JPH02107034A - Light time-division multiplexing system - Google Patents
Light time-division multiplexing systemInfo
- Publication number
- JPH02107034A JPH02107034A JP63259460A JP25946088A JPH02107034A JP H02107034 A JPH02107034 A JP H02107034A JP 63259460 A JP63259460 A JP 63259460A JP 25946088 A JP25946088 A JP 25946088A JP H02107034 A JPH02107034 A JP H02107034A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- pulse train
- signal
- division multiplexing
- time division
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 127
- 238000000034 method Methods 0.000 claims description 9
- 239000004065 semiconductor Substances 0.000 claims description 4
- 239000013307 optical fiber Substances 0.000 abstract description 18
- 239000006185 dispersion Substances 0.000 abstract description 5
- 230000003111 delayed effect Effects 0.000 abstract description 3
- 230000003252 repetitive effect Effects 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000002238 attenuated effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
Landscapes
- Time-Division Multiplex Systems (AREA)
- Optical Communication System (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、光時分割多重化方式における、タロツク信号
の分岐方式並びに光パルス列の発生方式に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a tarok signal branching system and an optical pulse train generation system in an optical time division multiplexing system.
従来、光時分割多重方式については、エレクトロニクス
・レターズ、ボリューム23.ナンバー5 (1987
年)第208頁から第209頁(Elactronic
s Letters、 Vo Q 、 23 、 Na
5 (1987)pp、208−209)において論
じられている。Conventionally, the optical time division multiplexing method has been described in Electronics Letters, Volume 23. Number 5 (1987
), pages 208 to 209 (Electronic
s Letters, Vo Q, 23, Na
5 (1987) pp. 208-209).
従来の方式においては、クロック信号を電気領域で多重
化数(m本)に分岐させ、m本の各分岐信号をそれぞれ
遅延させた後、m個の光パルス列発生器に入力していた
。これらによるm本の光パルス列はそれぞれm個のTi
:LiNb0δスイツチによりRZ(リターン ツー
ゼロ: Return−to−zero)符号で光強度
変調を行い、その後m個のデータ光信号は光カプラによ
り時分割多重化されていた。In the conventional system, a clock signal is branched into multiplexed signals (m signals) in the electrical domain, and each of the m branch signals is delayed and then input to m optical pulse train generators. Each of these m optical pulse trains has m Ti
: RZ (return two) by LiNb0δ switch
Optical intensity modulation is performed using a return-to-zero (return-to-zero) code, and then m data optical signals are time-division multiplexed by an optical coupler.
第3図は従来の光時分割多重方式(多重化数m)の構成
を示したものである。この従来例では、光パルス列発生
器38〜3 m 、光変調器48〜4m。FIG. 3 shows the configuration of a conventional optical time division multiplexing system (multiplexing number m). In this conventional example, optical pulse train generators 38-3m and optical modulators 48-4m.
光カブラ5.光ファイバ7a〜7m、8により構成され
る。Hikari Kabra5. It is composed of optical fibers 7a to 7m and 8.
入力信号は、クロック信号1およびデータ信号a (2
a)〜データ信号m (2m)である。クロック信号は
、電気領域においてm本に分岐され、m台の光パルス列
発生器38〜3mに入力される。The input signals are clock signal 1 and data signal a (2
a) to data signal m (2m). The clock signal is branched into m signals in the electrical domain and input to m optical pulse train generators 38 to 3m.
このとき、m本のクロック電気信号には、後段での多重
化のために適当な遅延時間τを与える。At this time, an appropriate delay time τ is given to the m clock electrical signals for multiplexing at a subsequent stage.
98〜9mは遅延回路を示す。98 to 9m indicate delay circuits.
