JP2705293B2 - Optical transmitter - Google Patents

Optical transmitter

Info

Publication number
JP2705293B2
JP2705293B2 JP2234993A JP23499390A JP2705293B2 JP 2705293 B2 JP2705293 B2 JP 2705293B2 JP 2234993 A JP2234993 A JP 2234993A JP 23499390 A JP23499390 A JP 23499390A JP 2705293 B2 JP2705293 B2 JP 2705293B2
Authority
JP
Japan
Prior art keywords
optical
output
intensity
transmission
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2234993A
Other languages
Japanese (ja)
Other versions
JPH04115731A (en
Inventor
朝樹 齋藤
直也 逸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2234993A priority Critical patent/JP2705293B2/en
Priority to EP90122834A priority patent/EP0430230B1/en
Priority to DE69017848T priority patent/DE69017848T2/en
Priority to US07/620,111 priority patent/US5184243A/en
Publication of JPH04115731A publication Critical patent/JPH04115731A/en
Application granted granted Critical
Publication of JP2705293B2 publication Critical patent/JP2705293B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光通信等に用いられる光送信装置に関す
る。
Description: TECHNICAL FIELD The present invention relates to an optical transmission device used for optical communication and the like.

(従来の技術) 光通信においては、半導体レーザへの注入電流を変化
させることによって光の強度変調信号を得、該強度変調
信号を伝送路である光ファイバを介して伝送し、PINダ
イオード等の光電変換素子を用いた光受信器でその強度
変調信号を受信する強度変調−直接検波通信装置が主に
用いられている。この通信装置では光ファイバの損失が
最小となる波長帯である1.5μm帯伝送において、ギガ
ビット以上の伝送速度で通信を行うと、光ファイバの分
散の影響を受け、伝送後にきな品質劣化を生じることが
知られている(M.Shikada et al.,“Long−distance Gi
gabit−Range Optical Fiber Transmission Experiment
s Employing DFB−LD's and In GaAs−APD's"IEEE,Jour
nal of Lightwave Technology,Vol.LT−5,No.10,pp.148
8−1497)。
(Prior Art) In optical communication, an intensity modulation signal of light is obtained by changing an injection current to a semiconductor laser, and the intensity modulation signal is transmitted through an optical fiber which is a transmission line, and is used for a PIN diode or the like. An intensity modulation-direct detection communication device that receives the intensity modulation signal with an optical receiver using a photoelectric conversion element is mainly used. In this communication device, when communication is performed at a transmission speed of gigabit or more in 1.5 μm band transmission, which is the wavelength band where the loss of the optical fiber is minimized, the quality of the transmission deteriorates after transmission due to the effect of dispersion of the optical fiber. (M. Shikada et al., “Long-distance Gi
gabit-Range Optical Fiber Transmission Experiment
s Employing DFB-LD's and In GaAs-APD's "IEEE, Jour
nal of Lightwave Technology, Vol. LT-5, No. 10, pp. 148
8-1497).

また、光の周波数、位相、振幅に情報をのせ、受信側
で局発光とのビートを受信して情報を得る光ヘテロダイ
ン通信装置では、半導体レーザを直接変調した際に生じ
るチャーピングによるスペクトル拡がりの影響がないか
ら、強度変調−直接検波通信装置に比較して光ファイバ
の分散の影響は小さい。しかし、超高速・長距離伝送に
おいては劣化が起こることも報告されている(N.Takach
io et al.,“Chromatic Dispersion Equalization in a
n 8 Gb/s 202 km CPFSK Transmission Experiment"17 t
h Conference on Integrated Optics and Optical Fibe
r Communication,Post−deadline Papers 20 PDA−1
3)。
In addition, in an optical heterodyne communication device that obtains information by receiving information on the frequency, phase, and amplitude of light and receiving a beat with local light on the receiving side, the spectrum spread due to chirping that occurs when the semiconductor laser is directly modulated is reduced. Since there is no influence, the influence of the dispersion of the optical fiber is smaller than that of the intensity modulation-direct detection communication device. However, it has been reported that degradation occurs in ultra-high-speed and long-distance transmissions (N. Takach
io et al., “Chromatic Dispersion Equalization in a
n 8 Gb / s 202 km CPFSK Transmission Experiment "17 t
h Conference on Integrated Optics and Optical Fibe
r Communication, Post-deadline Papers 20 PDA-1
3).

