JPH04118865A - Temperature raising method of fuel cell - Google Patents

Temperature raising method of fuel cell

Info

Publication number
JPH04118865A
JPH04118865A JP2238192A JP23819290A JPH04118865A JP H04118865 A JPH04118865 A JP H04118865A JP 2238192 A JP2238192 A JP 2238192A JP 23819290 A JP23819290 A JP 23819290A JP H04118865 A JPH04118865 A JP H04118865A
Authority
JP
Japan
Prior art keywords
fuel cell
temperature
cathode
heater
circulation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2238192A
Other languages
Japanese (ja)
Inventor
Kenichi Mochizuki
健一 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2238192A priority Critical patent/JPH04118865A/en
Publication of JPH04118865A publication Critical patent/JPH04118865A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To reduce the cost of a temperature raising system and to save the temperature raising energy consumed in the temperature raising operation, by providing a heater in a circulation system of a cathode to circulate an inert gas while raising its temperature, and heating a fuel cell indirectly by the heated inert gas. CONSTITUTION:When a fuel cell is driven and operated, nitrogen gas N is fed to a cathode circulation system 5 instead of the gas in the cathode circulation system 5, and then, the nitrogen gas N is circulated while heating the nitrogen gas N up to a specific temperature by a heater 18 provided in the circulation system 5 so as to heat a fuel cell 1 indirectly. As a result, a good heat exchange efficiency can be obtained, and even though the fuel cell 1 is a large size, for example, an adequate capacity is obtained, and a commercial heater 18 can be used for the heating. Consequently, the cost of the temperature raising system can be reduced, and the temperature raising energy such as the power or the fuel can be saved. Furthermore, generation of a thermal distortion in the fuel cell 1 can be suppressed, the fuel cell 1 can be heated evenly, and the capacity of the fuel cell can be maintained.