光パルス列発生器38〜3mからは、周波数ioの光パ
ルス列が出力されそれぞれ光変調器4a〜4mに入力さ
れ、RZ倍信号光ファイバ78〜7mに送出される。こ
れらの光信号は光カプラ5により、ビットレートmfo
(b/s)のNRZ信号に多重化される。Optical pulse trains of frequencies io are output from the optical pulse train generators 38 to 3m, input to optical modulators 4a to 4m, respectively, and sent to RZ double signal optical fibers 78 to 7m. These optical signals are processed by an optical coupler 5 at a bit rate mfo
(b/s) NRZ signal.
この方式では、クロック信号1を電気領域において分岐
するために1m台の光パルス列発生器が必要である。ま
た、一般にこれらm本の光パルス列の光波長は異なる。In this method, 1 m of optical pulse train generators are required to branch the clock signal 1 in the electrical domain. Further, in general, these m optical pulse trains have different optical wavelengths.
このため、多重化光信号を長距離光ファイバにより伝送
する場合に、各ビット間で伝搬時間が異なるために、ビ
ット間干渉が発生し、伝送特性の大幅な劣化が発生する
。For this reason, when multiplexed optical signals are transmitted through long-distance optical fibers, the propagation time differs between each bit, resulting in bit-to-bit interference and significant deterioration of transmission characteristics.
上記従来技術では、クロック信号を電気領域で多重化数
m本に分岐し、各分岐信号にそれぞれ遅延時間を与えた
後、m個のモードクロックレーザに入力する。このため
、多重化数m個のモードロックレーザが必要であり、光
送信器として非常に高価なものとなってしまう。また、
多重化光信号を長距離光ファイバにより伝送させる場合
、m個のモードロックレーザの光波長は一般に異なるた
め光ファイバの分散の影響を受け、光受信端において多
重化光信号の位相が大きく乱れるという問題がある。In the above-mentioned conventional technology, a clock signal is branched into m multiplexed signals in the electrical domain, and each branched signal is given a delay time and then input to m mode clock lasers. Therefore, m mode-locked lasers are required to be multiplexed, making the optical transmitter extremely expensive. Also,
When multiplexed optical signals are transmitted over long-distance optical fibers, the optical wavelengths of the m mode-locked lasers generally differ, so they are affected by the dispersion of the optical fibers, and the phase of the multiplexed optical signals at the optical receiving end is greatly disturbed. There's a problem.
本発明は、光送信器の低価格化を図り、各光パルス列発
生器間で光波長が異なることに基づく光多重化信号のビ
ット間干渉を除去することを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to reduce the cost of an optical transmitter and to eliminate bit-to-bit interference of an optical multiplexed signal due to differences in optical wavelength between optical pulse train generators.
上記目的を達成するために、本発明においては1個の光
パルス列発生器を用いて発生させたくり返し光パルス列
を、m本(mは多重化数)に分岐し、それぞれを符号化
してRZ倍信号発生させ、これらにそれぞれ適当な遅延
時間を与えて光カプラなどにより合流させて時分割多重
化を行う方法を採用したものである。In order to achieve the above object, in the present invention, a repetitive optical pulse train generated using one optical pulse train generator is branched into m pieces (m is the number of multiplexed pulses), and each is encoded and multiplied by RZ. This method employs a method in which signals are generated, each of which is given an appropriate delay time, and then combined using an optical coupler or the like to perform time division multiplexing.
光パルス列発生器としては、モードロック半導体レーザ
、または利得スイッチ状態で動作する半導体レーザを用
いる方法が実現容易なものとして挙げられる。As the optical pulse train generator, a method using a mode-locked semiconductor laser or a semiconductor laser operating in a gain-switched state can be cited as an easy-to-implement method.
さらに、光パルス列をm本に分岐するため、それぞれの
分岐信号は1 / m以下に減衰する(等分配の場合)
。この点が問題となる場合には、光変調器の前段または
後段、あるいは光カプラの後段に光増器を用いる。Furthermore, since the optical pulse train is split into m parts, each branch signal is attenuated to 1/m or less (in the case of equal distribution).
. If this point becomes a problem, an optical multiplier is used before or after the optical modulator or after the optical coupler.