一方、近年光増幅器の研究が行われ、光増幅器による
直接増幅中継系の検討も盛んになってきている(S.Yama
moto et al.,“516km 2.4 Gb/s Optical Fiber Transmi
ssion Experiment using 10 Semiconductor Laser Ampl
ifiers and Measurement of Jitter Accumulation"17 t
h Conferece on Integrated Optics and Optical Fiber
Communication,post−deadline Papers 20 PDA−
9)。このような直接増幅中継系では、損失を補償して
伝送可能距離を延長することができるから、超長距離の
伝送の可能性が期待されている。
On the other hand, in recent years, research on optical amplifiers has been carried out, and studies on direct amplification relay systems using optical amplifiers have also been actively conducted (S. Yamada).
moto et al., “516km 2.4 Gb / s Optical Fiber Transmi
ssion Experiment using 10 Semiconductor Laser Ampl
ifiers and Measurement of Jitter Accumulation "17 t
h Conferece on Integrated Optics and Optical Fiber
Communication, post−deadline Papers 20 PDA−
9). In such a direct amplification relay system, the possibility of extending the transmission distance by compensating for the loss can be expected, so that the possibility of ultra-long distance transmission is expected.

このように、信号光は、光ファイバにおいて、パワー
損失を受けるとともに分散の影響で波形歪を生じる。こ
のパワー損失と分散の影響とで光通信の伝送可能距離は
制限される。数ギガビット以上の高速伝送では、信号光
に変調による大きなスペクトル拡がりが存在し、分散の
影響が大きくなり、光ファイバの損失制限を受ける前に
分散の制限を受ける。また、光増幅器を増幅中継器とし
て用いるような超長距離伝送では、光増幅器によって損
失の制限が補償されるから、分散の影響によって伝送距
離が制限される。
As described above, the signal light receives power loss in the optical fiber and generates waveform distortion due to the influence of dispersion. The transmittable distance of optical communication is limited by the influence of the power loss and the dispersion. In high-speed transmission of several gigabits or more, the signal light has a large spectrum spread due to modulation, and the effect of dispersion increases, and the dispersion is limited before the loss of the optical fiber is limited. In ultra-long distance transmission using an optical amplifier as an amplifying repeater, the optical amplifier compensates for the loss, so that the transmission distance is limited by the influence of dispersion.

光ファイバの分散は、光ファイバに入力された光の周
波数に応じて伝搬に必要な時間が異なることに起因す
る。よって、信号光に変調によるスペクトル拡がりが存
在すると、このスペクトル拡がりにより伝送後に波形が
歪む。例えば、1.3μm帯零分散ファイバで1.5μm帯の
光を伝送する場合、信号光内の短波長側成分(周波数の
高い信号成分)の伝搬速度は速く、長波長側成分(周波
数の低い信号成分)の伝搬速度は遅い。よって、伝送後
には周波数の高い信号がパルスの前方に集中し、周波数
の低い信号がパルスの後方に集中する。その結果、伝送
後のパルスには波形歪が生じて、マーク、スペースの符
号判別が不可能となる。
The dispersion of an optical fiber is caused by the fact that the time required for propagation varies depending on the frequency of light input to the optical fiber. Therefore, if spectrum spread due to modulation exists in the signal light, the waveform is distorted after transmission due to the spectrum spread. For example, when transmitting light in the 1.5 μm band through a 1.3 μm band zero-dispersion fiber, the propagation speed of the short wavelength side component (high frequency signal component) in the signal light is high, and the long wavelength side component (low frequency signal component) is transmitted. ) Is slow. Therefore, after transmission, high-frequency signals are concentrated in front of the pulse, and low-frequency signals are concentrated in the rear of the pulse. As a result, waveform distortion occurs in the transmitted pulse, making it impossible to determine the sign of the mark or space.

このような分散による波形歪を補償する方法として、
半導体レーザの出力光に適切な周波数変調を施し、外部
変調器でその周波数変調光を強度変調することによって
送信信号の1パルスの前方が低周波となり後方が高周波
となるように設定するものがあり、該方法による波形歪
の低減および伝送可能距離の延長が既に報告されている
(N.Henmi et al.,“A Novel Dispersion Compensation
Technique for Multigigabit Transmission with Norm
al Optical Fiber at 1.5um Wavelength"Optical Fiber
Communication Conference '90,Post−deadline Paper
s PD−8)。この分散補償法はプリチャープ法と呼ばれ
ているが、この方法により、10Gb/sの伝送システムにお
いて、伝送可能距離を20kmから50kmに拡大することがで
きる。
As a method of compensating for waveform distortion due to such dispersion,
In some cases, an appropriate frequency modulation is applied to the output light of the semiconductor laser, and the external modulator modulates the intensity of the frequency-modulated light so that one pulse of the transmission signal has a low frequency in front and a high frequency in the back. It has already been reported that the method reduces the waveform distortion and extends the transmittable distance (N. Henmi et al., “A Novel Dispersion Compensation”.
Technique for Multigigabit Transmission with Norm
al Optical Fiber at 1.5um Wavelength "Optical Fiber
Communication Conference '90, Post-deadline Paper
s PD-8). This dispersion compensation method is called a pre-chirp method. By this method, in a 10 Gb / s transmission system, the transmittable distance can be increased from 20 km to 50 km.

(発明が解決しようとする課題) 上述のプリチャープ法においては、1つのパルスのパ
ルス幅を1タイムスロット以上に拡げ、そのパルス内で
適切に光周波数を変化させると、理論的には伝送距離を
一層拡大することができる。しかしながら、1パルスの
パルス幅を1タイムスロット以上にすると、隣のパルス
と重なる部分の光周波数の変化を適切に設定することは
できない。
(Problems to be Solved by the Invention) In the prechirp method described above, if the pulse width of one pulse is expanded to one or more time slots and the optical frequency is appropriately changed within the pulse, the transmission distance theoretically increases. It can be further expanded. However, if the pulse width of one pulse is set to one time slot or more, it is not possible to appropriately set a change in the optical frequency in a portion overlapping with an adjacent pulse.

よって上述のプリチャープ法を用いた伝送可能距離
は、理論的に制限され、通常の外部変調方式を用いた伝
送可能距離の2.5倍程度である。
Therefore, the transmittable distance using the above-described prechirp method is theoretically limited, and is about 2.5 times the transmittable distance using a normal external modulation method.

本発明の目的は、補償できる分散劣化量をさらに拡大
することができる光送信装置を提供することにある。
An object of the present invention is to provide an optical transmission device that can further increase the amount of dispersion degradation that can be compensated.

(課題を解決するための手段) 本発明の光送信装置は、クロック信号を生成するクロ
ック信号源と、1個の半導体レーザ光源と、前記半導体
レーザ光源の注入電流にバイアスを与える直流バイアス
源と、前記直流バイアス源の出力と前記クロック信号を
加算しその出力を前記半導体レーザの注入電流に印加す
る加算器と、前記加算器に入力されるクロック信号の振
幅及び位相をそれぞれ調節する可変減衰器及び可変遅延
器と、前記クロック信号源の出力のクロック信号に同期
し互いに独立な送信信号をそれぞれ生成するn個(nは
3以上の正の整数)の送信信号源と、前記n個の送信信
号源の出力のパルス幅をそれぞれ設定するn個のパルス
幅変調器と、前記半導体レーザ光源の出力光をn個の経
路に分岐する光分岐器と、前記n個のパルス幅変調器の
出力信号を用いて前記n個の分岐出力光を強度変調した
強度変調光をそれぞれ生成するn個の外部変調器と、前
記n個の強度変調光間に時間差を与える光遅延手段と、
前記n個の外部変調器からそれぞれ出力されるn個の強
度変調光を合波し伝送路に送出する光合波器とを含み、
前記光遅延手段は、前記光分岐器と前記外部変調器との
間に設けられて前記n個の分岐出力光相互間に時間差を
与える手段か、又は前記外部変調器と前記光合波器との
間に設けられて前記n個の強度変調光間に時間差を与え
る手段かの少なくとも一方を備え、前記n個の強度変調
光の各パルス内の前半部の光周波数を低く後半部は高く
なるように前記可変遅延器を用いて前記加算器に入力さ
れるクロック信号の位相を調節し、また前記半導体レー
ザ光源の出力光の光周波数変位量を調節するために前記
可変減衰器を用いて前記加算器に入力されるクロック信
号の振幅を調節することを特徴とする。
(Means for Solving the Problems) An optical transmitter according to the present invention comprises a clock signal source for generating a clock signal, one semiconductor laser light source, and a DC bias source for applying a bias to an injection current of the semiconductor laser light source. An adder that adds the output of the DC bias source and the clock signal and applies the output to the injection current of the semiconductor laser; and a variable attenuator that adjusts the amplitude and phase of the clock signal input to the adder. A variable delay unit, n (n is a positive integer of 3 or more) transmission signal sources that generate transmission signals independent of each other in synchronization with a clock signal output from the clock signal source, and the n transmissions N pulse width modulators each for setting a pulse width of an output of a signal source, an optical splitter for splitting output light of the semiconductor laser light source into n paths, and the n pulses N external modulators for respectively generating intensity-modulated light obtained by intensity-modulating the n-piece branched output light using an output signal of the width modulator, and optical delay means for giving a time difference between the n-pieces of intensity-modulated light When,
An optical multiplexer for multiplexing n intensity-modulated lights output from the n external modulators and transmitting the multiplexed light to a transmission path,
The optical delay means is provided between the optical splitter and the external modulator to provide a time difference between the n split output lights, or the optical delay means and the optical multiplexer At least one of means for providing a time difference between the n intensity-modulated lights provided between the n intensity-modulated lights so that the optical frequency of the first half in each pulse of the n intensity-modulated lights is low and the second half is high. The variable delay device is used to adjust the phase of the clock signal input to the adder, and the variable attenuator is used to adjust the optical frequency displacement of the output light of the semiconductor laser light source. The amplitude of the clock signal input to the device is adjusted.

(作用) 本発明では、以下の特徴を有する。1タイムスロット
内で最適な光周波数変化状態に設定された送信信号光
を、複数(n個)の系に分け、各時系列の1タイムスロ
ットの範囲内のパルス幅で強度変調される。この時、例
えば伝送路が異常分散光ファイバならば、パルスの前半
部で光周波数が低くなり、後半部で光周波数が高くなる
ように設定される。その後、各時系列の信号光に適切な
遅延差を与え、加え合わされる。このn個の時系列信号
が加え合わされた信号光は、伝送路を伝播することによ
り、パルス幅圧縮が施され、伝送後には多重されたタイ
ムスロット(多重前の1タイムスロットの1/n)におい
て、十分なアイ開口が得られる。
(Operation) The present invention has the following features. The transmission signal light set to the optimum optical frequency change state within one time slot is divided into a plurality (n) of systems, and the intensity is modulated with a pulse width within a range of one time slot in each time series. At this time, for example, if the transmission line is an anomalous dispersion optical fiber, the optical frequency is set to be low in the first half of the pulse and to be high in the second half. Then, an appropriate delay difference is given to each time-series signal light, and they are added. The signal light to which the n number of time-series signals are added is subjected to pulse width compression by propagating through a transmission path, and is multiplexed time slot after transmission (1 / n of one time slot before multiplexing). , A sufficient eye opening can be obtained.

(実施例) 第1図は本発明の光送信装置の一実施例を示す構成図
である。本実施例では、互いに独立しかつクロック同期
した信号源が2個であり、送信信号光が2多重の場合を
示す。
(Embodiment) FIG. 1 is a configuration diagram showing an embodiment of the optical transmission apparatus of the present invention. In the present embodiment, there is shown a case where there are two signal sources independent of each other and synchronized with each other and the transmission signal light is two-multiplexed.

第1図においてまず光送信装置31の構成を説明する。
1.5μm帯で単一縦モード発振する半導体レーザ光源1
には、周波数変調信号202と直流バイアス電流とが加算
器4で足し合わせて印加される。周波数変調信号202
は、5GHzのクロック周波数で正弦波を発生するクロック
発生器5からのクロック信号201を可変減衰器6および
可変遅延器7で処理することによって得られる。これに
対し、直流バイアス電流は直流バイアス源3から供給さ
れる。半導体レーザ光源1は周波数変調信号202で周波
数変調された光101を出力する。このとき、出力光101
は、半導体レーザ光源1の注入電流の変調のため、強度
変調と周波数変調が同時に施される。本発明では周波数
変調効果を利用するため、所望の周波数変調を得るとき
の注入電流の変調度は小さく、その結果、強度変調度は
小さい。また強度変調分は、外部変調器12,13によって
施される強度変調と同期するため、問題とならない。出
力光101は光カプラ19で2つの分岐光102,103に分けられ
る。2つの信号源8,9はクロック発生器5と同期し5Gb/s
のRZ信号203,204にそれぞれ独立に発生する。RZ信号203
はパルス幅可変回路10を経て強度変調信号205としてLiN
bO3の外部変調器12に与えられる。RZ信号204は、RZ信号
203と同様に、パルス幅可変回路11を経て強度変調信号2
06としてLiNbO3の外部変調器13に与えられる。
First, the configuration of the optical transmission device 31 will be described with reference to FIG.
Semiconductor laser light source 1 that oscillates in single longitudinal mode in 1.5μm band
, The frequency modulation signal 202 and the DC bias current are added by the adder 4 and applied. Frequency modulated signal 202
Is obtained by processing the clock signal 201 from the clock generator 5 that generates a sine wave at a clock frequency of 5 GHz by the variable attenuator 6 and the variable delay unit 7. On the other hand, the DC bias current is supplied from the DC bias source 3. The semiconductor laser light source 1 outputs the light 101 frequency-modulated by the frequency modulation signal 202. At this time, the output light 101
In order to modulate the injection current of the semiconductor laser light source 1, intensity modulation and frequency modulation are performed simultaneously. In the present invention, since the frequency modulation effect is used, the modulation degree of the injection current when obtaining the desired frequency modulation is small, and as a result, the intensity modulation degree is small. Further, since the intensity modulation is synchronized with the intensity modulation performed by the external modulators 12, 13, there is no problem. The output light 101 is split by the optical coupler 19 into two split lights 102 and 103. The two signal sources 8 and 9 are synchronized with the clock generator 5 and 5 Gb / s
RZ signals 203 and 204 are generated independently of each other. RZ signal 203
Is LiN as the intensity modulated signal 205 through the pulse width variable circuit 10.
bO 3 is provided to an external modulator 12. RZ signal 204 is the RZ signal
Similarly to 203, the intensity modulated signal 2
06 is given to the external modulator 13 of LiNbO 3 .

一方の分岐光102は、強度変調信号205を用いて外部変
調器12で強度変調される。また、他方の分岐光103は、
光遅延回路21で分岐光102に対して一定の時間だけ遅延
され、遅延光104になる。この遅延光104は、強度変調信
号206を用いてLiNbO3の外部変調器13で強度変調され
る。その結果、送信信号光105,106が得られる。この送
信信号光105と送信信号光106とは光カプラ20で時間多重
され、合波送信信号光107が得られる。合波送信信号光1
07は、1.3μm帯に零分散波長を有する光ファイバ2で
伝送された後、受信信号光108となる。受信信号光108は
光受信器32で検出される。光受信器32では、光電変換素
子としてアバランシェフォトダイオード22を用い、受信
信号光108から変換された電気信号を電気増幅器23で増
幅して信号を得ている。
One branch light 102 is intensity-modulated by the external modulator 12 using the intensity modulation signal 205. The other split light 103 is
The optical delay circuit 21 delays the branched light 102 by a predetermined time to become a delayed light 104. The delay light 104 is intensity-modulated by the external modulator 13 of LiNbO 3 using the intensity modulation signal 206. As a result, transmission signal lights 105 and 106 are obtained. The transmission signal light 105 and the transmission signal light 106 are time-multiplexed by the optical coupler 20, and a combined transmission signal light 107 is obtained. Combined transmission signal light 1
Reference numeral 07 denotes a received signal light 108 after being transmitted through the optical fiber 2 having a zero-dispersion wavelength in the 1.3 μm band. The received signal light 108 is detected by the optical receiver 32. In the optical receiver 32, an avalanche photodiode 22 is used as a photoelectric conversion element, and an electric signal converted from the received signal light 108 is amplified by an electric amplifier 23 to obtain a signal.

次にこの光送信装置31の主要な部分の動作について更
に詳しく説明する。第2図にクロック信号と信号光との
位相関係をタイミングチャートで示す。
Next, the operation of the main part of the optical transmission device 31 will be described in more detail. FIG. 2 is a timing chart showing the phase relationship between the clock signal and the signal light.

強度変調信号205と強度変調信号206との位相去は1/2
タイムスロットとし、パルスのパルス幅はパルス幅可変
回路10,11を用いて、1タイムスロットの範囲で任意に
設定される。この場合、1タイムスロット内で可能な限
りパルス幅が拡げられている。可変遅延器7を用いて周
波数変調信号202と強度変調信号205,206との位相差を調
整することによって、各送信信号105,106はマーク信号
の立ち上がり部で光周波数が低くなりかつ立ち下がり部
で光周波数が高くなるように設定される。その結果、従
来のプリチャープ法を用いた場合、10Gb/sのとき伝送可
能距離は約50kmであったのに対し、本装置で伝送した場
合、100km伝送後にも波形歪の小さい受信波形が得ら
れ、符号誤りの生じない良好な伝送を実現することがで
きた。
The phase difference between the intensity modulation signal 205 and the intensity modulation signal 206 is 1/2.
The time width is set as a time slot, and the pulse width of the pulse is arbitrarily set within the range of one time slot using the pulse width variable circuits 10 and 11. In this case, the pulse width is expanded as much as possible within one time slot. By adjusting the phase difference between the frequency modulation signal 202 and the intensity modulation signals 205 and 206 by using the variable delay device 7, the optical frequency of each of the transmission signals 105 and 106 becomes lower at the rising portion of the mark signal and becomes lower at the falling portion of the mark signal. Set to be higher. As a result, when using the conventional prechirp method, the transmittable distance was about 50 km at 10 Gb / s, but when transmitted with this device, a received waveform with small waveform distortion was obtained even after 100 km transmission. As a result, good transmission without any code error could be realized.

本発明にはこの他にも様々な変形例がある。光源とし
ては1.5μm帯の光源に限ることなく1.3μm帯でもその
他の波長でも良い。時間多重の数も2個に限ることなく
3個でもまたそれ以上でも良い。光源の出力光を分岐す
ることによる光強度の損失を補償するため、光増幅器を
用いても良い。外部変調器としてはLiNbO3の変調器の代
わりに半導体の外部変調器を用いてもよい。光遅延を行
なう場所として、分岐器と外部変調器の間の代わりに外
部変調器と合波器の間でもまた両方でも良い。また、ビ
ットレートは5Gb/sに限ることなく2Gb/sでも10Gb/sとす
ることもできる。半導体レーザを周波数変調する波形と
しては、正弦波に限ることなく鋸波でも三角波でもよ
い。伝送路は途中に光増幅器を増幅中継器として含む伝
送路でも良い。伝送路の光ファイバの零分散波長も1.3
μm帯に限ることはない。また受信器の構成も直接検波
に限ることなく、ヘテロダイン検波を用いることもでき
る。
The present invention has various other modifications. The light source is not limited to the 1.5 μm band light source, but may be a 1.3 μm band or another wavelength. The number of time multiplexing is not limited to two but may be three or more. An optical amplifier may be used to compensate for the loss of light intensity caused by splitting the output light of the light source. As the external modulator, a semiconductor external modulator may be used instead of the LiNbO 3 modulator. The place where the optical delay is performed may be between the external modulator and the multiplexer or both, instead of between the splitter and the external modulator. Further, the bit rate is not limited to 5 Gb / s, but can be 10 Gb / s even at 2 Gb / s. The waveform for frequency-modulating the semiconductor laser is not limited to a sine wave but may be a sawtooth wave or a triangular wave. The transmission path may be a transmission path including an optical amplifier as an amplification repeater in the middle. The zero dispersion wavelength of the optical fiber in the transmission line is also 1.3
It is not limited to the μm band. The configuration of the receiver is not limited to direct detection, and heterodyne detection can be used.

(発明の効果) 本発明によれば、伝送路の分散の影響が大きい高速・
長距離伝送においても、分散の影響を低減あるいは補償
した伝送を可能とする光送信装置を得ることができる。
(Effects of the Invention) According to the present invention, high-speed and
Even in long-distance transmission, it is possible to obtain an optical transmission device that enables transmission in which the influence of dispersion is reduced or compensated.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の光送信装置の一実施例を示す構成図、
第2図は動作時における各信号と各信号光との位相関係
を示すタイミングチャートである。 1……半導体レーザ光源、2……光ファイバ、3……直
流バイアス源、4……加算器、5……クロック発生器、
6……可変減衰器、7……可変遅延器、8,9……信号
源、10,11……パルス幅可変回路、12,13……外部変調
器、19,20……光カプラ、21……光遅延器、22……アバ
ランシェ・フォト・ダイオード、23……電気増幅器、31
……光送信装置、32……光受信器。
FIG. 1 is a configuration diagram showing one embodiment of an optical transmission device of the present invention,
FIG. 2 is a timing chart showing the phase relationship between each signal and each signal light during operation. 1 ... Semiconductor laser light source, 2 ... Optical fiber, 3 ... DC bias source, 4 ... Adder, 5 ... Clock generator,
6 ... variable attenuator, 7 ... variable delay unit, 8,9 ... signal source, 10,11 ... pulse width variable circuit, 12,13 ... external modulator, 19,20 ... optical coupler, 21 …… Optical delay device, 22 …… Avalanche photodiode, 23 …… Electrical amplifier, 31
... Optical transmitter 32, optical receiver.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04B 10/142 10/18 H04J 14/08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location H04B 10/142 10/18 H04J 14/08

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】クロック信号を生成するクロック信号源
と、1個の半導体レーザ光源と、前記半導体レーザ光源
の注入電流にバイアスを与える直流バイアス源と、前記
直流バイアス源の出力と前記クロック信号を加算しその
出力を前記半導体レーザの注入電流に印加する加算器
と、前記加算器に入力されるクロック信号の振幅及び位
相をそれぞれ調節する可変減衰器及び可変遅延器と、前
記クロック信号源の出力のクロック信号に同期し互いに
独立な送信信号をそれぞれ生成するn個(nは3以上の
正の整数)の送信信号源と、前記n個の送信信号源の出
力のパルス幅をそれぞれ設定するn個のパルス幅変換器
と、前記半導体レーザ光源の出力光をn個の経路に分岐
する光分岐器と、前記n個のパルス幅変換器の出力信号
を用いて前記n個の分岐出力光を強度変調した強度変調
光をそれぞれ生成するn個の外部変調器と、前記n個の
強度変調光間に時間差を与える光遅延手段と、前記n個
の外部変調器からそれぞれ出力されるn個の強度変調光
を合波し伝送路に送出する光合波器とを含み、前記光遅
延手段は、前記光分岐器と前記外部変調器との間に設け
られて前記n個の分岐出力光相互間に時間差を与える手
段か、又は前記外部変調器と前記光合波器との間に設け
られて前記n個の強度変調光間に時間差を与える手段か
の少なくとも一方を備え、前記n個の強度変調光の各パ
ルス内の前半部の光周波数を低く後半部は高くなるよう
に前記可変遅延器を用いて前記加算器に入力されるクロ
ック信号の位相を調節し、また前記半導体レーザ光源の
出力光の光周波数変位量を調節するために前記可変減衰
器を用いて前記加算器に入力されるクロック信号の振幅
を調節することを特徴とする光送信装置。
1. A clock signal source for generating a clock signal, one semiconductor laser light source, a DC bias source for applying a bias to an injection current of the semiconductor laser light source, and an output of the DC bias source and the clock signal. An adder for adding the output to the injection current of the semiconductor laser, a variable attenuator and a variable delay for respectively adjusting an amplitude and a phase of a clock signal input to the adder, and an output of the clock signal source. N (n is a positive integer of 3 or more) transmission signal sources that respectively generate transmission signals independent of each other in synchronization with the clock signal of n, and n that sets the pulse width of the output of the n transmission signal sources. Pulse width converters, an optical splitter that splits the output light of the semiconductor laser light source into n paths, and the n number of output signals from the n pulse width converters. N external modulators for respectively generating intensity-modulated light obtained by intensity-modulating the output light, optical delay means for providing a time difference between the n intensity-modulated lights, and output from the n external modulators an optical multiplexer for multiplexing n number of intensity-modulated lights and transmitting the multiplexed light to a transmission line, wherein the optical delay means is provided between the optical splitter and the external modulator, and the n number of branch outputs are provided. Means for providing a time difference between the lights or at least one of means for providing a time difference between the n intensity-modulated lights provided between the external modulator and the optical multiplexer, wherein the n Adjusting the phase of the clock signal input to the adder by using the variable delay unit so that the first half of the pulse of the intensity-modulated light has a lower optical frequency and the latter half has a higher optical frequency; To adjust the optical frequency displacement of the output light Optical transmission apparatus characterized by adjusting the amplitude of the clock signals input to the adder using the variable attenuator.
JP2234993A 1989-11-30 1990-09-05 Optical transmitter Expired - Fee Related JP2705293B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2234993A JP2705293B2 (en) 1990-09-05 1990-09-05 Optical transmitter
EP90122834A EP0430230B1 (en) 1989-11-30 1990-11-29 Optical transmitting apparatus
DE69017848T DE69017848T2 (en) 1989-11-30 1990-11-29 Optical transmission device.
US07/620,111 US5184243A (en) 1989-11-30 1990-11-30 Optical transmitting apparatus for minimal dispersion along an optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2234993A JP2705293B2 (en) 1990-09-05 1990-09-05 Optical transmitter

Publications (2)

Publication Number Publication Date
JPH04115731A JPH04115731A (en) 1992-04-16
JP2705293B2 true JP2705293B2 (en) 1998-01-28

Family

ID=16979469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2234993A Expired - Fee Related JP2705293B2 (en) 1989-11-30 1990-09-05 Optical transmitter

Country Status (1)

Country Link
JP (1) JP2705293B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079705A (en) * 1996-09-03 1998-03-24 Fujitsu Ltd Optical modulation device and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107034A (en) * 1988-10-17 1990-04-19 Hitachi Ltd Light time-division multiplexing system
JP2823872B2 (en) * 1988-12-21 1998-11-11 富士通株式会社 Optical transmitter

Also Published As

Publication number Publication date
JPH04115731A (en) 1992-04-16

Similar Documents

Publication Publication Date Title
US5184243A (en) Optical transmitting apparatus for minimal dispersion along an optical fiber
US5940196A (en) Optical communications system with wavelength division multiplexing
US5786918A (en) Optical communication system and optical transmitting device
EP0539177B1 (en) An optical transmission system
US5946119A (en) Wavelength division multiplexed system employing optimal channel modulation
JP3028906B2 (en) Soliton optical communication system and optical transmitting device and optical receiving device thereof
US5793512A (en) Optical communication system
US7010231B1 (en) System and method of high-speed transmission and appropriate transmission apparatus
US7796897B2 (en) WDM optical transmission system and WDM optical transmission method
JPH11510974A (en) Dispersion compensation
JPH09325308A (en) Optical modulator, short light pulse generating device, light waveform shaping device, and optical demultiplexer device
US7239440B2 (en) Wavelength conversion apparatus
EP1499044A2 (en) Optical receiving method, optical receiver, and optical transmission system using the same
JP2705291B2 (en) Optical transmitter
JP2705293B2 (en) Optical transmitter
JP3270823B2 (en) Optical dispersion division multiplex communication equipment
JP3099352B2 (en) Optical transmitter
US20030043431A1 (en) Simultaneous demultiplexing and clock recovery of high-speed OTDM signals using a tandem electro-absorption modulator
JP7164092B2 (en) Polarization division multiplexed intensity modulation system and method of using same
US7016611B2 (en) Optical communications apparatus and optical communications system
JP3322653B2 (en) Optical receiving device used for dark soliton optical communication system
JPH0795721B2 (en) Optical communication device
JP2959257B2 (en) Optical fiber communication method
JP2671524B2 (en) Optical communication device
JP2658678B2 (en) Optical repeater circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071009

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees