JPH04117036A - Optical transmitter - Google Patents

Optical transmitter

Info

Publication number
JPH04117036A
JPH04117036A JP2232218A JP23221890A JPH04117036A JP H04117036 A JPH04117036 A JP H04117036A JP 2232218 A JP2232218 A JP 2232218A JP 23221890 A JP23221890 A JP 23221890A JP H04117036 A JPH04117036 A JP H04117036A
Authority
JP
Japan
Prior art keywords
signal
light
optical
transmission
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2232218A
Other languages
Japanese (ja)
Other versions
JP2705291B2 (en
Inventor
Tomoki Saito
齋藤 朝樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2232218A priority Critical patent/JP2705291B2/en
Priority to EP90122834A priority patent/EP0430230B1/en
Priority to DE69017848T priority patent/DE69017848T2/en
Priority to US07/620,111 priority patent/US5184243A/en
Publication of JPH04117036A publication Critical patent/JPH04117036A/en
Application granted granted Critical
Publication of JP2705291B2 publication Critical patent/JP2705291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To attain high speed long range transmission while the effect of decentralization is reduced by dividing a transmission signal light into two series, extending one time slot of each series more than one time slot of the original transmission signal before the division, setting an optimum optical frequency change and adding the series. CONSTITUTION:The transmitter is provided with 1st and 2nd signal sources 13, 14, a semiconductor laser light source 1, a modulation signal source 8 outputting a modulation signal, an optical branching device 19 branching an output light of the light source 1, and an optical delay means 20 giving a time difference to the branched lights, and also with 1st and 2nd external modulators 17, 18 applying intensity modulation to the branched lights receiving a time difference by the means 20 with 1st and 2nd signals outputted from signal lines 13, 14 and a polarized optical multiplexer 21 applying polarized light multiplex to the output light and sending the result to the transmission line. In this case, when one transmission signal is divided into two series, since one time slot of each series is extended twice, the pulse width in the time slot is expanded and an optical frequency change is added and then polarized light multiplexing is implemented. Thus, the effect of decentralization in a long distance transmission is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光通信等に用いられる光送信装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical transmitter used for optical communications and the like.

(従来の技術) 光通信においては、半導体レーザへの注入電流を変化さ
せて強度変調信号光を得て、該強度変調信号光を伝送路
である光ファイバを伝送し、PINダイオード等の光電
変換素子を用いた光受信器で受信する強度変調−直接検
波光通信装置が生に用いられている。この光通信装置で
は、光ファイバの損失が最低となる波長帯である1、5
μm帯伝送において、ギガビット以上の伝送速度で通信
を行うと光ファイバの分散の影響を受け、伝送後に大き
な品質劣化を生じることが知られているCM。
(Prior art) In optical communication, intensity-modulated signal light is obtained by changing the current injected into a semiconductor laser, and the intensity-modulated signal light is transmitted through an optical fiber as a transmission path, and is then connected to a photoelectric converter such as a PIN diode. Intensity modulation-direct detection optical communication devices that receive signals with optical receivers using optical elements are in practical use. This optical communication device uses wavelengths of 1 and 5, which are the wavelength bands where the optical fiber has the lowest loss.
In μm band transmission, CM is known to be affected by optical fiber dispersion when communicating at transmission speeds of gigabit or higher, resulting in significant quality deterioration after transmission.

5hikada et al、、 −Long−dis
tance Gtgabft−RangeOptica
l Fiber Transmlssion Expe
riments Egp!oying DFB−LD 
s and InGaAs−APD’s″IEEE、 
Journal of Lightvave Tech
nology、 Vow、 LT−5,No、10pp
、 14811−1497)。
5hikada et al, -Long-dis
tance Gtgabft-Range Optica
l Fiber Transmssion Expe.
riments Eggp! oying DFB-LD
s and InGaAs-APD's"IEEE,
Journal of Lightvave Tech
nology, Vow, LT-5, No, 10pp
, 14811-1497).

また、光の周波数、位相、振幅に情報をのせ、受信側で
局部発振光とのビートを求めて該ビートから情報を得る
光ヘテロダイン通信装置では、半導体レーザを直接変調
した際に生じるチャーピングによるスペクトル拡がりの
影響かないから、強度変調−直接検波光通信装置に比較
して光ファイバの分散の影響は小さい。しかし、超高速
・長距離伝送においては劣化が起こることも報告されて
いる(N、Takachio et at、、Chro
iaLic Dispersion Equaliza
tjon in an 8 Gb/s 202 klI
CPFSK Transmission Experi
llent−17th Conrerenee on 
1tegrated 0ptfcs and 0pti
cal Fiber Co■unicatton、 P
o5t−deadline Papers 20 PD
A−13)。
In addition, in an optical heterodyne communication device that puts information on the frequency, phase, and amplitude of light and obtains the beat with local oscillation light on the receiving side and obtains information from the beat, chirping that occurs when directly modulating a semiconductor laser Since there is no effect of spectrum broadening, the effect of optical fiber dispersion is smaller than that of an intensity modulation/direct detection optical communication device. However, it has also been reported that deterioration occurs in ultra-high-speed, long-distance transmission (N, Takachio et at, Chro
iaLic Dispersion Equaliza
tjon in an 8 Gb/s 202 klI
CPFSK Transmission Experiment
llent-17th Conrerenee on
1tegrated 0ptfcs and 0pti
cal Fiber Counicatton, P
o5t-deadline Papers 20 PD
A-13).