[作用〕
光時分割多重に用いる光パルス列発生器1台より、光領
域で光パルス列を多重化数m本に分岐する。これらの分
岐信号はそれぞれ光変調器によりm本のRZ倍信号符号
化される。このため、光パルス列発生器1台のみを使用
すれば良く、低価格な光多重化送信器が構成できる。ま
た、光信号の発生源が単一であるため、多重化光信号の
各ビットの光波長も同一となる。したがって、長距離光
フアイバ伝送においても、各ビット間での波長分散に基
づく干渉が除去される。[Operation] A single optical pulse train generator used for optical time division multiplexing branches an optical pulse train into m multiplexed pulse trains in the optical region. Each of these branched signals is encoded into m RZ times signals by an optical modulator. Therefore, it is sufficient to use only one optical pulse train generator, and a low-cost optical multiplex transmitter can be constructed. Furthermore, since the optical signal has a single generation source, the optical wavelength of each bit of the multiplexed optical signal is also the same. Therefore, even in long-distance optical fiber transmission, interference based on chromatic dispersion between bits is eliminated.
以下、本発明の実施例を第1図〜第4図により説明する
。Embodiments of the present invention will be described below with reference to FIGS. 1 to 4.
第1図に1本発明の実施例の基本構成を示す。FIG. 1 shows the basic configuration of an embodiment of the present invention.
本図の実施例は多重化数mについて示したものである。The embodiment shown in this figure is shown for the number of multiplexes m.
光時分割多重方式は、光パルス列発生器3、光変調器4
a、4b、・・・4m、光カプラ5.光ファイバ6.6
a、6b、−6m、7a、7b、−7m、8により構成
される。入力信号は、クロッり信号1(周波数fo)お
よびデータ信号a(2a)〜データ信号m(2m)であ
る。The optical time division multiplexing method uses an optical pulse train generator 3 and an optical modulator 4.
a, 4b,...4m, optical coupler 5. optical fiber 6.6
It is composed of a, 6b, -6m, 7a, 7b, -7m, and 8. The input signals are clock signal 1 (frequency fo) and data signals a (2a) to data signals m (2m).
本光多重化方式における各部の信号波形を第2図に示す
、第2図では、1:4多重を例として用いる。FIG. 2 shows the signal waveforms of each part in this optical multiplexing system. In FIG. 2, 1:4 multiplexing is used as an example.
第2図Aの様なりロック信号1(周波数jo)は、光パ
ルス列発生器3に入力され、第2図Bのようなくり返し
光パルス列が光ファイバ6に送出される。この光パルス
列は周波数foで、パルス幅は]、 / 4 f o程
度または1/4fo以下であるものとする。The lock signal 1 (frequency jo) as shown in FIG. 2A is input to the optical pulse train generator 3, and a repeating optical pulse train as shown in FIG. It is assumed that this optical pulse train has a frequency fo and a pulse width of approximately ], /4 fo or less than 1/4 fo.
光フアイバ6内の光パルス列は光ファイバ68〜6mに
分岐され、それぞれ光変調器4a〜4mに入力される。The optical pulse train in the optical fiber 6 is branched into optical fibers 68 to 6m, and input to optical modulators 4a to 4m, respectively.
光変調器48〜4mにはそれぞれデータ信号a”m(電
気信号)が入力され、デジタル信号の11 +F I
J O11に応じて光が符号化される。この結果、光変
調器48〜4mの光出力はデユーティ比1/4のRZ倍
信号なり、光ファイバ7a〜7bに送出される。A data signal a"m (electrical signal) is input to each of the optical modulators 48 to 4m, and a digital signal 11 + F I
The light is encoded according to JO11. As a result, the optical outputs of the optical modulators 48 to 4m are RZ multiplied signals with a duty ratio of 1/4, and are sent to the optical fibers 7a to 7b.
光カプラ5の入力時において、光変調器48〜4mの出
力のRZ倍信号位相が、それぞれ1/4foの時間だけ
遅延されるように、光ファイバ68〜6m、7a〜7m
の長さを設定することにより、光カプラ5の出力におい
てmfo(b/s)のNRZ信号が得られる。The optical fibers 68-6m, 7a-7m are connected so that the RZ multiplied signal phase of the output of the optical modulators 48-4m is delayed by 1/4fo time at the time of input to the optical coupler 5.
By setting the length of , an NRZ signal of mfo (b/s) can be obtained at the output of the optical coupler 5.
第1図において、光パルス列発生器3としては、モード
ロックレーザ、あるいは利得スイッチ状態で動作する半
導体レーザを用いることができる。In FIG. 1, a mode-locked laser or a semiconductor laser operating in a gain-switched state can be used as the optical pulse train generator 3.
光変調器48〜4mとしては、高速動作に有利なものと
して、方向性結合器型の光スィッチ、マツハ・ツエンダ
−型の光スィッチ、光吸収型変調器などを用いることが
できる。As the optical modulators 48 to 4m, a directional coupler type optical switch, a Matsuha-Zehnder type optical switch, a light absorption type modulator, etc. can be used as those that are advantageous for high-speed operation.
第1図に示した実施例によれば、光パルス列発生器を1
台だけ用いて、光時分割多重ができるため、光時分割多
重化送信器を低価格にできる効果がある。また、光(,
1号の発生源が単一であるため、多重化光信号の各ビッ
トの光波長も同一となり、長距離光フアイバ伝送におい
ても、各ビット間での波長分散に基づく干渉が除去され
る効果がある。According to the embodiment shown in FIG.
Since optical time division multiplexing can be performed using only one transmitter, the cost of the optical time division multiplexing transmitter can be reduced. Also, light (,
Since the source of No. 1 is single, the optical wavelength of each bit of the multiplexed optical signal is also the same, and even in long-distance optical fiber transmission, interference based on wavelength dispersion between each bit is eliminated. be.
第4図に、本発明の第2の実施例を示す。基本的な構成
は第1図と同じであり、光パルス列発生器3の後段に光
増幅器10を挿入したものである。FIG. 4 shows a second embodiment of the invention. The basic configuration is the same as that in FIG. 1, with an optical amplifier 10 inserted after the optical pulse train generator 3.
本発明では、光パルス発生器3の出力をm本に分岐する
ため、それぞれの分岐信号は減衰する。例えば、等分配
の場合を考えると、分岐4d号電力は1 / m以下と
なる。In the present invention, since the output of the optical pulse generator 3 is branched into m signals, each branch signal is attenuated. For example, considering the case of equal distribution, the branch No. 4d power will be 1/m or less.
光増幅器10は、この減衰を補償することができる。光
増幅器10の挿入位置は、光変調器4a〜4mの各前段
、すなわち、光ファイバ68〜6bの各部分でも良い。Optical amplifier 10 can compensate for this attenuation. The optical amplifier 10 may be inserted at each preceding stage of the optical modulators 4a to 4m, that is, to each part of the optical fibers 68 to 6b.
また、光変調器4a〜4mの各後段、すなわち、光ファ
イバ78〜7mの各部分でも良い。さらに、光カプラ5
の後段に挿入しても良い。Moreover, each subsequent stage of the optical modulators 4a to 4m, that is, each part of the optical fibers 78 to 7m may be used. Furthermore, optical coupler 5
It may be inserted after the .
本発明は、以上説明したように構成されるので以下に記
載する効果がある。Since the present invention is configured as described above, it has the effects described below.
光パルス列発生器を1台だけ用いて、光時分割多重がで
きるため、光時割多重化送信器を低価格化できる。また
、光信号の発生源が単一であるため、多重化光信号の各
ビットの光波長も同一となり、長距離光フアイバ伝送に
おいても、各ビット間での波長分散に基づく干渉が除去
される。さらに、光増幅器を本方式で用いる装置内に付
加することにより、光領域における分岐に伴う電力の低
下を補償し、高出力化が図れる。Since optical time division multiplexing can be performed using only one optical pulse train generator, the cost of the optical time division multiplexing transmitter can be reduced. In addition, since the optical signal has a single source, the optical wavelength of each bit of the multiplexed optical signal is the same, and even in long-distance optical fiber transmission, interference due to chromatic dispersion between each bit is eliminated. . Furthermore, by adding an optical amplifier to the device used in this method, it is possible to compensate for the drop in power due to branching in the optical domain and achieve high output.
第1図は本発明の実施例の基本構成図、第2図は本発明
の実施例の装[Nにおける各部の48号波形の模式図、
第3図は従来例の構成図、第4図は本発明の第2の実施
例の構成図である。
1・・・クロック信号、2a〜2m・・・データ信号、
3゜38〜3m・・・光パルス列発生器、48〜4m・
・・光変調器、5・・・光カプラ。
循
ロ
チ゛−り信5戊
閉
図
図
晴間
第FIG. 1 is a basic configuration diagram of an embodiment of the present invention, and FIG. 2 is a schematic diagram of No. 48 waveforms of various parts in the embodiment of the present invention.
FIG. 3 is a block diagram of a conventional example, and FIG. 4 is a block diagram of a second embodiment of the present invention. 1... Clock signal, 2a-2m... Data signal,
3゜38~3m...Optical pulse train generator, 48~4m・
... Optical modulator, 5... Optical coupler. Circulation letter 5 Closing map sunny day part
Claims (1)
れ、クロック信号周波数で発生させたくり返し光パルス
列を光領域で分岐した後、該光変調器により符号化した
光データ信号を該光カプラにより多重化することを特徴
とする光時分割多重方式。 2、光パルス列発生器としてモードロックレーザを用い
た請求項第1項記載の光時分割多重方式。 3、光パルス列発生器として利得スイッチ状態で動作す
る半導体レーザを用いた請求項第1項記載の光時分割多
重方式。 4、光パルス列発生器と光変調器の間に光増幅器を設け
た請求項第1項記載の光時分割多重方式。 5、光変調器と光カプラの間に光増幅器を設けた請求項
第1項記載の光時分割多重方式。6、光カプラの後段に
光増幅器を設けた請求項第1項記載の光時分割多重方式
。[Claims] 1. Consisting of an optical pulse train generator, an optical modulator, and an optical coupler, after splitting a repeated optical pulse train generated at a clock signal frequency in an optical domain, the optical signal is encoded by the optical modulator. An optical time division multiplexing method characterized in that data signals are multiplexed by the optical coupler. 2. The optical time division multiplexing system according to claim 1, wherein a mode-locked laser is used as the optical pulse train generator. 3. The optical time division multiplexing system according to claim 1, wherein a semiconductor laser operating in a gain-switched state is used as the optical pulse train generator. 4. The optical time division multiplexing system according to claim 1, further comprising an optical amplifier provided between the optical pulse train generator and the optical modulator. 5. The optical time division multiplexing system according to claim 1, further comprising an optical amplifier provided between the optical modulator and the optical coupler. 6. The optical time division multiplexing system according to claim 1, wherein an optical amplifier is provided at a stage subsequent to the optical coupler.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63259460A JPH02107034A (en) | 1988-10-17 | 1988-10-17 | Light time-division multiplexing system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63259460A JPH02107034A (en) | 1988-10-17 | 1988-10-17 | Light time-division multiplexing system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02107034A true JPH02107034A (en) | 1990-04-19 |
Family
ID=17334376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63259460A Pending JPH02107034A (en) | 1988-10-17 | 1988-10-17 | Light time-division multiplexing system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02107034A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02167525A (en) * | 1988-12-21 | 1990-06-27 | Fujitsu Ltd | Optical modulation device |
JPH02167524A (en) * | 1988-12-21 | 1990-06-27 | Fujitsu Ltd | Optical modulation device |
JPH04115731A (en) * | 1990-09-05 | 1992-04-16 | Nec Corp | Optical transmitter |
JPH04117036A (en) * | 1990-08-31 | 1992-04-17 | Nec Corp | Optical transmitter |
WO1999046835A1 (en) * | 1998-03-11 | 1999-09-16 | Nikon Corporation | Ultraviolet laser apparatus and exposure apparatus comprising the ultraviolet laser apparatus |
-
1988
- 1988-10-17 JP JP63259460A patent/JPH02107034A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02167525A (en) * | 1988-12-21 | 1990-06-27 | Fujitsu Ltd | Optical modulation device |
JPH02167524A (en) * | 1988-12-21 | 1990-06-27 | Fujitsu Ltd | Optical modulation device |
JPH04117036A (en) * | 1990-08-31 | 1992-04-17 | Nec Corp | Optical transmitter |
JPH04115731A (en) * | 1990-09-05 | 1992-04-16 | Nec Corp | Optical transmitter |
WO1999046835A1 (en) * | 1998-03-11 | 1999-09-16 | Nikon Corporation | Ultraviolet laser apparatus and exposure apparatus comprising the ultraviolet laser apparatus |
US6590698B1 (en) | 1998-03-11 | 2003-07-08 | Nikon Corporation | Ultraviolet laser apparatus and exposure apparatus using same |
US7023610B2 (en) | 1998-03-11 | 2006-04-04 | Nikon Corporation | Ultraviolet laser apparatus and exposure apparatus using same |
US7126745B2 (en) | 1998-03-11 | 2006-10-24 | Nikon Corporation | Method of irradiating ultraviolet light onto an object |
US7277220B2 (en) | 1998-03-11 | 2007-10-02 | Nikon Corporation | Ultraviolet laser apparatus and exposure apparatus using same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3028906B2 (en) | Soliton optical communication system and optical transmitting device and optical receiving device thereof | |
EP1083685B1 (en) | Optical signal generating circuit and optical transmission line | |
US5339183A (en) | Optical signal transmission device | |
EP1379042B1 (en) | Multiplexer | |
JPH10508116A (en) | All-optical processing in communication systems | |
US5857040A (en) | Adjustable optical amplitude and phase modulator, and a soliton regenerator including such a modulator | |
JPH11331128A (en) | Method and device for high capacity chirped pulse wavelength dividing multiplex communication | |
KR900004129A (en) | Light wave transmitter and intermodulation suppression method | |
US5401957A (en) | Optical waveform shaping device for peforming waveform equalization and timing synchronization | |
Veselka et al. | Pulse generation for soliton systems using lithium niobate modulators | |
JPH11502944A (en) | Dark pulse generation and transmission | |
US6549697B1 (en) | Wavelength division multiplex optical signal regeneration method | |
Bergman et al. | An all-optical long-distance multi-Gbytes/s bit-parallel WDM single-fiber link | |
EP0555063B1 (en) | Optical waveform shaping device | |
JPH02107034A (en) | Light time-division multiplexing system | |
US7577363B2 (en) | Optical device and method of converting WDM signals into an OTDM signal and vice versa | |
US20030165341A1 (en) | Optical transmitter for transmitting signals with high data rates, an optical transmission system and a method therefore | |
Chan et al. | A fast channel-tunable optical transmitter for ultrahigh-speed all-optical time-division multiaccess networks | |
JPH1172757A (en) | Optical pulse multiplexing apparatus | |
JP4041007B2 (en) | Optical multiplex communication method, optical multiplex communication system, optical signal multiplexer, and optical multiplex signal separator | |
JPH1155221A (en) | Optical signal transmission device and its method | |
JP2002250946A (en) | Multi-wavelength light source | |
US6795653B1 (en) | Apparatus for reshaping optical pulses | |
US7885544B2 (en) | Device for temporal subsampling of an OTDM optical signal, OTDM-WDM converter comprising same and OTDM-WDM converter | |
JP3257576B2 (en) | Time division multiplex transmission method of optical solitons |