Description

【発明の詳細な説明】 【産業上の利用分野】 本発明は、例えばリン酸型燃料電池プラント、溶融炭酸
塩型燃料電池プラント、固体電解質型燃料電池プラント
などの燃料電池プラントに使用される燃料電池の昇温方
法に関するものである。 【従来の技術〕 従来の燃料電池プラントのうち溶融炭酸塩型燃料電池プ
ラントは、第2図に示すように燃料電池lのアノード極
2に燃料供給ライン6を介して水素を供給し、一方カソ
ード極4に空気供給ライン9を介して酸素を供給するこ
とで電池反応を起こして電気を発生させるものであり、
前記燃料電池1は、アノード極2とカソード極4とを一
つの組み合わせ(セル)としてそれを何層か積み重ねた
ものである。 前記燃料供給ライン6には、アノード極2の上流側に配
置され、例えば天然ガスなどの原燃料Zを高温で蒸気H
と改質反応させることで水素を発生させる改質器7が設
けられており、アノード排ガスライン3には、アノード
極2の下流側に配置され、かつ燃料電池lからの余剰燃
料を改質器7に供給させるアノードブロア8が設けられ
ている。一方力ソード循環系5は、カソード極4の上流
および下流において、カソード極4へ供給される酸素を
賄うための空気E供給用の空気供給ライン9と、前記カ
ソード極4の下流に接続されるカソード排ガスラインI
Oとに接続されており、カソード循環系5の中途部には
、燃料電池1から排出されたカソード排ガスを循環させ
るカソード循環ブロア11が設けられている。 また、前記アノード極2およびカソード極4には起動操
作の過程で燃料電池lを常温から所定温度まで規定速度
以下で、かつ均一に昇温させるためのヒータ12が設け
られている。 該ヒータ12は燃料電池lの全体を良好に昇温するため
に、該燃料電池lのほぼ全表面に装備されており、燃料
電池lが大型になるとセル間または数セルごとに燃料電
池1内にも設置されている。 なお、図中13は燃料供給弁、14は蒸気供給弁、15
は空気供給弁、16はカソード入口弁、17はカソード
出口弁であり、またE′は前記改質器γ内での燃焼のた
めに使用される空気で、さらに改質器7は、燃焼排ガス
を空気供給ライン9へ供給できるように該ライン9と接
続されている。 燃料電池lの起動操作時には、あらかじめ前記ヒータ1
2により加熱して燃料電池1を規定速度以下で、かつ均
一に所定温度まで昇温させる。 而して、燃料電池lが所定温度まで昇温したら、前記燃
料供給ライン6では、燃料供給弁13を介して供給され
た原燃料Zが改質器7内へ供給されるとともに蒸気供給
弁14を介して供給された蒸気Hが改質器7へ供給され
、該改質器7内では高温状態で原燃料Zと蒸気Hの改質
反応が行われることで水素が発生し、該水素はアノード
極2へ供給され、次いで該アノード極2からの余剰燃料
は改質器7の燃料としてアノードブロア8によって再び
改質器7へ戻される。 一方、空気供給ライン9では、空気供給弁15およびカ
ソード入口弁16を介して導入された空気Eがカソード
極4へ供給され、そののち該カソード極4からのカソー
ド排ガスは主にカソード出口弁17からカソード排ガス
ライン10へ流れるが、一部はカソード循環系5のカソ
ード循環ブロア11で再循環され、空気供給ライン9に
おいて、前記カソード大口弁16を介して供給される低
温の空気Eと混合して適切な温度まで下げられたのち、
カソード極4へ戻される。これにより、カソード極4に
多量のガスを流すことができ、燃料電池1が電池反応に
よって高温になることを抑えている。 [発明が解決しようとする課題] 上記燃料電池プラントでは、燃料電池1が小型の場合は
ヒータ12は該燃料電池1の表面への設置のみでよいた
め比較的容易な構造で前記ヒータ12の装備が可能であ
るが、燃料電池lが例えば商用ベースの大型のものの場
合では、該燃料電池lの表面からの放熱面積が大きくな
るために大容量のヒータ12が必要となり、かつ燃料電
池1の昇温に際しては燃料電池!内部まで均一に昇温さ
せる必要があるために、前述したように該燃料電池!内
にも前記ヒータ12を設置しなtすればならず構造的に
も複雑となる。このため、設備が大幅なコスト高となり
、また過剰な電力消費が発生する恐れがあった。 さらに、前記大型の燃料電池lの場合には多数のヒータ
12で加熱する必要があるものの、各ヒータ12の加熱
具合を均一に揃えることは難しく、このため燃料電池l
内に局所的な高温部あるいは低温部が発生し易くなり、
これにより燃料電池l内に熱歪みや電解質不均一が生じ
て性能低下を引き起こす恐れがあるとともに、燃料電池
1の昇温制御も困難であるという問題があった。 本発明は、上記実情に鑑みなされたもので、カソードの
循環系に加熱器を設置して不活性ガスを昇温させながら
循環させ、その昇温した不活性ガスで燃料電池を間接加
熱することにより、昇温設備のコスト低下および昇温時
に消費される昇温用エネルギーの節減ができ、また燃料
電池内における熱歪みの発生の抑制および燃料電池の均
一な昇温かできて燃料電池の性能維持が図れ、さらに燃
料電池の昇温制御が容易にできる燃料電池の昇温方法を
提供することを目的とする。 [課題を解決するための手段] 本発明は、カソード循環系を備えた燃料電池の昇温方法
において、燃料電池の起動操作時に、前記カソード循環
系に導入した不活性ガスを加熱器で加熱したうえ前記カ
ソード循環系に循環させ、前記燃料電池を所定温度まで
昇温させるものである。 [作   用] 本発明の燃料電池の昇温方法では、燃料電池の起動操作
時に、カソード循環系に導入された不活性ガスは、加熱
器で加熱されたうえカソード循環系に循環させられ、燃
料電池は不活性ガスによって間接的に加熱される。 このため、昇温設備のコスト低下および昇温時に消費さ
れる昇温用エネルギーの節減ができ、また燃料電池内に
おける熱歪みの発生の抑制および燃料電池の均一な昇温
かできることで燃料電池の性能維持ができる。さらに、
燃料電池の昇温制御も加熱器の加熱源を調節するだけで
よいために該制御が容易となる。 [実 施 例] 以下、本発明の実施例の燃料電池の昇温方法を図面を参
照して詳細に説明する。 第1図中、第2図と同じものには同一符号を付する。 本発明の実施例の燃料電池の昇温方法が採用された燃料
電池プラントの系統構成は、第2図で示した従来のもの
とほぼ同じで、その特徴としては燃料電池Iの昇温用と
して用いられたヒータ12を排除し、代わりに、カソー
ド循環系5におけるカソード循環ブロア11と空気供給
ライン9の接続部との間に加熱器1Bを設け、カソード
循環系5には空気Eを窒素ガス(不活性ガス)Nと置換
するため、ガス排出ラインおよび窒素ガス封入ライン(
図示せず)を接続した点である。 次に、本発明の実施例の作用を説明する。 燃料電池プラントでは、燃料電池lの起動操作時に、カ
ソード人口弁18およびカソード出口弁17を閉塞させ
、カソード循環系5の系内ガスに代えて窒素ガスNを前
記カソード循環系5に供給し、カソード循環ブロア11
を作動させることで窒素ガスNをカソード極4を含むカ
ソード循環系5内において循環させるとともに、前記加
熱器18を作動させ、加熱器18の加熱源を適宜調節し
て循環している窒素ガスNを適切な速度で昇温させ、こ
れに伴って該窒素ガスNが燃料電池l内で熱交換して該
燃料電池lも次第に昇温する。このとき、該燃料電池l
は前述したようにアノード極2とカソード極4とを交互
に配列するセル配置となっているため、このようにカソ
ード極4だけに加熱された高温の窒素ガスNを流しても
燃料電池1全体を加熱することができる。 次いで、燃料電池lのカソード極4を通過することで温
度低下した窒素ガスNは加熱器18で再加熱され、再び
カソード極4へ送られて燃料電池lの加熱に供される。 燃料電池1の昇温完了後は加熱器18のカソード入口弁
16およびカソード出口弁17を開き、カソード極4に
空気を再供給し、従来の場合と同様通常運転を行う。 このように、燃料電池lの起動操作時に、カソード循環
系5の系内ガスに代えて窒素ガスNを前記カソード循環
系5に供給し、そののち前記燃料電池1のカソード循環
系5に設けられた加熱器18で窒素ガスNを所定温度ま
で昇温させながら前記カソード循環系5内を循環して燃
料電池1を間接的に加熱するために良好な熱交換効率が
得られ、これにより例えば燃料電池lが大型のものであ
っても適性の容量で、かつ市販の加熱器18を設けるだ
けでよく、従って昇温設備のコスト低下ができ、また例
えば電力および燃料などの昇温用エネルギーの節減がで
きる。 また、燃料電池l内へ窒素ガスNを導入して前記燃料電
池lを加熱することができるため、燃料電池1内におけ
る熱歪みの発生の抑制および該燃料電池lの均一な昇温
かでき、これにより燃料電池l内に熱歪みや電解質不均
一が起きることで発生する燃料電池1の性能低下を防止
して該燃料電池lの性能維持が図れる。 さらに、燃料電池lの昇温制御も加熱器18の加熱源を
調節するだけでよいために前記昇温制御が容易となり、
また加熱器18で循環する窒素ガスNを徐々に昇温させ
ることで、燃料電池l内のより均一な昇温か実現できる
。 以上、本発明の詳細な説明したが、本発明はこの実施例
に限定されるものではなく、要旨を逸脱しない範囲での
設計変更などがあっても本発明に含まれる。 例えば、実施例では、溶融炭酸塩型燃料電池プラントを
例に説明したが、必ずしもこれに限定させなくともよく
、例えばリン酸型燃料電池プラントや固体電解質型燃料
電池プラントなどのようなその他のプラントにも採用で
きる。 また、実施例では、不活性ガスとして窒素ガスを示した
が、必ずしもこれに限定させなくともよく、例えばヘリ
ウムガスやフッ素ガスなどのそのほかの不活性ガスであ
ってもよい。 さらに、実施例では、加熱器をカソード循環系における
カソード循環ブロアと空気供給ラインの接続部との間に
設けたが、必ずしもこれに限定させなくともカソード循
環系の任意位置に設けてもよい。 [発明の効果] 本発明は、このようにカソード循環系に加熱器を設置し
て不活性ガスを昇温しながら循環させ、その昇温した不
活性ガスで燃料電池を間接加熱することにより、昇温設
備のコスト低下および昇温時に消費される昇温用エネル
ギーの節減ができ、また燃料電池内における熱歪みの発
生の抑制および燃料電池の均一な昇温かできて燃料電池
の性能維持が図れ、さらに燃料電池の昇温制御が容易に
できるという効果が得られる。
Detailed Description of the Invention [Field of Industrial Application] The present invention is directed to a fuel cell plant used in a fuel cell plant such as a phosphoric acid fuel cell plant, a molten carbonate fuel cell plant, or a solid oxide fuel cell plant. This relates to a method of increasing the temperature of a battery. [Prior Art] Among conventional fuel cell plants, a molten carbonate fuel cell plant supplies hydrogen to an anode 2 of a fuel cell 1 via a fuel supply line 6, as shown in FIG. By supplying oxygen to the pole 4 via the air supply line 9, a battery reaction occurs and electricity is generated.
The fuel cell 1 is a combination (cell) of an anode 2 and a cathode 4 stacked in several layers. The fuel supply line 6 is disposed upstream of the anode 2 and supplies raw fuel Z such as natural gas with steam H at high temperature.
A reformer 7 is provided in the anode exhaust gas line 3 to generate hydrogen through a reforming reaction with the anode electrode 2. An anode blower 8 is provided to supply the anode blower 7 . On the other hand, the cathode circulation system 5 is connected upstream and downstream of the cathode 4 to an air supply line 9 for supplying air E for supplying oxygen to the cathode 4 and downstream of the cathode 4. Cathode exhaust gas line I
A cathode circulation blower 11 is provided in the middle of the cathode circulation system 5 to circulate the cathode exhaust gas discharged from the fuel cell 1 . Further, the anode electrode 2 and the cathode electrode 4 are provided with a heater 12 for raising the temperature of the fuel cell l uniformly from room temperature to a predetermined temperature at a prescribed rate or less during the process of startup operation. The heater 12 is installed on almost the entire surface of the fuel cell 1 in order to properly raise the temperature of the entire fuel cell 1. When the fuel cell 1 becomes large, the heater 12 is installed between cells or every few cells inside the fuel cell 1. It is also installed in In the figure, 13 is a fuel supply valve, 14 is a steam supply valve, and 15 is a fuel supply valve.
is an air supply valve; 16 is a cathode inlet valve; 17 is a cathode outlet valve; E' is air used for combustion in the reformer γ; It is connected to the air supply line 9 so that it can supply the air to the air supply line 9. When starting up the fuel cell 1, the heater 1 is
2 to uniformly raise the temperature of the fuel cell 1 to a predetermined temperature at or below a specified rate. When the temperature of the fuel cell 1 rises to a predetermined temperature, the raw fuel Z supplied via the fuel supply valve 13 is supplied into the reformer 7 in the fuel supply line 6, and the steam supply valve 14 The steam H supplied through is supplied to the reformer 7, and hydrogen is generated by a reforming reaction between the raw fuel Z and the steam H in the reformer 7 at a high temperature. The excess fuel from the anode 2 is then returned to the reformer 7 by an anode blower 8 as fuel for the reformer 7. On the other hand, in the air supply line 9, the air E introduced through the air supply valve 15 and the cathode inlet valve 16 is supplied to the cathode 4, and then the cathode exhaust gas from the cathode 4 is mainly transferred to the cathode outlet valve 17. A portion of the gas is recirculated by the cathode circulation blower 11 of the cathode circulation system 5 and mixed with the low-temperature air E supplied via the cathode large mouth valve 16 in the air supply line 9. After the temperature has been lowered to the appropriate temperature,
It is returned to the cathode pole 4. This allows a large amount of gas to flow through the cathode 4, and prevents the fuel cell 1 from becoming hot due to cell reactions. [Problems to be Solved by the Invention] In the fuel cell plant described above, when the fuel cell 1 is small, the heater 12 only needs to be installed on the surface of the fuel cell 1, so the heater 12 can be equipped with a relatively simple structure. However, if the fuel cell 1 is a large commercial type, for example, the heat dissipation area from the surface of the fuel cell 1 becomes large, so a large-capacity heater 12 is required, and the rise of the fuel cell 1 is Fuel cells for temperature! As mentioned above, it is necessary to uniformly raise the temperature inside the fuel cell! The heater 12 must also be installed inside the housing, making the structure complicated. For this reason, the cost of the equipment would increase significantly, and there was a fear that excessive power consumption would occur. Furthermore, although it is necessary to heat the large fuel cell l with a large number of heaters 12, it is difficult to equalize the heating level of each heater 12, and for this reason, the fuel cell l
Localized high-temperature or low-temperature areas are likely to occur within the
This poses a problem in that thermal distortion and electrolyte non-uniformity may occur within the fuel cell 1, leading to a decrease in performance, and it is also difficult to control the temperature rise of the fuel cell 1. The present invention was made in view of the above circumstances, and involves installing a heater in the circulation system of the cathode, circulating an inert gas while raising its temperature, and indirectly heating a fuel cell with the heated inert gas. This reduces the cost of heating equipment and saves the heating energy consumed during heating. It also suppresses the occurrence of thermal distortion within the fuel cell and allows for uniform heating of the fuel cell, maintaining fuel cell performance. It is an object of the present invention to provide a method for increasing the temperature of a fuel cell, which allows the temperature increase of the fuel cell to be easily controlled. [Means for Solving the Problems] The present invention provides a method for increasing the temperature of a fuel cell equipped with a cathode circulation system, in which an inert gas introduced into the cathode circulation system is heated with a heater during a startup operation of the fuel cell. Furthermore, the fuel cell is circulated through the cathode circulation system to raise the temperature of the fuel cell to a predetermined temperature. [Function] In the fuel cell temperature raising method of the present invention, the inert gas introduced into the cathode circulation system during the fuel cell startup operation is heated by the heater and then circulated through the cathode circulation system, thereby increasing the fuel cell temperature. The battery is heated indirectly by inert gas. As a result, it is possible to reduce the cost of heating equipment and the energy consumed during heating, and also to suppress the occurrence of thermal distortion in the fuel cell and to increase the temperature of the fuel cell uniformly, which improves the performance of the fuel cell. Can be maintained. moreover,
Temperature increase control of the fuel cell is also facilitated because it is only necessary to adjust the heating source of the heater. [Example] Hereinafter, a method for increasing the temperature of a fuel cell according to an example of the present invention will be described in detail with reference to the drawings. Components in FIG. 1 that are the same as those in FIG. 2 are given the same reference numerals. The system configuration of a fuel cell plant in which the fuel cell temperature raising method of the embodiment of the present invention is adopted is almost the same as the conventional one shown in FIG. The used heater 12 is removed, and instead, a heater 1B is provided between the cathode circulation blower 11 and the connection part of the air supply line 9 in the cathode circulation system 5, and the cathode circulation system 5 is supplied with air E and nitrogen gas. (Inert gas) To replace with N, gas exhaust line and nitrogen gas filling line (
(not shown) are connected. Next, the operation of the embodiment of the present invention will be explained. In the fuel cell plant, during the startup operation of the fuel cell I, the cathode population valve 18 and the cathode outlet valve 17 are closed, and nitrogen gas N is supplied to the cathode circulation system 5 instead of the internal gas of the cathode circulation system 5, Cathode circulation blower 11
The nitrogen gas N is circulated in the cathode circulation system 5 including the cathode electrode 4 by operating the heater 18, and the heating source of the heater 18 is appropriately adjusted to circulate the nitrogen gas N. The temperature of the nitrogen gas N is increased at an appropriate rate, and accordingly, the nitrogen gas N exchanges heat within the fuel cell 1, and the temperature of the fuel cell 1 is also gradually increased. At this time, the fuel cell l
As mentioned above, the cell arrangement is such that the anode electrode 2 and the cathode electrode 4 are arranged alternately, so even if heated nitrogen gas N is supplied only to the cathode electrode 4, the entire fuel cell 1 is can be heated. Next, the nitrogen gas N, whose temperature has decreased by passing through the cathode 4 of the fuel cell 1, is reheated by the heater 18, and sent to the cathode 4 again to heat the fuel cell 1. After the temperature rise of the fuel cell 1 is completed, the cathode inlet valve 16 and the cathode outlet valve 17 of the heater 18 are opened, air is resupplied to the cathode 4, and normal operation is performed as in the conventional case. In this way, during the startup operation of the fuel cell 1, nitrogen gas N is supplied to the cathode circulation system 5 in place of the internal gas of the cathode circulation system 5, and then nitrogen gas N is supplied to the cathode circulation system 5 of the fuel cell 1. Since the nitrogen gas N is heated to a predetermined temperature by the heated heater 18 and circulated through the cathode circulation system 5 to indirectly heat the fuel cell 1, good heat exchange efficiency can be obtained. Even if the battery l is large, it only needs to have an appropriate capacity and a commercially available heater 18, which reduces the cost of heating equipment and saves energy for heating, such as electricity and fuel. I can do it. In addition, since nitrogen gas N can be introduced into the fuel cell 1 to heat the fuel cell 1, it is possible to suppress the occurrence of thermal distortion within the fuel cell 1 and uniformly raise the temperature of the fuel cell 1. This makes it possible to prevent the performance of the fuel cell 1 from deteriorating due to thermal distortion or electrolyte non-uniformity within the fuel cell 1, thereby maintaining the performance of the fuel cell 1. Furthermore, since the temperature increase control of the fuel cell 1 only requires adjusting the heating source of the heater 18, the temperature increase control is facilitated.
Furthermore, by gradually increasing the temperature of the nitrogen gas N circulating in the heater 18, a more uniform temperature increase within the fuel cell 1 can be realized. Although the present invention has been described in detail above, the present invention is not limited to this embodiment, and even if there is a design change within the scope of the invention, it is included in the present invention. For example, in the embodiment, explanation has been given using a molten carbonate fuel cell plant as an example, but it is not necessarily limited to this, and other plants such as a phosphoric acid fuel cell plant, a solid oxide fuel cell plant, etc. It can also be adopted. Further, in the embodiment, nitrogen gas is shown as the inert gas, but it is not necessarily limited to this, and other inert gases such as helium gas or fluorine gas may be used. Further, in the embodiment, the heater is provided between the cathode circulation blower and the connection part of the air supply line in the cathode circulation system, but the heater is not necessarily limited to this and may be provided at any position in the cathode circulation system. [Effects of the Invention] In this way, the present invention installs a heater in the cathode circulation system, circulates the inert gas while raising its temperature, and indirectly heats the fuel cell with the heated inert gas. This reduces the cost of heating equipment and saves the heating energy consumed during heating. It also helps maintain fuel cell performance by suppressing thermal distortion within the fuel cell and increasing the temperature of the fuel cell uniformly. Furthermore, the effect of easily controlling the temperature increase of the fuel cell can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の燃料電池の昇温方法に使用さ
れる燃料電池プラントの概略系統図、第2図は従来の燃
料電池の昇温方法に使用される燃料電池プラントの概略
系統図である。 図中、Iは燃料電池、5はカソード循環系、18は加熱
器、Nは窒素ガス(不活性ガス)である。
FIG. 1 is a schematic system diagram of a fuel cell plant used in the fuel cell temperature raising method according to the embodiment of the present invention, and FIG. 2 is a schematic diagram of a fuel cell plant used in the conventional fuel cell temperature raising method. It is a diagram. In the figure, I is a fuel cell, 5 is a cathode circulation system, 18 is a heater, and N is nitrogen gas (inert gas).

Claims (1)

【特許請求の範囲】[Claims] 1)カソード循環系を備えた燃料電池の昇温方法におい
て、燃料電池の起動操作時に、前記カソード循環系に導
入した不活性ガスを加熱器で加熱したうえ前記カソード
循環系に循環させ、前記燃料電池を所定温度まで昇温さ
せることを特徴とする燃料電池の昇温方法。
1) In a method for increasing the temperature of a fuel cell equipped with a cathode circulation system, when starting up the fuel cell, an inert gas introduced into the cathode circulation system is heated by a heater and then circulated through the cathode circulation system, thereby increasing the temperature of the fuel cell. A method for increasing the temperature of a fuel cell, characterized by increasing the temperature of the battery to a predetermined temperature.
JP2238192A 1990-09-07 1990-09-07 Temperature raising method of fuel cell Pending JPH04118865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2238192A JPH04118865A (en) 1990-09-07 1990-09-07 Temperature raising method of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2238192A JPH04118865A (en) 1990-09-07 1990-09-07 Temperature raising method of fuel cell

Publications (1)

Publication Number Publication Date
JPH04118865A true JPH04118865A (en) 1992-04-20

Family

ID=17026528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2238192A Pending JPH04118865A (en) 1990-09-07 1990-09-07 Temperature raising method of fuel cell

Country Status (1)

Country Link
JP (1) JPH04118865A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044481A1 (en) * 2006-09-27 2008-04-17 Panasonic Corporation Fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044481A1 (en) * 2006-09-27 2008-04-17 Panasonic Corporation Fuel cell system
JP5005701B2 (en) * 2006-09-27 2012-08-22 パナソニック株式会社 Fuel cell system

Similar Documents

Publication Publication Date Title
EP1006601B1 (en) Fuel cell system with improved startability
CN115172800A (en) Solid oxide fuel cell combined heat and power system
JPWO2004027914A1 (en) FUEL CELL COGENERATION SYSTEM, FUEL CELL COGENERATION SYSTEM OPERATION METHOD, PROGRAM THEREOF, AND RECORDING MEDIUM
JP2889807B2 (en) Fuel cell system
JP3664178B2 (en) Multistage fuel cell
CA2414226C (en) Method for regulating the operation of fuel cell installations controlled according to heat and/or power requirement
JP2004103287A (en) Solid electrolyte type fuel cell system
CN114586207A (en) Fuel cell system and operation method
JPH04118865A (en) Temperature raising method of fuel cell
JP2002289250A (en) Fuel cell system
JPS60254568A (en) Fuel cell
JPS61277171A (en) Fuel cell power generation system
CN110649295B (en) Control method of methanol-water fuel cell MIMO system based on HT-PEM
JP3580147B2 (en) Polymer electrolyte fuel cell system
JPH04269460A (en) Method of raising temperature in fuel cell plant
JP3728742B2 (en) Fuel cell equipment
JP2006302678A (en) Fuel cell system
JP2825285B2 (en) Fuel cell power generation system
JP2004247084A (en) Fuel cell power generation system
JPH01124963A (en) Fuel cell
JPH06333585A (en) Method and device for starting fuel cell generating device
JPH05343088A (en) Fuel cell temperature control method
JP3137137B2 (en) Cathode gas circulation method for fuel cell
JP2021048096A (en) Fuel cell system and operational method of them
JPH07220744A (en) Fuel cell system