JP3580147B2 - Polymer electrolyte fuel cell system - Google Patents

Polymer electrolyte fuel cell system Download PDF

Info

Publication number
JP3580147B2
JP3580147B2 JP28765098A JP28765098A JP3580147B2 JP 3580147 B2 JP3580147 B2 JP 3580147B2 JP 28765098 A JP28765098 A JP 28765098A JP 28765098 A JP28765098 A JP 28765098A JP 3580147 B2 JP3580147 B2 JP 3580147B2
Authority
JP
Japan
Prior art keywords
fuel cell
transport medium
heat
heat transport
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28765098A
Other languages
Japanese (ja)
Other versions
JP2000113900A (en
Inventor
彰成 中村
義明 山本
正高 尾関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP28765098A priority Critical patent/JP3580147B2/en
Publication of JP2000113900A publication Critical patent/JP2000113900A/en
Application granted granted Critical
Publication of JP3580147B2 publication Critical patent/JP3580147B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子型の燃料電池を用いて発電を行う固体高分子型燃料電池システムに関する。
【0002】
【従来の技術】
以下に、従来の固体高分子型燃料電池システムについて説明する。
【0003】
従来の固体高分子型燃料電池システムを図4に示した。図4で、1は燃料電池部であり、燃料処理装置2は天然ガスなどの原料を水蒸気改質し、水素リッチなガスを生成して燃料電池1に供給する。また、燃料側加湿器5で、燃料電池1に供給する燃料ガスを加湿する。6は空気供給装置であり、酸化剤の空気を燃料電池1に供給する。このとき、酸化側加湿器7で供給空気を加湿する。燃料処理装置2は、改質ガスを生成する改質器3と、改質ガスに含まれる一酸化炭素を水と反応させ二酸化炭素と水素にするための一酸化炭素変成器4とを具備する。
【0004】
さらに、燃料電池1に水を送って冷却する冷却配管8と、配管内の水を循環させる冷却用ポンプ9と、燃料電池1で発生した熱を外部へ放出する冷却用放熱器10を備えている。
【0005】
このような装置を用いて発電を行う時は、燃料電池1の温度を一定に保つため、冷却配管8を通して、冷却用ポンプ9で水を循環させ、冷却用放熱器10で燃料電池1で発生した熱を外部へ放出する。
【0006】
【発明が解決しようとする課題】
上記のような燃料電池システムでは発電を行う際、燃料電池1で発生した熱を冷却用放熱器1で外部へ放出するため、発電の際発生する熱を利用することができない。
【0007】
また、一酸化炭素変成器4で変成された後の改質ガスは、少量の一酸化炭素がどうしても残留する。このような状況で、燃料電池1の一酸化炭素被毒を防止するためには、燃料電池システムの運転を、ある一定温度以上で行う必要がある。しかし、上記従来例のような燃料電池システムでは、冷却回路8の水を加熱する手段を持たず、起動時の燃料電池1の昇温、低負荷運転時の燃料電池1の温度維持等、燃料電池の温度調整が困難である。
【0008】
【課題を解決するための手段】
本発明は、上述したこのような従来の固体高分子型燃料電池システムが有する課題を考慮して、燃料電池の温度調整および、発電により発生する熱の有効利用を図ることができる固体高分子型燃料電池システムを提供することを目的とするものである。
【0009】
そのため、本発明の固体高分子型燃料電池システムは、燃料ガスと酸化ガスとを用いて発電を行う固体高分子型燃料電池と、前記燃料電池へ熱輸送媒体を循環させる熱輸送媒体循環回路とを有する固体高分子型燃料電池システムであって、前記熱輸送媒体循環回路は、前記熱輸送媒体を加熱する加熱手段と、前記熱輸送媒体を冷却する冷却手段と、前記燃料電池で発生した熱の蓄熱手段と、前記熱輸送媒体を循環させる循環手段とを具備し、前記燃料電池の温度を調整することを特徴とする。
【0010】
このとき、熱輸送媒体循環回路は、冷却手段を短絡する短絡経路と、前記冷却手段と前記短絡経路とに流れる熱輸送媒体の流量を調整する流量調整手段とを具備することが有用である。
【0012】
また、蓄熱手段で蓄熱した熱を用いて、燃料電池の温度を調整することが有用である。
【0013】
【発明の実施の形態】
(第1の実施の形態)
本発明に関する第1の実施の形態を説明する。
【0014】
固体高分子型燃料電池システムの起動時は、熱輸送媒体循環回路が具備する加熱手段と循環手段を用いて、熱輸送媒体循環回路内の熱輸送媒体を加熱し循環させ、燃料電池を昇温する。また発電時に発生した熱を放熱し、燃料電池を冷却する場合は、熱輸送媒体循環回路が具備する冷却手段と循環手段を用いて、熱輸送媒体循環回路内の熱輸送媒体を冷却する。これで、燃料電池を冷却する。また低負荷運転時は、熱輸送媒体循環回路が具備する加熱手段と冷却手段と循環手段を用いて、一定温度の熱輸送媒体を燃料電池に流入することにより、燃料電池の温度を一定に維持する。以上の構成により、一定の安定した温度で燃料電池を運転することができ、一酸化炭素被毒による燃料電池の性能劣化を防止することができる。
【0015】
なお、熱輸送媒体循環回路に、冷却手段を短絡する短絡経路と、冷却手段と短絡経路とに流れる熱輸送媒体の流量を調整する流量調整手段とを具備する事ができる。これにより、冷却手段からの放熱量を調整することができ、低負荷運転時における加熱手段の作動を低減する。
【0016】
(第2の実施の形態)
第2の本発明に対する実施の形態を説明する。
【0017】
固体高分子型燃料電池システムの起動時の昇温、低負荷運転時の温度維持等の温度調整については、第1の実施の形態と同じである。固体高分子型燃料電池システムの運転時に、熱輸送媒体循環回路の蓄熱手段を作動させることにより、燃料電池で発生した熱を蓄熱することができる。蓄熱した熱は随時必要に応じて熱利用装置を通して給湯やヒータなどの熱源に利用することが可能である。また、予め蓄熱した熱を熱輸送媒体循環回路内の熱輸送媒体の昇温に用いることにより、加熱手段の作動を低減することが可能である。
【0018】
【実施例】
次に、本発明の具体的実施例について図面を参照しながら説明する。
【0019】
(実施例1)
図1は、請求項1に記載した第1の本発明の具体的実施例である固体高分子型燃料電池システムを示す構成図である。本実施例における固体高分子型燃料電池システムは、燃料ガスと酸化ガスを用いて発電を行う固体高分子型の燃料電池1と、原料を水蒸気改質して水素リッチな改質ガスを生成する改質器3および前記改質ガスに含まれる一酸化炭素を変成した後、前記改質ガスを前記燃料ガスとして燃料電池1へ供給する一酸化炭素変成器4を有する燃料処理装置2と、燃料電池1に供給する燃料ガスを加湿する燃料側加湿器5と、酸化剤の空気を燃料電池1に供給する空気供給装置6と、供給空気を加湿する酸化側加湿器7と、燃料電池1に熱輸送媒体を送って燃料電池1の温度調整をする配管11と、配管11内の熱輸送媒体を循環させるポンプ12と、燃料電池1で発生した熱を外部へ放出する放熱器13と、配管11を流れる熱輸送媒体を加熱する加熱手段としての加熱器14とで構成する。
【0020】
上記の各部材は、図4で示した従来の固体高分子型燃料電池システムのものと同じ機能を有するものについては、同一符号を付与しており、それらの機能の詳細は、図4で示した従来の固体高分子型燃料電池システムでのものと同じである。また、配管11、ポンプ12、放熱器13、加熱器14は、本実施例の熱輸送媒体循環回路を構成する。
【0021】
次に、本実施例における熱輸送媒体循環回路の動作を説明する。
起動時は、熱輸送媒体循環回路内の加熱器14およびポンプ12を作動させ、熱輸送媒体を昇温することにより、燃料電池1を昇温する。燃料電池システムの運転中に、燃料電池1において発生した熱を放熱するときは、放熱器13を作動させることにより、熱輸送媒体は外気と熱交換し、熱を外部へ放出する。低負荷運転時において燃料電池1の温度を維持する場合、加熱器14を作動させ、燃料電池1入口の熱輸送媒体の温度を一定に保つことにより燃料電池1の温度を維持する。
【0022】
改質ガスを用いる燃料電池システムの運転において、燃料電池1の温度が60℃を下回ると、燃料電池1は一酸化炭素被毒され、性能が著しく劣化する。従来例の場合、加熱手段がないため燃料電池1の性能劣化は避けられない。ところが、加熱手段を具備する本実施例の固体高分子型燃料電池システムにおいて、加熱器14として電気容量が1kWのヒータを、熱輸送媒体として純水(27℃、2.5L)を用いて燃料電池1を昇温したところ、約20分後に燃料電池1の温度が70℃に達することが確認でき、その後の運転において安定した燃料電池システムの運転を実現できた。なお、昇温の時間を短縮するには、加熱器14として電気容量のより大きいヒータを用いることにより可能となる。また、低負荷運転時においても、加熱器14内の熱輸送媒体の温度が72℃となるように加熱器14を温度制御作動させると、燃料電池1の温度は70℃で安定することが確認できた。
【0023】
(実施例2)
図2は、請求項2に記載した第2の本発明の具体的実施例である固体高分子型燃料電池システムを示す構成図である。本実施例の固体高分子型燃料電池システムは、燃料ガスと酸化ガスを用いて発電を行う固体高分子型の燃料電池1と、原料を水蒸気改質して水素リッチな改質ガスを生成する改質器3および前記改質ガスに含まれる一酸化炭素を変成した後、前記改質ガスを前記燃料ガスとして燃料電池1へ供給する一酸化炭素変成器4を有する燃料処理装置2と、燃料電池1に供給する燃料ガスを加湿する燃料側加湿器5と、酸化剤の空気を燃料電池1に供給する空気供給装置6と、供給空気を加湿する酸化側加湿器7と、燃料電池1に熱輸送媒体を送って燃料電池1の温度調整をする配管21と、配管21内の熱輸送媒体を循環させるポンプ22と、燃料電池1で発生した熱を外部へ放出する放熱器23と、配管21を流れる熱輸送媒体を加熱する加熱手段としての加熱器24と、放熱器23を短絡する短絡経路25と、放熱器23と短絡経路25とを流れる熱輸送媒体の流量を調整する流量調整手段としての流量調整弁26,27とで構成する。
