 900[deg.] C. for less than 3 hours.
JP2008426A 1990-01-19 1990-01-19 Manufacture of bonded magnet Pending JPH03214606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008426A JPH03214606A (en) 1990-01-19 1990-01-19 Manufacture of bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008426A JPH03214606A (en) 1990-01-19 1990-01-19 Manufacture of bonded magnet

Publications (1)

Publication Number Publication Date
JPH03214606A true JPH03214606A (en) 1991-09-19

Family

ID=11692799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008426A Pending JPH03214606A (en) 1990-01-19 1990-01-19 Manufacture of bonded magnet

Country Status (1)

Country Link
JP (1) JPH03214606A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023436A (en) * 2009-07-14 2011-02-03 Fuji Electric Holdings Co Ltd Method of producing magnet powder for permanent magnet, permanent magnet powder and permanent magnet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223902A (en) * 1985-07-23 1987-01-31 Sumitomo Special Metals Co Ltd Alloy powder for rare earth magnet and its production
JPS6354702A (en) * 1986-08-26 1988-03-09 Tdk Corp Manufacture of rare earth-iron boron resin magnet
JPS64704A (en) * 1987-03-02 1989-01-05 Seiko Epson Corp Rare earth-iron system permanent magnet
JPS6484701A (en) * 1987-09-28 1989-03-30 Sumitomo Metal Mining Co Manufacture of powder for resin bonded magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223902A (en) * 1985-07-23 1987-01-31 Sumitomo Special Metals Co Ltd Alloy powder for rare earth magnet and its production
JPS6354702A (en) * 1986-08-26 1988-03-09 Tdk Corp Manufacture of rare earth-iron boron resin magnet
JPS64704A (en) * 1987-03-02 1989-01-05 Seiko Epson Corp Rare earth-iron system permanent magnet
JPS6484701A (en) * 1987-09-28 1989-03-30 Sumitomo Metal Mining Co Manufacture of powder for resin bonded magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023436A (en) * 2009-07-14 2011-02-03 Fuji Electric Holdings Co Ltd Method of producing magnet powder for permanent magnet, permanent magnet powder and permanent magnet

Similar Documents

Publication Publication Date Title
TWI433172B (en) Method for manufacturing permanent magnets and permanent magnets
RU2417139C2 (en) Method of producing rare-earth permanent magnet material
KR101534717B1 (en) Process for preparing rare earth magnets
US5228930A (en) Rare earth permanent magnet power, method for producing same and bonded magnet
JP3129593B2 (en) Manufacturing method of rare earth, iron and boron sintered magnets or bonded magnets
EP0506412B1 (en) Magnetic material
JP6769479B2 (en) Rare earth permanent magnet
KR102454771B1 (en) A Preparation Method of a Rare Earth Anisotropic Bonded Magnetic Powder
JPH0661022A (en) Manufacture of rare earth bonded magnet
JPH04119604A (en) Manufacture of bonded magnet
CN111724955A (en) R-T-B permanent magnet
JPH03214606A (en) Manufacture of bonded magnet
JPH04241402A (en) Permanent magnet
JPH05335120A (en) Anisotropic bonded manget manufacturing magnet powder coated with solid resin binder and manufacture thereof
JP3597615B2 (en) Method for producing RTB based anisotropic bonded magnet
JPS6151901A (en) Manufacture of permanent magnet
JP3463911B2 (en) Anisotropic magnet powder
JPH03214604A (en) Manufacture of bonded magnet
JPH10326705A (en) Rare-earth magnet powder and manufacture thereof
JPH03214605A (en) Manufacture of bonded magnet
JPH03214608A (en) Manufacture of bonded magnet
JPH04260302A (en) Magnetic powder and its manufacture and bonded magnet
JPS62181402A (en) R-b-fe sintered magnet and manufacture thereof
JP2003124013A (en) Bonded magnet, its manufacturing method, and magnet material used therefor
JPH0521217A (en) Production of rare-earth bond magnet