一方、近年光増幅器の研究が行われ、光増幅器による直
接増幅中継系の検討も盛んとなってきている(S、Ya
iamoto et al、、 −516km 2.5
 Gb/s 0ptlcal Fiber Trans
mission EXI)erillent usin
g t。
On the other hand, research on optical amplifiers has been conducted in recent years, and studies on direct amplification repeating systems using optical amplifiers are also gaining momentum (S, Ya
iamoto et al, -516km 2.5
Gb/s 0ptlcal Fiber Trans
mission EXI)erillent usin
gt.

Sem1conductor La5er Aa+pl
iriers and MeasureIlant o
f JLtter Accumulatlon−17t
h ConrcrcnceOn Integrated
 0ptics and 0ptical Fiber
 Comff1unication、 Po5t−de
adlfne Papers 20 PDA−9)。
Sem1conductor La5er Aa+pl
iriers and MeasureIlant o
f JLtter Accumulatlon-17t
h ConcrincceOn Integrated
0ptics and 0ptical fiber
Comff1unication, Po5t-de
adlfne Papers 20 PDA-9).

このような直接増幅中継系では、損失を補償して伝送可
能距離を延長できるから、超長距離の伝送の可能性が期
待されている。
In such a direct amplification repeater system, the possible transmission distance can be extended by compensating for loss, so it is expected to have the potential for ultra-long distance transmission.

このように、信号光は、光ファイバにおいてパワー損失
を受けるとともに分散の影響で波形歪を生じる。このパ
ワー損失と分散の影響の2つて光通信の伝送可能距離は
制限される。数ギガビット以上の高速伝送では、信号光
に変調による大きなスペクトル拡がりが存在し、分散の
影響を大きく受けて光ファイバの損失制限を受ける前に
分散による制限を先に受ける。また、光増幅器を増幅中
継器として用いるような超長距離伝送では、光増幅器に
よって損失の制限を補償できるが、分散の影響によって
伝送距離が制限される。
In this way, the signal light suffers power loss in the optical fiber and also suffers waveform distortion due to the influence of dispersion. Both power loss and dispersion limit the transmission distance of optical communications. In high-speed transmission of several gigabit or more, the signal light has a large spectrum spread due to modulation, and is greatly influenced by dispersion, and is first limited by dispersion before being limited by optical fiber loss. Furthermore, in ultra-long distance transmission where an optical amplifier is used as an amplification repeater, the optical amplifier can compensate for loss limitations, but the transmission distance is limited by the effects of dispersion.

光ファイバの分散は、光ファイバに入力された光の周波
数が異なると伝搬に必要な時間が異なることに起因する
。このため、信号光に変調によるスペクトル拡がりが存
在すると、このスペクトル拡がりにより伝送後に波形が
歪む。例えば、L、Sμ−帯零分散ファイバで1.5μ
磨帯の光を伝送する場合、信号光内の短波長側成分(周
波数の高い信号成分)は伝搬速度が速く、長波長側成分
(周波数の低い信号成分)は伝搬速度が遅い。このため
、伝送後には周波数の高い信号がパルスの前方に集中し
、周波数の低い信号がパルスの後方に集中する。その結
果、伝送後のパルスには波形歪が生して、マーク、スペ
ースの符号判別が不可能となる。
Dispersion in an optical fiber is caused by the fact that the time required for propagation differs depending on the frequency of light input into the optical fiber. Therefore, if the signal light has spectrum broadening due to modulation, the waveform will be distorted after transmission due to this spectrum broadening. For example, L, Sμ-band zero dispersion fiber with 1.5μ
When transmitting high frequency light, the short wavelength components (signal components with high frequency) in the signal light have a high propagation speed, and the long wavelength components (signal components with low frequency) have a slow propagation speed. Therefore, after transmission, high-frequency signals are concentrated in front of the pulse, and low-frequency signals are concentrated in the rear of the pulse. As a result, waveform distortion occurs in the pulse after transmission, making it impossible to distinguish between marks and spaces.

このような分散による波形歪を補償する方法として、半
導体レーザの出力光に適切な周波数変調を施し、外部変
調器でその周波数変調光を強度変調して、送信信号の1
パルスの前方が低周波となり後方が高周波となるように
設定して、波形歪を低減し、伝送可能距離を延ばした報
告がある(N。
As a method of compensating for waveform distortion due to such dispersion, the output light of the semiconductor laser is subjected to appropriate frequency modulation, and the frequency modulated light is intensity-modulated using an external modulator, so that one part of the transmitted signal is
There is a report that the front part of the pulse has a low frequency and the rear part has a high frequency to reduce waveform distortion and extend the transmission distance (N.

Henm1 et al、、 −A Novel Di
spersion Compensation Tec
hnique for Multigigabit T
ransIIission with  Norsal
  0ptical  Fiber  at  1.5
um  Wevelength−0ptical Fi
ber Co5g+unication Confer
ence ’90Poost−deacfline P
apers PD−8) o この分散補償法はブリチ
ャーブ法と呼ばれているが、この方法により、10Gb
/sの伝送システムにおいて、伝送可能距離が201C
11であったものを、50kmに拡大できる。
Henm1 et al, -A Novel Di
spersion Compensation Tec
hnique for Multigigabit T
ransIIission with Norsal
0ptical fiber at 1.5
um Wevelength-0ptical Fi
ber Co5g+unication Conference
ence '90Poost-deacfline P
apers PD-8) o This dispersion compensation method is called the Blichave method, and with this method, 10Gb
/s transmission system, the possible transmission distance is 201C
What used to be 11 km can be expanded to 50 km.

(発明が解決しようとする課題) 上述のプリチャーブ法を用いた光伝送装置における伝送
可能距離は、理論的からも、通常の外部変調方式を用い
た伝送可能距離の2,5倍程度であり、長い伝送距離を
得る程に分散を十分に補償していなかった。
(Problems to be Solved by the Invention) The possible transmission distance in the optical transmission device using the above-mentioned Prichab method is theoretically about 2.5 times the transmission distance using a normal external modulation method. Dispersion was not compensated for sufficiently to obtain long transmission distances.

そこで本発明は、補償できる分散劣化量をさらに拡大す
ることができる光送信装置を提供することを目的とする
Therefore, an object of the present invention is to provide an optical transmitter that can further expand the amount of dispersion degradation that can be compensated for.

(課題を解決するための手段) 前述の課題を解決するために本発明か提供する第1の光
送信装置は、第1および第2の信号源と、半導体レーザ
光源と、前記第1および第2の信号源に同期して前記半
導体レーザ光源の注入電流を変調する変調信号を出力す
る変調信号源と、前記半導体レーザ光源の出力光を第1
および第2の分岐光に分岐する光分岐器と、該光分岐器
で分岐された第1および第2の分岐光間に時間差を与え
る光遅延手段と、該光遅延手段で時間差が与えられた前
記第1および第2の分岐先を前記第1および第2の信号
源から出力される第1および第2の信号でそれぞれ強度
変調する第1および第2の外部変調器と、該第1および
第2の外部変調器の出力光を偏光多重して伝送路に送出
する偏光多重器とを有することを特徴とする。
(Means for Solving the Problems) In order to solve the above-mentioned problems, a first optical transmitting device provided by the present invention includes first and second signal sources, a semiconductor laser light source, and the first and second signal sources. a modulation signal source that outputs a modulation signal that modulates the injection current of the semiconductor laser light source in synchronization with the second signal source;
and an optical splitter that branches into a second branched light, an optical delay means for providing a time difference between the first and second branched lights branched by the optical splitter, and a time difference provided by the optical delay means. first and second external modulators that intensity-modulate the first and second branch destinations with first and second signals output from the first and second signal sources, respectively; It is characterized by comprising a polarization multiplexer that polarization-multiplexes the output light of the second external modulator and sends the polarization multiplexed light to the transmission path.

さらに本発明か提供する第2の光送信装置は、第1およ
び第2の信号源と、第1および第2の半導体レーザ光源
と、前記第1および第2の信号源に同期して前記第1お
よび第2の半導体レーザ光源の注入電流を変調する変調
信号をそれぞれ出力する第1および第2の変調信号源と
、前記第1および第2の半導体レーザ光源のそれぞれの
出力光を前記第1および第2の信号源から出力される第
1および第2の信号でそれぞれ強度変調する第1および
第2の外部変調器と、該第1および第2の外部変調器の
出力光に時間差を与えて偏光多重して伝送路に送出する
偏光多重器とを有することを特徴とする。
Further, a second optical transmitting device provided by the present invention includes first and second signal sources, first and second semiconductor laser light sources, and the second optical transmitter in synchronization with the first and second signal sources. first and second modulation signal sources that respectively output modulation signals that modulate the injection currents of the first and second semiconductor laser light sources; and first and second external modulators that modulate the intensity with the first and second signals output from the second signal source, respectively, and provide a time difference between the output lights of the first and second external modulators. and a polarization multiplexer for polarization multiplexing and transmitting the polarized light to a transmission path.

(作用) ブリチャーブ法においては、1つのパルスのパルス幅を
1タイムスロツト以上に拡げ、そのパルス内で適切に光
周波数を変化させると、理論的には伝送距離を一層拡大
できる。しかしながら、1パルスのパルス幅を1タイム
スロツト以上にすると、隣のパルスと重なる部分の光周
波数の変化を適切に設定することはできない。本発明は
、送fJ信号光を2つの系列に分け、各系列の1タイム
スロツトを、分ける前の元の送信信号の1タイムスロツ
トより長(した状態で最適な光周波数変化状態に設定し
、その後に各系列を加え合わせるものである。例えば、
1つの送信信号を2系列に分けると、各系列の1タイム
スロツトは2倍の長さまでにできるが、その2倍のタイ
ムスロットの中でパルス幅を拡げ、光周波数変化を加え
た後再び加え合わせれば良い。さらに、送信部において
偏光多重を行なうから、理論的には損失のない光多重が
可能であり、大出力の光送信出力か実現できる。
(Function) In the Blichave method, if the pulse width of one pulse is expanded to one time slot or more and the optical frequency is appropriately changed within that pulse, the transmission distance can theoretically be further extended. However, if the pulse width of one pulse is made greater than one time slot, it is not possible to appropriately set the change in the optical frequency in the portion where the pulse overlaps with the adjacent pulse. The present invention divides the transmitted fJ signal light into two streams, sets one time slot of each series to an optimal optical frequency change state with a length longer than the one time slot of the original transmitted signal before division, After that, each series is added together.For example,
If one transmission signal is divided into two sequences, one time slot of each sequence can be up to twice as long, but within that twice the time slot, the pulse width is widened, the optical frequency is changed, and then the pulse is added again. Just match it. Furthermore, since polarization multiplexing is performed in the transmitter, lossless optical multiplexing is theoretically possible, and a high optical transmission output can be achieved.

(実施例) 次に、実施例を挙げて本発明を説明する。(Example) Next, the present invention will be explained by giving examples.