【0024】
上記の各部材は、図4で示した従来の固体高分子型燃料電池システムのものと同じ機能を有するものについては、同一符号を付与しており、それらの機能の詳細は、図4で示した従来の固体高分子型燃料電池システムでのものと同じである。また、配管21、ポンプ22、放熱器23、加熱器24、短絡経路25、流量調整弁26、27は、本実施例の熱輸送媒体循環回路を構成する。なお、流量調整弁27を常に閉とすると、実施例1と同等の熱輸送媒体循環回路となる。
【0025】
次に、本実施例における熱輸送媒体循環回路の動作を説明する。燃料電池システムの起動時には、流量調整弁27を開、26を閉とし、加熱器24およびポンプ22を作動させ、燃料電池1を昇温する。燃料電池システムの運転中に、燃料電池1において発生した熱を放熱するときは、流量調整弁26を開、27を閉とする。冷却ポンプ22により熱輸送媒体循環回路を循環する熱輸送媒体は、燃料電池1で発生した熱を放熱器23で外気と熱交換することにより外部へ放出する。低負荷運転時において燃料電池1の温度を維持するために熱輸送媒体の放熱量を調整する場合、流量調整弁26、27を適切な開度の開とする。
【0026】
低負荷運転時は、上記の方法での燃料電池1の温度維持が困難な場合、流量調整弁27を開、26を閉とし、加熱器24を作動させ、燃料電池1入口における熱輸送媒体の温度を一定に保つことにより、燃料電池1の温度を維持する。
【0027】
本実施例の固体高分子型燃料電池システムは、燃料電池の昇温および低負荷運転時の温度維持について、実施例1記載の具体的効果と同じ効果が得られた。さらに、流量調整弁26,27を作動することにより、低負荷運転時には放熱量を調整することができ、加熱器24の作動を低減することができた。
【0028】
(実施例3)
図3は、請求項3と請求項4に記載した第3の本発明の具体的実施例である固体高分子型燃料電池システムを示す構成図である。
【0029】
本実施例における固体高分子型燃料電池システムは、燃料ガスと酸化ガスを用いて発電を行う固体高分子型の燃料電池1と、原料を水蒸気改質して水素リッチな改質ガスを生成する改質器3および前記改質ガスに含まれる一酸化炭素を変成した後、前記改質ガスを前記燃料ガスとして燃料電池1へ供給する一酸化炭素変成器4を有する燃料処理装置2と、燃料電池1に供給する燃料ガスを加湿する燃料側加湿器5と、酸化剤の空気を燃料電池1に供給する空気供給装置6と、供給空気を加湿する酸化側加湿器7と、燃料電池1に熱輸送媒体を送って燃料電池1の温度調整をする配管31と、配管31内の熱輸送媒体を循環させるポンプ32と、燃料電池1で発生した熱を外部へ放出する放熱器33と、配管31を流れる熱輸送媒体を加熱する加熱手段としての加熱器34、と燃料電池1で発生した熱を蓄熱する蓄熱手段としての蓄熱器35と、放熱器33および蓄熱器35を短絡する短絡経路36と、放熱器33と蓄熱器35と短絡経路36とに流れる熱輸送媒体の流量を調整する流量調整手段としての流量調整弁37,38,39とで構成する。
【0030】
上記の各部材は、図4で示した従来の固体高分子型燃料電池システムのものと同じ機能を有するものについては、同一符号を付与しており、それらの機能の詳細は、図4で示した従来の固体高分子型燃料電池システムでのものと同じである。また、配管31、ポンプ32、放熱器33、加熱器34、蓄熱器35、短絡経路36、流量調整弁37、38、39は、本実施例の熱輸送媒体循環回路を構成する。なお、流量調整弁38、39を常に閉とすると実施例1と同等の熱輸送媒体循環回路となり、流量調整弁38を常に閉とすると実施例2と同等の熱輸送媒体循環回路となる。
【0031】
次に、本実施例における熱輸送媒体循環回路の動作を説明する。燃料電池システムの起動時には、流量調整弁39を開、37、38を閉とし、加熱器34およびポンプ32を作動させ、燃料電池1を昇温する。燃料電池システムの運転中に、燃料電池1において発生した熱を放熱するときは、流量調整弁37を開、38、39を閉とする。冷却ポンプ32により熱輸送媒体循環回路を循環する熱輸送媒体は、燃料電池1で発生した熱を放熱器33で外気と熱交換することにより外部へ放出する。燃料電池1において発生した熱を蓄熱するときは、流量調整弁38を開、37、39を閉とする。冷却ポンプ32により熱輸送媒体循環回路を循環する熱輸送媒体は、蓄熱器35で熱交換をすることにより、蓄熱器35に蓄熱される。放熱量および蓄熱量を調整する場合は、流量調整弁37、38、39の開度を適切に調整する。低負荷運転時において燃料電池1の温度が低下する場合は、流量調整弁37、38、39の開度を適切に調整するとともに、加熱器34を作動させ、燃料電池1入口における熱輸送媒体の温度を一定に保つことることにより、燃料電池1の温度を維持する。
【0032】
本実施例の固体高分子型燃料電池システムは、流量調整弁37、38、39を作動させることにより、実施例1および実施例2と同等の熱輸送媒体循環回路を形成することができる。そのため、実施例1および実施例2の具体的効果と同じ効果が得られる。また、固体高分子型燃料電池システムを燃料電池の発電端において出力電力1.8kWの運転を行った場合、熱輸送媒体には1.6kW相当の熱量増加が確認できた。このとき、効率90%の蓄熱器によって蓄熱することにより、1.4kWの熱を蓄熱できる。蓄熱した熱は、随時必要に応じて熱利用装置(図示せず)を通して給湯やヒータなどの熱源に利用することが可能である。
【0033】
なお、燃料電池システムの起動時には、まず、流量調整弁38を開、37、39を閉とし、予め蓄熱器35に蓄熱した熱または、予め蓄熱器35に蓄熱した熱と加熱器34を用いることにより燃料電池1を昇温し、ついで、流量調整弁39を開、37、38を閉とし、燃料電池1を昇温することもできる。上記方法により、蓄熱された余剰熱を有効利用することができるとともに、加熱器の作動を低減することができた。
【0034】
【発明の効果】
以上の説明から明らかなように、本発明は、燃料電池の温度調整および、発電により発生する熱の有効利用を図ることができる固体高分子型燃料電池システムを提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例の固体高分子型燃料電池システムを示す構成図
【図2】本発明の第2の実施例の固体高分子型燃料電池システムを示す構成図
【図3】本発明の第3の実施例の固体高分子型燃料電池システムを示す構成図
【図4】従来の固体高分子型燃料電池システムを示す構成図
【符号の説明】
1 燃料電池
2 燃料処理装置
3 改質器
4 一酸化炭素変成器
5 燃料側加湿器
6 空気供給装置
7 酸化側加湿器
8 冷却配管
9 ポンプ
10 放熱器
11 配管
12 ポンプ
13 放熱器
14 加熱器
21 配管
22 ポンプ
23 放熱器
24 加熱器
25 短絡経路
26 流量調整弁
27 流量調整弁
31 配管
32 ポンプ
33 放熱器
34 加熱器
35 蓄熱器
36 短絡経路
37 流量調整弁
38 流量調整弁
39 流量調整弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polymer electrolyte fuel cell system that generates electric power using a polymer electrolyte fuel cell.
[0002]
[Prior art]
Hereinafter, a conventional polymer electrolyte fuel cell system will be described.
[0003]
FIG. 4 shows a conventional polymer electrolyte fuel cell system. In FIG. 4, reference numeral 1 denotes a fuel cell unit, and a fuel processor 2 reforms a raw material such as natural gas by steam, generates a hydrogen-rich gas, and supplies it to the fuel cell 1. Further, the fuel gas supplied to the fuel cell 1 is humidified by the fuel humidifier 5. Reference numeral 6 denotes an air supply device for supplying oxidant air to the fuel cell 1. At this time, the supply air is humidified by the oxidizing humidifier 7. The fuel processor 2 includes a reformer 3 for generating a reformed gas, and a carbon monoxide converter 4 for reacting carbon monoxide contained in the reformed gas with water to produce carbon dioxide and hydrogen. .
[0004]
Further, a cooling pipe 8 for sending water to the fuel cell 1 for cooling, a cooling pump 9 for circulating water in the pipe, and a cooling radiator 10 for releasing heat generated in the fuel cell 1 to the outside are provided. I have.
[0005]
When power is generated using such a device, water is circulated by a cooling pump 9 through a cooling pipe 8 and generated by the cooling radiator 10 to maintain the temperature of the fuel cell 1 constant. Releases the generated heat to the outside.
[0006]
[Problems to be solved by the invention]
When performing the power generation in the fuel cell system as described above, for releasing heat generated by the fuel cell 1 to the outside with a heat sink 1 0 can not be used the heat generated during power generation.
[0007]
Also, a small amount of carbon monoxide remains in the reformed gas after being converted in the carbon monoxide converter 4. In such a situation, in order to prevent carbon monoxide poisoning of the fuel cell 1, it is necessary to operate the fuel cell system at a certain temperature or higher. However, the fuel cell system as in the above-described conventional example does not have a means for heating the water in the cooling circuit 8, and the fuel cell system increases the temperature of the fuel cell 1 during startup, maintains the temperature of the fuel cell 1 during low load operation, and so forth. It is difficult to adjust the temperature of the battery.
[0008]
[Means for Solving the Problems]
The present invention provides a solid polymer fuel cell system capable of adjusting the temperature of a fuel cell and effectively utilizing heat generated by power generation, in consideration of the problems of the conventional solid polymer fuel cell system described above. An object of the present invention is to provide a fuel cell system.
[0009]
Therefore, the polymer electrolyte fuel cell system of the present invention includes a polymer electrolyte fuel cell that generates power using a fuel gas and an oxidizing gas, and a heat transport medium circulation circuit that circulates a heat transport medium to the fuel cell. Wherein the heat transport medium circulating circuit comprises: heating means for heating the heat transport medium; cooling means for cooling the heat transport medium; and heat generated by the fuel cell. And a circulating means for circulating the heat transport medium to adjust the temperature of the fuel cell.
[0010]
At this time, it is useful that the heat transport medium circulation circuit includes a short-circuit path for short-circuiting the cooling means, and a flow rate adjusting means for adjusting the flow rate of the heat transport medium flowing through the cooling means and the short-circuit path.
[0012]
It is also useful to adjust the temperature of the fuel cell using the heat stored by the heat storage means.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
(First Embodiment)
A first embodiment according to the present invention will be described.
[0014]
When the polymer electrolyte fuel cell system is started, the heat transport medium in the heat transport medium circulation circuit is heated and circulated by using the heating means and the circulation means provided in the heat transport medium circulation circuit, and the fuel cell is heated. I do. When radiating the heat generated during power generation and cooling the fuel cell, the heat transport medium in the heat transport medium circulation circuit is cooled using the cooling means and the circulation means provided in the heat transport medium circulation circuit. This cools the fuel cell. During low-load operation, the temperature of the fuel cell is kept constant by flowing the heat transport medium at a constant temperature into the fuel cell using the heating means, cooling means and circulation means provided in the heat transport medium circulation circuit. I do. With the above configuration, the fuel cell can be operated at a constant and stable temperature, and performance degradation of the fuel cell due to carbon monoxide poisoning can be prevented.
[0015]
The heat transport medium circulation circuit may include a short-circuit path for short-circuiting the cooling means, and a flow rate adjusting means for adjusting the flow rate of the heat transport medium flowing through the cooling means and the short-circuit path. Thus, the amount of heat radiation from the cooling means can be adjusted, and the operation of the heating means during low load operation is reduced.
[0016]
(Second embodiment)
An embodiment of the second invention will be described.
[0017]
The temperature adjustment such as the temperature rise at startup of the polymer electrolyte fuel cell system and the temperature maintenance during low load operation is the same as in the first embodiment. By operating the heat storage means of the heat transport medium circulation circuit during operation of the polymer electrolyte fuel cell system, heat generated in the fuel cell can be stored. The stored heat can be used as needed for a heat source such as hot water supply or a heater through a heat utilization device as needed. Further, by using the heat stored in advance for raising the temperature of the heat transport medium in the heat transport medium circulation circuit, it is possible to reduce the operation of the heating means.
[0018]
【Example】
Next, specific examples of the present invention will be described with reference to the drawings.
[0019]
(Example 1)
FIG. 1 is a block diagram showing a polymer electrolyte fuel cell system according to a first embodiment of the present invention. The polymer electrolyte fuel cell system according to the present embodiment generates a hydrogen-rich reformed gas by steam reforming a raw material and a polymer electrolyte fuel cell 1 that generates power using a fuel gas and an oxidizing gas. A fuel processing device 2 having a reformer 3 and a carbon monoxide converter 4 for converting the carbon monoxide contained in the reformed gas and then supplying the reformed gas as the fuel gas to the fuel cell 1; A fuel-side humidifier 5 for humidifying the fuel gas supplied to the cell 1, an air supply device 6 for supplying oxidant air to the fuel cell 1, an oxidizing-side humidifier 7 for humidifying the supplied air, and a fuel cell 1 A pipe 11 for sending a heat transport medium to adjust the temperature of the fuel cell 1; a pump 12 for circulating the heat transport medium in the pipe 11; a radiator 13 for releasing heat generated in the fuel cell 1 to the outside; Heating the heat transport medium flowing through 11 Constituted by a heater 14 as a heat means.
[0020]
The members having the same functions as those of the conventional polymer electrolyte fuel cell system shown in FIG. 4 are given the same reference numerals, and details of those functions are shown in FIG. This is the same as that of the conventional polymer electrolyte fuel cell system. Further, the piping 11, the pump 12, the radiator 13, and the heater 14 constitute a heat transport medium circulation circuit of the present embodiment.
[0021]
Next, the operation of the heat transport medium circulation circuit in the present embodiment will be described.
At the time of startup, the heater 14 and the pump 12 in the heat transport medium circulation circuit are operated to raise the temperature of the heat transport medium, thereby raising the temperature of the fuel cell 1. When radiating the heat generated in the fuel cell 1 during the operation of the fuel cell system, the radiator 13 is operated, whereby the heat transport medium exchanges heat with the outside air and releases the heat to the outside. When the temperature of the fuel cell 1 is maintained during the low load operation, the heater 14 is operated to maintain the temperature of the heat transport medium at the inlet of the fuel cell 1 constant, thereby maintaining the temperature of the fuel cell 1.
[0022]
In the operation of the fuel cell system using the reformed gas, when the temperature of the fuel cell 1 falls below 60 ° C., the fuel cell 1 is poisoned with carbon monoxide, and the performance is significantly deteriorated. In the case of the conventional example, performance degradation of the fuel cell 1 is unavoidable because there is no heating means. However, in the polymer electrolyte fuel cell system according to the present embodiment having a heating means, a heater having an electric capacity of 1 kW is used as the heater 14, and pure water (27 ° C., 2.5 L) is used as a heat transport medium. When the temperature of the battery 1 was raised, it was confirmed that the temperature of the fuel cell 1 reached 70 ° C. after about 20 minutes, and a stable operation of the fuel cell system was realized in the subsequent operation. It should be noted that the time for raising the temperature can be shortened by using a heater having a larger electric capacity as the heater 14. In addition, it was confirmed that the temperature of the fuel cell 1 was stabilized at 70 ° C. when the heater 14 was temperature-controlled so that the temperature of the heat transport medium in the heater 14 became 72 ° C. even during the low load operation. did it.
[0023]
(Example 2)
FIG. 2 is a block diagram showing a polymer electrolyte fuel cell system according to a second embodiment of the present invention. The polymer electrolyte fuel cell system according to the present embodiment generates a hydrogen-rich reformed gas by steam reforming a raw material and a polymer electrolyte fuel cell 1 that generates power using a fuel gas and an oxidizing gas. A fuel processing device 2 having a reformer 3 and a carbon monoxide converter 4 for converting the carbon monoxide contained in the reformed gas and then supplying the reformed gas as the fuel gas to the fuel cell 1; A fuel-side humidifier 5 for humidifying the fuel gas supplied to the cell 1, an air supply device 6 for supplying oxidant air to the fuel cell 1, an oxidizing-side humidifier 7 for humidifying the supplied air, and a fuel cell 1 A pipe 21 for sending a heat transport medium to adjust the temperature of the fuel cell 1, a pump 22 for circulating the heat transport medium in the pipe 21, a radiator 23 for releasing heat generated in the fuel cell 1 to the outside, and a pipe Heating means for heating the heat transport medium flowing through 21 , A short-circuit path 25 for short-circuiting the radiator 23, and flow-regulating valves 26 and 27 as flow-regulating means for regulating the flow rate of the heat transport medium flowing through the radiator 23 and the short-circuit path 25. I do.
[0024]
The members having the same functions as those of the conventional polymer electrolyte fuel cell system shown in FIG. 4 are given the same reference numerals, and details of those functions are shown in FIG. This is the same as that of the conventional polymer electrolyte fuel cell system. Further, the pipe 21, the pump 22, the radiator 23, the heater 24, the short-circuit path 25, and the flow control valves 26 and 27 constitute a heat transport medium circulation circuit of the present embodiment. When the flow control valve 27 is always closed, a heat transport medium circulation circuit equivalent to the first embodiment is obtained.
[0025]
Next, the operation of the heat transport medium circulation circuit in the present embodiment will be described. When the fuel cell system is started, the flow control valve 27 is opened and the flow valve 26 is closed, the heater 24 and the pump 22 are operated, and the temperature of the fuel cell 1 is raised. To release the heat generated in the fuel cell 1 during operation of the fuel cell system, the flow control valve 26 is opened and the flow control valve 27 is closed. The heat transport medium circulated through the heat transport medium circulation circuit by the cooling pump 22 releases the heat generated in the fuel cell 1 to the outside by exchanging heat with the outside air by the radiator 23. When adjusting the heat release amount of the heat transport medium in order to maintain the temperature of the fuel cell 1 at the time of low load operation, the flow control valves 26 and 27 are opened at an appropriate opening.
[0026]
During low-load operation, if it is difficult to maintain the temperature of the fuel cell 1 by the above method, the flow control valve 27 is opened, the flow control valve 27 is closed, the heater 24 is operated, and the heat transport medium at the fuel cell 1 inlet is opened. By keeping the temperature constant, the temperature of the fuel cell 1 is maintained.
[0027]
In the polymer electrolyte fuel cell system of the present embodiment, the same effects as the specific effects described in Embodiment 1 were obtained with respect to the temperature rise of the fuel cell and the maintenance of the temperature during the low-load operation. Further, by operating the flow control valves 26 and 27, the amount of heat radiation can be adjusted during low load operation, and the operation of the heater 24 can be reduced.
[0028]
(Example 3)
FIG. 3 is a block diagram showing a polymer electrolyte fuel cell system according to a third embodiment of the present invention.
[0029]
The polymer electrolyte fuel cell system according to the present embodiment generates a hydrogen-rich reformed gas by steam reforming a raw material and a polymer electrolyte fuel cell 1 that generates power using a fuel gas and an oxidizing gas. A fuel processing device 2 having a reformer 3 and a carbon monoxide converter 4 for converting the carbon monoxide contained in the reformed gas and then supplying the reformed gas as the fuel gas to the fuel cell 1; A fuel-side humidifier 5 for humidifying the fuel gas supplied to the cell 1, an air supply device 6 for supplying oxidant air to the fuel cell 1, an oxidizing-side humidifier 7 for humidifying the supplied air, and a fuel cell 1 A pipe 31 for sending a heat transport medium to adjust the temperature of the fuel cell 1, a pump 32 for circulating the heat transport medium in the pipe 31, a radiator 33 for releasing heat generated in the fuel cell 1 to the outside, and a pipe Heats the heat transport medium flowing through 31 A heater 34 as a heating means, a heat storage 35 as a heat storage means for storing heat generated in the fuel cell 1, a radiator 33 and a short-circuit path 36 for short-circuiting the heat storage 35, a radiator 33 and a heat storage 35 And flow control valves 37, 38, and 39 as flow control means for controlling the flow rate of the heat transport medium flowing through the short-circuit path 36.
[0030]
The members having the same functions as those of the conventional polymer electrolyte fuel cell system shown in FIG. 4 are given the same reference numerals, and details of those functions are shown in FIG. This is the same as that of the conventional polymer electrolyte fuel cell system. Further, the pipe 31, the pump 32, the radiator 33, the heater 34, the regenerator 35, the short-circuit path 36, and the flow regulating valves 37, 38, 39 constitute a heat transport medium circulation circuit of the present embodiment. When the flow control valves 38 and 39 are always closed, a heat transport medium circulation circuit equivalent to the first embodiment is obtained. When the flow control valve 38 is always closed, a heat transport medium circulation circuit equivalent to the second embodiment is provided.
[0031]
Next, the operation of the heat transport medium circulation circuit in the present embodiment will be described. When the fuel cell system is started, the flow control valve 39 is opened, 37 and 38 are closed, the heater 34 and the pump 32 are operated, and the temperature of the fuel cell 1 is raised. To radiate the heat generated in the fuel cell 1 during operation of the fuel cell system, the flow control valve 37 is opened and the flow control valves 38 and 39 are closed. The heat transport medium circulated through the heat transport medium circulation circuit by the cooling pump 32 releases the heat generated in the fuel cell 1 to the outside by exchanging heat with the outside air by the radiator 33. When storing the heat generated in the fuel cell 1, the flow control valve 38 is opened, and 37 and 39 are closed. The heat transport medium circulated in the heat transport medium circulation circuit by the cooling pump 32 exchanges heat with the heat accumulator 35 and is stored in the heat accumulator 35. When adjusting the heat release amount and the heat storage amount, the opening degrees of the flow control valves 37, 38, and 39 are appropriately adjusted. When the temperature of the fuel cell 1 decreases during low-load operation, the openings of the flow control valves 37, 38, and 39 are appropriately adjusted, the heater 34 is operated, and the heat transport medium at the fuel cell 1 inlet is turned on. By keeping the temperature constant, the temperature of the fuel cell 1 is maintained.
[0032]
In the polymer electrolyte fuel cell system of the present embodiment, by operating the flow control valves 37, 38, and 39, a heat transport medium circulation circuit equivalent to that of the first and second embodiments can be formed. Therefore, the same effects as those of the first and second embodiments can be obtained. In addition, when the polymer electrolyte fuel cell system was operated at an output power of 1.8 kW at the power generation end of the fuel cell, an increase in heat quantity equivalent to 1.6 kW was confirmed in the heat transport medium. At this time, heat of 1.4 kW can be stored by storing the heat using the heat storage unit having an efficiency of 90%. The stored heat can be used for a heat source such as hot water supply or a heater through a heat utilization device (not shown) as needed.
[0033]
When the fuel cell system is started, first, the flow control valve 38 is opened, and 37 and 39 are closed, and the heat stored in the heat storage 35 in advance or the heat stored in the heat storage 35 and the heater 34 are used. Then, the temperature of the fuel cell 1 can be raised, and then the flow control valve 39 is opened and the 37 and 38 are closed to raise the temperature of the fuel cell 1. According to the above method, the stored excess heat can be effectively used, and the operation of the heater can be reduced.
[0034]
【The invention's effect】
As is apparent from the above description, the present invention can provide a polymer electrolyte fuel cell system capable of adjusting the temperature of a fuel cell and effectively utilizing heat generated by power generation.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a polymer electrolyte fuel cell system according to a first embodiment of the present invention; FIG. 2 is a configuration diagram showing a polymer electrolyte fuel cell system according to a second embodiment of the present invention; 3 is a configuration diagram showing a polymer electrolyte fuel cell system according to a third embodiment of the present invention. FIG. 4 is a configuration diagram showing a conventional polymer electrolyte fuel cell system.
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Fuel processor 3 Reformer 4 Carbon monoxide converter 5 Fuel side humidifier 6 Air supply device 7 Oxidation side humidifier 8 Cooling pipe 9 Pump 10 Radiator 11 Pipe 12 Pump 13 Radiator 14 Heater 21 Pipe 22 Pump 23 Heat radiator 24 Heater 25 Short circuit path 26 Flow control valve 27 Flow control valve 31 Pipe 32 Pump 33 Heat radiator 34 Heater 35 Heat accumulator 36 Short circuit path 37 Flow control valve 38 Flow control valve 39 Flow control valve

Claims (3)

燃料ガスと酸化ガスとを用いて発電を行う固体高分子型燃料電池と、前記燃料電池へ熱輸送媒体を循環させる熱輸送媒体循環回路とを有する固体高分子型燃料電池システムであって、前記熱輸送媒体循環回路は、前記熱輸送媒体を加熱する加熱手段と、前記熱輸送媒体を冷却する冷却手段と、前記燃料電池で発生した熱の蓄熱手段と、前記熱輸送媒体を循環させる循環手段とを具備し、前記燃料電池の温度を調整することを特徴とする固体高分子型燃料電池システム。A polymer electrolyte fuel cell system having a polymer electrolyte fuel cell that generates power using a fuel gas and an oxidizing gas, and a heat transport medium circulation circuit that circulates a heat transport medium to the fuel cell, The heat transport medium circulating circuit includes a heating unit for heating the heat transport medium, a cooling unit for cooling the heat transport medium, a heat storage unit for heat generated in the fuel cell, and a circulating unit for circulating the heat transport medium. And a polymer electrolyte fuel cell system, wherein the temperature of the fuel cell is adjusted. 熱輸送媒体循環回路は、冷却手段を短絡する短絡経路と、前記冷却手段と前記短絡経路とに流れる熱輸送媒体の流量を調整する流量調整手段とを具備することを特徴とする請求項1記載の固体高分子型燃料電池システム。The heat transport medium circulation circuit includes a short-circuit path for short-circuiting the cooling means, and a flow rate adjusting means for adjusting a flow rate of the heat transport medium flowing through the cooling means and the short-circuit path. Solid polymer fuel cell system. 蓄熱手段で蓄熱した熱を用いて、燃料電池の温度を調整することを特徴とする請求項記載の固体高分子型燃料電池システム。Using a heat regenerator in the heat storage unit, a solid polymer electrolyte fuel cell system according to claim 1, wherein adjusting the temperature of the fuel cell.
JP28765098A 1998-10-09 1998-10-09 Polymer electrolyte fuel cell system Expired - Lifetime JP3580147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28765098A JP3580147B2 (en) 1998-10-09 1998-10-09 Polymer electrolyte fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28765098A JP3580147B2 (en) 1998-10-09 1998-10-09 Polymer electrolyte fuel cell system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004169727A Division JP3858913B2 (en) 2004-06-08 2004-06-08 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2000113900A JP2000113900A (en) 2000-04-21
JP3580147B2 true JP3580147B2 (en) 2004-10-20

Family

ID=17719962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28765098A Expired - Lifetime JP3580147B2 (en) 1998-10-09 1998-10-09 Polymer electrolyte fuel cell system

Country Status (1)

Country Link
JP (1) JP3580147B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857472B2 (en) * 2001-02-13 2012-01-18 株式会社デンソー Fuel cell system
JP4677715B2 (en) * 2003-12-04 2011-04-27 日産自動車株式会社 Fuel cell cooling system
JP4923458B2 (en) * 2005-07-15 2012-04-25 日産自動車株式会社 Fuel cell system
JP4845899B2 (en) * 2008-01-21 2011-12-28 アイシン精機株式会社 Fuel cell system
JP5397444B2 (en) * 2011-09-29 2014-01-22 日産自動車株式会社 Fuel cell system

Also Published As

Publication number Publication date
JP2000113900A (en) 2000-04-21

Similar Documents

Publication Publication Date Title
JP3849375B2 (en) Combined heat and power unit
KR100525538B1 (en) Solid high polymer type fuel cell power generating device
CN116344861A (en) Proton exchange membrane hydrogen fuel cell cogeneration system
JP3580147B2 (en) Polymer electrolyte fuel cell system
JP4649090B2 (en) Fuel cell power generation system
JP4226109B2 (en) Polymer electrolyte fuel cell system
JP2619947B2 (en) Fuel cell generator
JP2021103643A (en) Fuel cell system and operating method
JP4015225B2 (en) Carbon monoxide removal equipment
CN116072918A (en) Marine proton exchange membrane hydrogen fuel cell cogeneration system
JP3858913B2 (en) Fuel cell system
JP2005116256A (en) Fuel cell cogeneration system
JP2006127861A (en) Fuel cell system
JP3448567B2 (en) Polymer electrolyte fuel cell power generator
KR100778207B1 (en) Fuel cell system using waste heat of power conditioning system
JP3992423B2 (en) Method and apparatus for starting operation of fuel cell system
JP3679792B2 (en) Solid polymer fuel cell power generator
JP3728742B2 (en) Fuel cell equipment
JP2004247084A (en) Fuel cell power generation system
JP2825285B2 (en) Fuel cell power generation system
JP2007103034A (en) Fuel cell system and its starting method
JP5501750B2 (en) Fuel cell system
JP2004296266A (en) Fuel cell system
JP3561706B2 (en) Polymer electrolyte fuel cell power generator
JP2004335313A (en) Solid polymer type fuel cell system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040712

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

EXPY Cancellation because of completion of term