第1図は本発明の第1の光送信装置の一実施例の構成図
である。第1図において、まず光送信器31の構成を説
明する。1.5μm帯で単一縦モード発振する半導体レ
ーザ光源1には、5 GHzのクロック周波数で正弦波
を発生するクロック発生器8から出力されたクロック信
号201が可変減衰器9および可変遅延器11を通過し
て生じた周波数変調信号202と直流バイアス電流が加
算器6で足し合わされて印加される。このバイアス電流
は直流バイアス源4から供給される。半導体レーザ光源
1からは周波数変調信号202で周波数変調された出力
光101が出力される。この周波数変調された出力光1
01は、光カブラ19で2つの分岐光103,104に
分けられる。信号源13.14は、クロック発生器8と
同期してそれぞれ5 Gb/sのRZ信号204,20
5を発生する。
FIG. 1 is a block diagram of an embodiment of a first optical transmitter according to the present invention. In FIG. 1, the configuration of the optical transmitter 31 will be explained first. A semiconductor laser light source 1 that oscillates in a single longitudinal mode in the 1.5 μm band receives a clock signal 201 output from a clock generator 8 that generates a sine wave at a clock frequency of 5 GHz through a variable attenuator 9 and a variable delay device 11. The frequency modulation signal 202 and the DC bias current generated by passing through the adder 6 are added together and applied. This bias current is supplied from a DC bias source 4. The semiconductor laser light source 1 outputs an output light 101 that is frequency-modulated using a frequency modulation signal 202 . This frequency modulated output light 1
01 is split into two branched lights 103 and 104 by an optical coupler 19. The signal sources 13, 14 provide 5 Gb/s RZ signals 204, 20, respectively, in synchronization with the clock generator 8.
Generates 5.

2つに分岐された一方の分岐光103は、パルス幅可変
回路15がRZ信号204を入力して生成した強度変調
信号206によりLiNb0.の外部変調器17で強度
変調される。また、他方の分岐光104は、光遅延器2
0で分岐光103に対して時間遅延され、遅延光105
となる。この遅延光105は、パルス幅可変回路16が
RZ信号205を人力して生成した強度変調信号207
によりL i N b OMの外部変調器18で強度変
調される。その結果、強度変調信号光106.107が
得られる。この強度変調信号光106と強度変調信号光
107とは、偏光多重器21を用いて偏光多重され、偏
光多重送信信号光108が得られる。偏光多重送信信号
光108は、1.3μm帯に零分散波長を有する光ファ
イバ3を伝送した後、受信信号光109となって光受信
器32て検出される。光受信器32では、光電変換素子
としてアバランシェフォトダイオード22を用いており
、受信信号光109を電気信号に変換した後に電気増幅
器23で増幅して情報信号を得ている。
One of the two branched lights 103 is converted into LiNb0. The intensity is modulated by an external modulator 17. Further, the other branched light 104 is connected to the optical delay device 2
0, the branched light 103 is time-delayed, and the delayed light 105
becomes. This delayed light 105 is an intensity modulated signal 207 generated by the pulse width variable circuit 16 manually from the RZ signal 205.
The intensity is modulated by the external modulator 18 of L i N b OM. As a result, intensity modulated signal lights 106 and 107 are obtained. The intensity-modulated signal light 106 and the intensity-modulated signal light 107 are polarization-multiplexed using a polarization multiplexer 21, and a polarization-multiplexed transmission signal light 108 is obtained. After the polarization multiplexed transmission signal light 108 is transmitted through the optical fiber 3 having a zero dispersion wavelength in the 1.3 μm band, it becomes a received signal light 109 and is detected by the optical receiver 32 . The optical receiver 32 uses an avalanche photodiode 22 as a photoelectric conversion element, converts the received signal light 109 into an electrical signal, and then amplifies it with an electrical amplifier 23 to obtain an information signal.

次に、この光送信31の主要な部分の動作について説明
する。第2図にクロック信号と信号光の位相関係をタイ
ミングチャートで示す。強度変調信号206,207は
、それらの位相差が1/2タイムスロツトとなり、パル
スのパルス幅が元のパルス幅の2倍になる様にそれぞれ
パルス幅可変回路15.16によって制御される。外部
変調器17.18の出力光である強度変調信号光106
゜107において、マーク信号の立ち上かり部で光周波
数は低く、立ち下がり部で光周波数は高(なるように、
可変遅延器11を用いて半導体レーザ光源1への周波数
変調信号202と強度変調信号206.207との位相
差を調整した。また、偏光多重により損失の無い光多重
か可能であるから、+2dB■の光送信パワーか実現さ
れる。伝送実験において、従来のブリチャーブ法を用い
た場合、10 Gb/sのとき伝送可能距離は約50k
mであったのに対し、本実施例で伝送した場合、110
0k伝送後にも波形歪の小さい受信波形が得られ、符号
誤りの生じない良好な長距離の伝送が実現できる。
Next, the operation of the main parts of this optical transmission 31 will be explained. FIG. 2 shows a timing chart of the phase relationship between the clock signal and the signal light. The intensity modulated signals 206 and 207 are each controlled by variable pulse width circuits 15 and 16 so that the phase difference between them becomes 1/2 time slot and the pulse width of the pulse becomes twice the original pulse width. Intensity modulated signal light 106 which is the output light of external modulators 17 and 18
At ゜107, the optical frequency is low at the rising edge of the mark signal and high at the falling edge (so that
The variable delay device 11 was used to adjust the phase difference between the frequency modulation signal 202 and the intensity modulation signals 206 and 207 to the semiconductor laser light source 1. Further, since lossless optical multiplexing is possible by polarization multiplexing, an optical transmission power of +2 dB■ can be achieved. In transmission experiments, when using the conventional Blichave method, the possible transmission distance is approximately 50 km at 10 Gb/s.
m, but in the case of transmission in this embodiment, it is 110
Even after 0k transmission, a received waveform with small waveform distortion can be obtained, and good long-distance transmission without code errors can be realized.

本発明の第1の光送信装置には、この他にも様々な変形
例がある。光源としては、1゜5μ層帯の光源に限るこ
となく1.3μ−帯でもその他の波長でも良い。光源の
出力光を分岐することによる光強度の損失を補償するた
めに、光増幅器を用いても良い。外部変調器としては、
L i N b O3の変調器の代わりに半導体の外部
変調器を用いてもよい。光遅延を行なう場所として、分
岐器と外部変調器の間の代わりに外部変調器と合波器の
間でも、また両方でも良い。また、ビットレートは5 
Gb/sに限ることなく、2 Gb/sまたは10Gb
/sとすることもできる。半導体レーザ光源の出力光を
周波数変調する波形としては、正弦波に限ることなく砺
波でも三角波でもよい。伝送路は途中に光増幅器を増幅
中継器として含む伝送路でも良い。伝送路の光ファイバ
の零分散波長も1.3μ■帯に限ることはない。また受
信器の構成も直接検波に限ることなく、ヘテロダイン検
波を用いることもできる。
There are various other variations of the first optical transmitter of the present invention. The light source is not limited to a light source in the 1°5μ band, but may also be in the 1.3μ band or other wavelengths. An optical amplifier may be used to compensate for the loss of optical intensity due to branching of the output light of the light source. As an external modulator,
A semiconductor external modulator may be used instead of the L i N b O3 modulator. The optical delay may be performed between the external modulator and the multiplexer instead of between the splitter and the external modulator, or between both. Also, the bit rate is 5
Not limited to Gb/s, 2 Gb/s or 10 Gb
/s can also be used. The waveform for frequency modulating the output light of the semiconductor laser light source is not limited to a sine wave, but may be a twirl wave or a triangular wave. The transmission line may include an optical amplifier as an amplification repeater in the middle. The zero-dispersion wavelength of the optical fiber of the transmission line is not limited to the 1.3 μι band either. Further, the configuration of the receiver is not limited to direct detection, and heterodyne detection can also be used.

第3図は本発明の第2の光送信装置の一実施例の構成図
である。第3図において、光送信器31の構成を説明す
る。1.5μ■帯で単一縦モード発振する2個の半導体
レーザ光源1,2には、それぞれ5 GHzのクロック
周波数で正弦波を発生するクロック発生器8から出力さ
れたクロック信号201が可変減衰器9と可変遅延器1
1および可変減衰器10と可変遅延器12をそれぞれ通
過して生じた周波数変調信号202,203と直流バイ
アス電流とがそれぞれ加算器6,7で足し合わされて印
加される。このバイアス電流はそれぞれ直流バイアス源
4,5から供給される。半導体レーザ光源1.2からは
、周波数変調信号202,203で周波数変調された出
力光101,102がそれぞれ出力される。信号源13
.14はクロック発生器8と同期してそれぞれ5 Gb
/sのRZ信号204.205を発生する。周波数変調
された出力光101.102は、パルス幅可変回路15
゜16がRZ信号204,205を入力して生成した強
度変調信号206,207によりLiNbO3の外部変
調器17.18でそれぞれ強度変調される。その結果、
強度変調信号光106,107が得られる。この強度変
調信号光106,107は、偏光多重器21を用いて時
分割偏光多重され、偏光多重送信信号光108が得られ
る。偏光多重送信信号光108は、1.3μ■帯に零分
散波長を有する光ファイバ3を伝送した後、受信信号光
109となって光受信器32で検出される。光受信器3
2では、光電変換素子としてアバランシェフォトダイオ
ード22を用いてえおり、受信信号光1(’)9を電気
信号に変換した後に電気増幅器23で増幅して情報信号
を得ている。
FIG. 3 is a configuration diagram of an embodiment of the second optical transmitter of the present invention. In FIG. 3, the configuration of the optical transmitter 31 will be explained. The two semiconductor laser light sources 1 and 2 that oscillate in a single longitudinal mode in the 1.5 μι band receive a clock signal 201 outputted from a clock generator 8 that generates a sine wave at a clock frequency of 5 GHz through variable attenuation. unit 9 and variable delay unit 1
1, the frequency modulated signals 202 and 203 generated by passing through the variable attenuator 10 and the variable delay device 12, respectively, and the DC bias current are added by adders 6 and 7 and applied. This bias current is supplied from DC bias sources 4 and 5, respectively. The semiconductor laser light source 1.2 outputs output lights 101 and 102 that are frequency modulated using frequency modulation signals 202 and 203, respectively. Signal source 13
.. 14 are each 5 Gb in synchronization with the clock generator 8.
/s RZ signals 204 and 205 are generated. The frequency-modulated output light 101, 102 is transmitted to a variable pulse width circuit 15.
16 are intensity-modulated by LiNbO3 external modulators 17 and 18 using intensity modulation signals 206 and 207 generated by inputting RZ signals 204 and 205, respectively. the result,
Intensity modulated signal lights 106 and 107 are obtained. The intensity modulated signal lights 106 and 107 are time-division polarization multiplexed using a polarization multiplexer 21 to obtain a polarization multiplexed transmission signal light 108. After the polarization multiplexed transmission signal light 108 is transmitted through the optical fiber 3 having a zero dispersion wavelength in the 1.3 μι band, it becomes a received signal light 109 and is detected by the optical receiver 32 . Optical receiver 3
In No. 2, an avalanche photodiode 22 is used as a photoelectric conversion element, and the received signal light 1(')9 is converted into an electrical signal and then amplified by an electrical amplifier 23 to obtain an information signal.

次に、この光送信装置31の主要な部分の動作について
説明する。第4図にクロック信号と信号光の位相関係を
タイミングチャートで示す。強度変調信号206,20
7は、それらの位相差か1/2タイムスロツトとなり、
パルスのパルス幅か元のパルス幅の2倍になる様にそれ
ぞれパルス幅可変回路15.16によって制御される。
Next, the operation of the main parts of this optical transmitter 31 will be explained. FIG. 4 shows a timing chart of the phase relationship between the clock signal and the signal light. Intensity modulation signals 206, 20
7 is their phase difference or 1/2 time slot,
Each pulse width is controlled by variable pulse width circuits 15 and 16 so that the pulse width of the pulse is twice the original pulse width.

外部変調器17.18の出力光である強度変調信号光1
06.107において、マーク信号の立ち上かり部で光
周波数は低く、立ち下がり部で光周波数は窩くなるよう
に、可変遅延器11.12を用いて半導体レーザ光源1
,2への周波数変調信号202.203と強度変調信号
206.207との位相差をそれぞれ調整した。また、
偏光多重により損失の無い光多重が可能であるから、+
2dBmの光送信パワーが実現される。伝送実験におい
て、従来のブリチャーブ法を用いた場合、10Gb/s
のとき伝送可能距離は約50に+oであったのに対し、
本実施例で伝送した場合、100)oI伝送後にも波形
歪の小さい受信波形が得られ、符号誤りの生じない良好
な長距離の伝送が実現できる。
Intensity modulated signal light 1 which is the output light of external modulators 17 and 18
At 06.107, the semiconductor laser light source 1 is controlled using the variable delay devices 11 and 12 so that the optical frequency is low at the rising edge of the mark signal, and the optical frequency is low at the falling edge.
, 2, the phase differences between the frequency modulated signals 202, 203 and the intensity modulated signals 206, 207 were adjusted, respectively. Also,
Since optical multiplexing without loss is possible by polarization multiplexing, +
An optical transmission power of 2 dBm is achieved. In transmission experiments, when using the conventional Blichave method, 10Gb/s
The transmission distance was approximately 50+o,
In the case of transmission in this embodiment, a received waveform with small waveform distortion can be obtained even after 100) oI transmission, and good long-distance transmission without code errors can be realized.

本発明の第2の光送信装置には、この他にも様々な変形
例がある。光源としては、1.5μ−帯の光源に限るこ
となく1.3μ■帯でもその他の波長でも良い。外部変
調器としては、L i N b O!の変調器の代わり
に半導体の外部変調器を用いてもよい。また、ビットレ
ートは5 Gb/sに限ることなく、2 Gb/sまた
は10Gb/sとすることもできる。
There are various other variations of the second optical transmitter of the present invention. The light source is not limited to a 1.5 .mu.-band light source, but may also be a 1.3 .mu.-band or other wavelength light source. As an external modulator, L i N b O! A semiconductor external modulator may be used instead of the modulator. Further, the bit rate is not limited to 5 Gb/s, but may be 2 Gb/s or 10 Gb/s.

半導体レーザ光源の出力光を周波数変調する波形として
は、正弦波に限ることなく側波でも三角波でもよい。伝
送路は途中に光増幅器を増幅中継器として含む伝送路で
も良い。伝送路の先ファイバの零分散波長も1.3μl
帯に限ることはない。また受信器の構成も直接検波に限
ることなく、ヘテロダイン検波を用いることもできる。
The waveform for frequency modulating the output light of the semiconductor laser light source is not limited to a sine wave, but may be a side wave or a triangular wave. The transmission line may include an optical amplifier as an amplification repeater in the middle. The zero dispersion wavelength of the fiber at the end of the transmission line is also 1.3 μl.
It is not limited to the obi. Further, the configuration of the receiver is not limited to direct detection, and heterodyne detection can also be used.

(発明の効果) 以上に説明した様に、本発明によれば、伝送路の分散の
影響の大きい高速・長距離伝送においても、分散の影響
を低減あるいは補償した伝送を可能とする光送信装置を
得ることができる。さらに、偏光多重することにより送
信部での損失を低減できる。
(Effects of the Invention) As explained above, according to the present invention, an optical transmitter can perform transmission that reduces or compensates for the influence of dispersion even in high-speed and long-distance transmission where the influence of dispersion on the transmission path is large. can be obtained. Furthermore, by polarization multiplexing, loss at the transmitter can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の光送信装置の一実施例の構成図
、第2図は第1図の実施例の動作時の各部の状態を示し
たタイミングチャート図、第3図は本発明の第2の光送
信装置の一実施例の構成図、第4図は第3図の実施例の
動作時の各部の状態を示したタイミングチャート図であ
る。 1.2・・・半導体レーザ光源、3・・・光ファイバ4
.5・・・直流バイアス源、6,7・・・加算器、8・
・・クロック発生器、9,10・・・可変減衰器、11
゜12・・・可変遅延器、13.14・・・信号源、1
5゜16・・・パルス幅可変回路、17.18・・・外
部変調器、19・・・光カブラ、20・・・光遅延器、
21・・・偏光多重器、22・・・アバランシェ・フォ
ト・ダイオード、23・・・電気増幅器、31・・・光
送信器、32・・・先受信器、101,102・・・出
力光、103゜104・・・分岐光、105・・・遅延
光、106,107・・・強度変調信号光、108・・
・偏光多重送信信号光、109・・・受信信号光、20
1・・・クロック信号、202.203・・・周波数変
調信号、204,205・・・RZ倍信号206,20
7・・・強度変調信号。 代理人 弁理士 本 庄 伸 介 101、出力光 103 分岐光 105:遅延光 106.107  強度変講信号光 108 儒光多重送儒信号光 109 受信信号光 201 クロック1号 202、周a数変m(型骨 2α4,205:償号源の出力信号 206.2αL強度変講信号 第2図 101、102 :出力光 106,107:強度変調信号光 108 偏光多重送信信号光 109゛受信信号光 202.203 204.205 206.207 クロノク信号 周波数変調信号 信号源の出力信号 強度変調信号
Fig. 1 is a configuration diagram of an embodiment of the first optical transmitter of the present invention, Fig. 2 is a timing chart showing the state of each part during operation of the embodiment of Fig. 1, and Fig. 3 is a diagram of the present invention. FIG. 4 is a block diagram of an embodiment of the second optical transmitter of the invention, and FIG. 4 is a timing chart showing the state of each part during operation of the embodiment of FIG. 1.2... Semiconductor laser light source, 3... Optical fiber 4
.. 5... DC bias source, 6, 7... Adder, 8.
... Clock generator, 9, 10 ... Variable attenuator, 11
゜12...Variable delay device, 13.14...Signal source, 1
5゜16... Pulse width variable circuit, 17.18... External modulator, 19... Optical coupler, 20... Optical delay device,
21... Polarization multiplexer, 22... Avalanche photo diode, 23... Electrical amplifier, 31... Optical transmitter, 32... First receiver, 101, 102... Output light, 103゜104... Branched light, 105... Delayed light, 106, 107... Intensity modulated signal light, 108...
・Polarization multiplexed transmission signal light, 109... Reception signal light, 20
1... Clock signal, 202.203... Frequency modulation signal, 204, 205... RZ double signal 206, 20
7...Intensity modulation signal. Agent Patent Attorney Shinsuke Honjo 101, Output light 103 Branched light 105: Delayed light 106, 107 Intensity variable signal light 108 Confucian light multiplexing Confucian signal light 109 Received signal light 201 Clock 1 202, frequency variable m 101, 102: Output light 106, 107: Intensity modulated signal light 108 Polarization multiplexed transmission signal light 109゛Reception signal light 202. 203 204.205 206.207 Chronok signal frequency modulation signal output signal strength modulation signal of signal source

Claims (2)

【特許請求の範囲】[Claims] (1)第1および第2の信号源と、半導体レーザ光源と
、前記第1および第2の信号源に同期して前記半導体レ
ーザ光源の注入電流を変調する変調信号を出力する変調
信号源と、前記半導体レーザ光源の出力光を第1および
第2の分岐光に分岐する光分岐器と、該光分岐器で分岐
された第1および第2の分岐光間に時間差を与える光遅
延手段と、該光遅延手段で時間差が与えられた前記第1
および第2の分岐光を前記第1および第2の信号源から
出力される第1および第2の信号でそれぞれ強度変調す
る第1および第2の外部変調器と、該第1および第2の
外部変調器の出力光を偏光多重して伝送路に送出する偏
光多重器とを有することを特徴とする光送信装置。
(1) first and second signal sources, a semiconductor laser light source, and a modulation signal source that outputs a modulation signal that modulates the injection current of the semiconductor laser light source in synchronization with the first and second signal sources; , an optical splitter that branches the output light of the semiconductor laser light source into first and second branched lights, and an optical delay means that provides a time difference between the first and second branched lights branched by the optical splitter. , the first signal is given a time difference by the optical delay means.
and first and second external modulators that intensity-modulate the second branched light with first and second signals output from the first and second signal sources, respectively; An optical transmitter comprising: a polarization multiplexer that polarizes output light from an external modulator and sends the polarization multiplexed light to a transmission path.
(2)第1および第2の信号源と、第1および第2の半
導体レーザ光源と、前記第1および第2の信号源に同期
して前記第1および第2の半導体レーザ光源の注入電流
を変調する変調信号をそれぞれ出力する第1および第2
の変調信号源と、前記第1および第2の半導体レーザ光
源のそれぞれの出力光を前記第1および第2の信号源か
ら出力される第1および第2の信号でそれぞれ強度変調
する第1および第2の外部変調器と、該第1および第2
の外部変調器の出力光に時間差を与えて偏光多重して伝
送路に送出する偏光多重器とを有することを特徴とする
光送信装置。
(2) first and second signal sources, first and second semiconductor laser light sources, and injection currents of the first and second semiconductor laser light sources in synchronization with the first and second signal sources; a first and a second one each outputting a modulation signal modulating the
a modulated signal source, and first and second semiconductor laser light sources that intensity-modulate the respective output lights of the first and second semiconductor laser light sources with first and second signals output from the first and second signal sources, respectively. a second external modulator;
and a polarization multiplexer that imparts a time difference to the output light of the external modulator, polarization multiplexes the polarization multiplexed light, and sends the polarization multiplexed light to a transmission path.
JP2232218A 1989-11-30 1990-08-31 Optical transmitter Expired - Fee Related JP2705291B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2232218A JP2705291B2 (en) 1990-08-31 1990-08-31 Optical transmitter
EP90122834A EP0430230B1 (en) 1989-11-30 1990-11-29 Optical transmitting apparatus
DE69017848T DE69017848T2 (en) 1989-11-30 1990-11-29 Optical transmission device.
US07/620,111 US5184243A (en) 1989-11-30 1990-11-30 Optical transmitting apparatus for minimal dispersion along an optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2232218A JP2705291B2 (en) 1990-08-31 1990-08-31 Optical transmitter

Publications (2)

Publication Number Publication Date
JPH04117036A true JPH04117036A (en) 1992-04-17
JP2705291B2 JP2705291B2 (en) 1998-01-28

Family

ID=16935836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2232218A Expired - Fee Related JP2705291B2 (en) 1989-11-30 1990-08-31 Optical transmitter

Country Status (1)

Country Link
JP (1) JP2705291B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316909A (en) * 1995-05-16 1996-11-29 Toshiba Corp Optical transmission system and module and driving method for optical modulator
JP2000121855A (en) * 1998-10-21 2000-04-28 Nippon Telegr & Teleph Corp <Ntt> Orthogonally polarized wave output device
US6421155B1 (en) 1997-05-28 2002-07-16 Nec Corporation Optical data transmitting apparatus and method
JP2005237010A (en) * 2004-02-20 2005-09-02 Lucent Technol Inc Method and apparatus for optical transmission
JP2009204753A (en) * 2008-02-26 2009-09-10 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
WO2010026894A1 (en) * 2008-09-03 2010-03-11 日本電気株式会社 Optical signal transmission system, transmitter, receiver, and optical signal transmission method
JP2014239111A (en) * 2013-06-06 2014-12-18 株式会社島津製作所 Pulse laser device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489829A (en) * 1987-09-30 1989-04-05 Fujitsu Ltd Timing system for digital optical transmission
JPH02107034A (en) * 1988-10-17 1990-04-19 Hitachi Ltd Light time-division multiplexing system
JPH02167524A (en) * 1988-12-21 1990-06-27 Fujitsu Ltd Optical modulation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489829A (en) * 1987-09-30 1989-04-05 Fujitsu Ltd Timing system for digital optical transmission
JPH02107034A (en) * 1988-10-17 1990-04-19 Hitachi Ltd Light time-division multiplexing system
JPH02167524A (en) * 1988-12-21 1990-06-27 Fujitsu Ltd Optical modulation device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316909A (en) * 1995-05-16 1996-11-29 Toshiba Corp Optical transmission system and module and driving method for optical modulator
US6421155B1 (en) 1997-05-28 2002-07-16 Nec Corporation Optical data transmitting apparatus and method
JP2000121855A (en) * 1998-10-21 2000-04-28 Nippon Telegr & Teleph Corp <Ntt> Orthogonally polarized wave output device
JP2005237010A (en) * 2004-02-20 2005-09-02 Lucent Technol Inc Method and apparatus for optical transmission
JP2010187407A (en) * 2004-02-20 2010-08-26 Alcatel-Lucent Usa Inc Method and apparatus for optical transmission
JP4546280B2 (en) * 2004-02-20 2010-09-15 アルカテル−ルーセント ユーエスエー インコーポレーテッド Optical transmission method and apparatus
US7844186B2 (en) 2004-02-20 2010-11-30 Alcatel-Lucent Usa Inc. Method and apparatus for optical transmission
JP2009204753A (en) * 2008-02-26 2009-09-10 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
WO2010026894A1 (en) * 2008-09-03 2010-03-11 日本電気株式会社 Optical signal transmission system, transmitter, receiver, and optical signal transmission method
JP5387576B2 (en) * 2008-09-03 2014-01-15 日本電気株式会社 Optical signal transmission system, transmitter, receiver, optical signal transmission method
US8768168B2 (en) 2008-09-03 2014-07-01 Nec Corporation Optical signal transmission systems, transmitters, receivers, and optical signal transmission method
JP2014239111A (en) * 2013-06-06 2014-12-18 株式会社島津製作所 Pulse laser device

Also Published As

Publication number Publication date
JP2705291B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
US5184243A (en) Optical transmitting apparatus for minimal dispersion along an optical fiber
US5625479A (en) Soliton optical communication system and optical transmitter and optical receiver therefor
US5940196A (en) Optical communications system with wavelength division multiplexing
CA2323744C (en) Method and apparatus for improving spectral efficiency in wavelength division multiplexed transmission systems
US5786918A (en) Optical communication system and optical transmitting device
JPH11331089A (en) Optical transmission system and optical transmitter and optical receiver used for the system
US4991975A (en) Division multiplexing and demultiplexing means lightwave communication system comprising optical time
JP2711773B2 (en) Optical waveform shaping device
US7796897B2 (en) WDM optical transmission system and WDM optical transmission method
CN108551367B (en) Transmission system and method based on mode division multiplexing
US5889607A (en) Optical modulator, optical short pulse generating device, optical waveform shaping device, and optical demultiplexer device
JPH11510974A (en) Dispersion compensation
US7239440B2 (en) Wavelength conversion apparatus
EP2882118B1 (en) Polarization multiplexing optical transmitter and method for controlling operation
JPH04117036A (en) Optical transmitter
JP3270823B2 (en) Optical dispersion division multiplex communication equipment
JP3099352B2 (en) Optical transmitter
US7016614B1 (en) Optical wavelength division multiplexing transmission suppressing four-wave mixing and SPM-GVD effects
JP2705293B2 (en) Optical transmitter
JPH10117172A (en) Optical transmission system
JP3322653B2 (en) Optical receiving device used for dark soliton optical communication system
US6542271B1 (en) Apparatus and method for reducing optical impairments in optical communications systems and networks
US7016611B2 (en) Optical communications apparatus and optical communications system
JP3669492B2 (en) Optical transmission device and optical transmission method
JPH0795721B2 (en) Optical communication device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071009

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees